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Apartado 89.000, Caracas 1080-A, Venezuela

Bruno Sansó‡
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Abstract

We propose truncated and power-transformed (TPT) models for daily rainfall
and we derive the Generalized Extreme Value (GEV) limit distributions for these
models. We find that these limit distributions belong to the domain of attrac-
tion of the Fréchet family when the parent distribution of the daily values is a
TPT t-Student model. In this case the shape parameter of the limiting GEV
model depends on the degrees of freedom and the power transformation parame-
ter. When the parent distribution of the daily values is a TPT Normal model,
the limiting GEV model is independent of the parameters of the parent model.
We perform a detailed inference and predictive analysis to validate these theo-
retical results using a Bayesian approach. Markov Chain Monte Carlo methods
(MCMC) were used to estimate the posterior distribution of the parameters of
the t-Student model for daily rainfall on one hand, and to estimate the posterior
distribution of the parameters of the GEV model for the annual maxima on the
other hand. Numerical results are presented for two locations: Maiquet́ıa (Var-
gas State), and La Mariposa (Miranda State), Venezuela. Simulations from the
predictive distribution of the daily values suggest a good approximation between
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the extreme distribution of the TPT t-Student model and the Fréchet model
found by standard extreme value limit theory.

1 Introduction

Rainfall modeling has been a topic of high interest for many years in the hydrolog-
ical science literature from both a deterministic and a stochastic perspective. From
the stochastic point of view, rainfall models are developed with the motivation to
understand the probabilistic structure of the physical phenomenon mostly to simu-
late rainfall data to be used as inputs to hydrological, agricultural and environmental
models. Cox and Isham (1984) identified three types of rainfall modeling approaches:
Empirical Statistical models, with no consideration of the physical dynamics of the
process (Gabriel and Neumann, 1962; Stern and Coe, 1984; Woolhiser, 1992); purely
deterministic approaches resembling the physical rainfall dynamic through the solution
of complex partial differential equation systems. One kind of these models are the Re-
gional Climate Models (RCMs) which produce detailed meteorological data (including
rainfall) by simulating atmosphere and land-surface processes (see for example Liston
and Pielke (2000); Richard et al. (2002)). A third kind of models are intermediate
models including in their definitions physical components of the rainfall process as rain
cells, rain bands, fronts and storm nuclei. Pioneer work on this topic was developed
by LeCam (1961); Waymire et al. (1984); Cox and Isham (1988) and Phelan and
Goodall (1990), with space-time extension by Rodŕıguez-Iturbe et al. (1987, 1988) and
Cowpertwait (1994).

Within the context of the empirical statistical models, truncated and power trans-
formed (TPT) rainfall models are a good modeling option since they naturally include
the non-zero probability mass point of zero values by the truncation of the latent dis-
tribution function. If X is a random variable measuring the accumulated rainfall on a
particular time scale, the TPT normal model is defined as:

X =

{

W β if W > 0
0 if W ≤ 0

(1)

where W ∼ N(µ, σ2), and β > 0 is the unknown power transformation parameter.
The power transformation accommodates the lack of symmetry of rainfall data

especially for finer time scales as daily and hourly; and the use of the normal distribu-
tion as a latent random variable is always convenient from the inference point of view.
These models have been used by Stidd (1953, 1973); Richardson (1977)and Hutchinson
et al.(1993). Bárdossy and Plate (1992) proposed a spatio-temporal extension of the
TPT normal model; Glasbey and Nevison (1997) also considered a truncated normal
distribution model with a different transformation family. Sansó and Guenni (1999)
considered a spatio-temporal structure of the TPT model and used a Bayesian ap-
proach to estimate the model parameters and to make model predictions. This model
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was extended to a dynamic version in Sansó and Guenni (2000) to handle changes
in seasonal patterns through time and to produce model predictions including all the
uncertainty in the model parameters.

Extreme rainfall events are of great interest due to their potential societal and
economic impact. TPT models have been shown to be a flexible tool for modeling
rainfall. Thus, it is important to study the distribution of extreme values under a
TPT model. The theory of extreme events is well developed both probabilistically and
inferentially. It is based on limiting approximations to the distribution of the sequence
Mn = max{X1, . . . , Xn} where Xi are independent and identically distributed random
variables from the parental distribution. In our case, the parental distribution will be
a TPT. Usually n represents the number of observations in a year, and Mn represents
the annual maximum. After some normalization, the distribution of Mn converges to
a member of the Generalized Extreme Value (GEV) distribution family (von Mises,
1936; Jenkinson, 1955). GEV distributions are of the form

G(z) = exp

{

−

[

1 + ξ

(

z − µ

σ

)]−1/ξ
}

, (2)

for
{

z : 1 + ξ

(

z − µ

σ

)

> 0

}

,

−∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞. The parameters µ, σ and ξ represent the
location, scale and shape parameters respectively. The case ξ → 0 leads to the Gum-
bel family; the case ξ < 0 leads to the Weibull family and the case ξ > 0 leads to the
Fréchet family. More precisely, a distribution function F , discrete or absolutely contin-
uous, belongs to the maximum domain of attraction of a non-degenerated distribution
function G, if there are sequences {an > 0} and {bn} such that:

lim
n→∞

F n(anz + bn) = G(z) (3)

and G belongs to the (GEV) distribution family. This type of convergence is called
weak convergence. Galambos (1978) determined the necessary conditions for F in order
that the normalizing sequences {an > 0} and {bn} exist and (3) holds.

The results for the GEV encompass those in von Mises (1936). According to the
earlier work, it is possible to establish sufficiency conditions for F to belong to the
domain of attraction of either the Gumbel, Fréchet or Weibull families. Such results
are used in this work to determine the domain of attraction of the TPT model. We
consider two cases: when the underlying TPT distribution is normally distributed and
when it is a t-Student distribution. These results are presented in section 2.

The paper continues with an extensive data analysis to validate our theoretical
results. The rationale of the validation is as follows:

• A TPT model is fitted to the daily data values using a Bayesian approach.
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• We calculate the annual maxima of the simulations of daily values obtained from
the predictive TPT distribution

• The theoretical extreme limit distribution corresponding to the domain of attrac-
tion of the TPT model is fitted to the observed annual maxima using a Bayesian
approach.

• Simulations from the predictive distribution of the extreme value model are com-
pared to the annual maxima simulated from the predictive distribution obtained
from the TPT model for daily values.

These results are presented in sections 3.1 to 3.4 and finally, the discussion and
conclusions of this analysis are presented in section 4.

2 Domain of attraction of TPT models

The results presented in this section follow the methods in von Mises (1936). We
use the the sufficiency conditions for weak convergence of the distribution of maxima
used to determine the domain of attraction of the truncated Normal model and the
truncated t-Student model. Additionally, we establish the relationship between the
parameters of the limiting and the parental distributions.

2.1 Truncated Normal model

Let X be a random variable that corresponds to the accumulated rainfall values for a
given time scale. Assume that X follows the model described by (1). The distribution
function and probability density function of X are given respectively by:

FX(x) = Φ
(

−
µ

σ

)

I{x=0} + Φ

(

x1/β − µ

σ

)

I{x>0}

f(x) =
1

βσ
x1/β−1ϕ

(

x1/β − µ

σ

)

I{x>0} + δ0(x)Φ(−µ/σ)

where Φ and ϕ are, respectively, the distribution and density functions of a standard
normal, IA is the indicator function of the set A and δ0 is the Dirac delta. function at
0, such that lim∆→0

∫ ∆

−∆
δ0(x)dx = 1

According to von Misses (1939), if F is an absolutely continuous and h(z) is defined
as

h(z) =
f(z)

1 − F (z)
, (4)

then
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1. If h(z) > 0 and, for some δ > 0

lim
z→∞

zh(z) = δ, (5)

then F belongs to domain of attraction of a Fréchet.

2. If F−1(1) < ∞ and, for some δ > 0

lim
z→F−1(1)

(F−1(1) − z)h(z) = δ,

then F belongs to the domain of attraction of a Weibull.

3. If h(z) is non-zero and differentiable for z close to F−1(1), then F belongs to
domain of attraction of a Gumbel if

lim
z→F−1(1)

d

dz

{

1

h(z)

}

= 0. (6)

For Fréchet and Weibull distributions, δ is the shape parameter of the GEV. We have
that δ = 1/ξ if ξ > 0 (Fréchet case) and δ = −1/ξ if ξ < 0 (Weibull case).

We apply the previous results to model (1). We notice that the corresponding
distribution function is absolutely continuous in (0,∞) and, following (4), the risk
function h(x) is

1
βσ

x1/β−1 ϕ
(

x1/β−µ
σ

)

I{x>0} + δ0(x)Φ(−µ/σ)

1 − Φ
(

−µ
σ

)

I{x=0} − Φ
(

x1/β−µ
σ

)

I{x>0}

.

Since we are interested in the limit for x → ∞, the term δ0(x)Φ(−µ/σ) can be dropped
from the analysis. So, it can be seen that the conditions for (6) hold and

d

dx

(

1

h(x)

)

= −I{x>0} −

[

1 − Φ
(

−µ
σ

)

I{x=0} − Φ
(

x1/β−µ
σ

)

I{x>0}

]

ϕ
(

x1/β−µ
σ

)

I{x>0}

·

[

βσ
(

1
β
− 1
)

x−1/β −
(

x1/β−µ
σ

)]

I{x>0}

ϕ
(

x1/β−µ
σ

)

I{x>0}

.

The limit of this expression, as x → ∞ is equal to 0. Therefore the distribution of the
TPT normal model belongs to the domain of attraction of the Gumbel distribution.
This result is not surprising given the relationship between the parent distribution and
the normal model. It also follows that the limit distribution does not depend on the
power parameter β.
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2.2 Truncated t-Student model

We consider now a modification of model (1) where W ∼ Student(µ, σ2, α). Again,
as in the TPT normal model, β > 0 is an unknown parameter. We shall refer to this
model as the truncated student model (TSM). The distribution and density functions
of a random variable X following a truncated student model are given by

FX(x) = FW (0) I{x=0} + FW (x1/β) I{x>0} (7)

f(x) =
1

β
x1/β−1fW (x1/β) I{x>0} + δ0(x)FW (0)

where FW and fW are the t-Student distribution and density functions with location
µ, scale σ2 and α degrees of freedom. Dropping the density term at 0, the risk function
for this model is given by

h(x) =

1
β

x1/β−1 fw(x1/β) I{x>0}

1 − Fw(0) I{x=0} − Fw(x1/β) I{x>0}

.

To see that (5) holds we need to calculate limx→∞+ xh(x). We observe that

xh(x) =

1
β

x1/β fw(x1/β) I{x>0}

1 − Fw(0) I{x=0} − Fw(x1/β) I{x>0}

=

c
β

(

x2/β(α+1)

1+ τ
α

(x1/β−µ)2

)
α+1

2
I{x>0}

1 − Fw(0) I{x=0} − Fw(x1/β) I{x>0}

,

so, after some calculations we have that

lim
x→∞+

xh(x) = −
1

β
I{x>0} + lim

x→∞+

(α + 1)

2β

(2x1/β − µ)

(x1/β − µ)
I{x>0}

=
α

β
I{x>0} > 0 .

Therefore the extreme values of the TPT TSM tend to a limit distribution belonging
to the Fréchet family with shape parameter given by α/β, where α are the degrees of
freedom of the underlying t-Student distribution and β is the power transformation
parameter. The former implies that the truncated t-Student model provides much
larger flexibility to model the behavior of the tails of rainfall distribution. Even though
the Gumbel is the default choice for maxima of rainfall, it has been observed that a
Fréchet model can be more appropriate in some cases (see, for example, Coles and
Pericchi, 2003). This fact will be corroborated in the section that follows. It should
be noticed that, as α → ∞ the TPT TSM tends to the TPT normal model and the
corresponding extreme limiting distribution approaches the Gumbel.
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3 Validation results for the TPT TSM

von Misses’s theory provides asymptotic approximations to the distribution of ex-
tremes. It is based on the assumption that the observations are independent. The
number of available observations is usually limited and it is seldom the case that they
are really independent. In this section we validate the results obtained in the previous
section with the analysis of some rainfall data. A GEV model was fitted to the annual
maxima of several locations in Venezuela. We selected two locations whose estimated
limiting extreme distribution belonged to the Fréchet family. Additionally, one of the
locations is relevant to the study of catastrophic extreme rainfall events (Maiquet́ıa,
Vargas State) and the other to the monitoring of water supply (La Mariposa, Capital
district).

3.1 Data description

We consider daily precipitation data collected at Maiquet́ıa, Vargas State, from year
1961 until 1999. This station is located in the central coast of Venezuela at the sea
level. Although data from this location represent a dry climate, this area is directly
under the topographic effects of the north-central mountain chain running parallel to
the coast. This effect played an important role in the extreme events occurred during
December 1999. The daily time series is shown in Figure 1 where the 1999 peaks stands
out from the data values. Data for the annual maxima was available for a longer period
of records than the daily time series. Forty nine years were available since 1951 until
1999. This data set is presented in Figure 2.
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Figure 1: Daily Rainfall for Maiquet́ıa Meteorological station
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Figure 2: Annual Maxima for Maiquet́ıa Meteorological station

The second location used in this analysis is La Mariposa, located in the Capital
District of Venezuela. This station monitors the rainfall regimen affecting La Mariposa
dam, which serves 25% of the population of Caracas, the capital of the country. The
daily time series is available for the period 1949-1996. This data set is shown in Figure
3 and the annual maxima is presented in Figure 4.
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Figure 3: Daily Rainfall for La Mariposa Meteorological station
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Figure 4: Annual Maxima for La Mariposa Meteorological station

3.2 Fitting the GEV distribution to the annual maxima

The parameters of the GEV model corresponding to Equation (2) were fitted using
a Bayesian approach. Let z1, . . . , zT represent the annual maxima, for T years, the
likelihood of the GEV model can be expressed in the form:

g(z1, . . . , zT |ξ, µ, σ) =
1

σT
exp

(

(

−
1

ξ
− 1

) T
∑

i=1

log

(

1 + ξ

(

zi − µ

σ

))

)

× exp

(

−
T
∑

i=1

(

1 + ξ

(

zi − µ

σ

))−1/ξ
)

Assuming a priori parameter independence with marginal distributions p(µ), p(σ) and
p(ξ), the joint posterior distribution is proportional to g(z1, . . . , zT |µ, σ, ξ) p(µ) p(σ) p(ξ).
A MCMC method was implemented to obtain samples from this joint posterior distri-
bution. The prior distributions were selected as p(µ) ∝ 1; p(σ) ∝ 1

σ
and p(ξ) ∝ 1. The

full conditional distributions of the parameters µ, σ and ξ were used to simulate the
Markov chains. These are given by:

p(µ|z1, . . . , zT , σ, ξ) ∝ exp

(

(

−
1

ξ
− 1

) T
∑

i=1

log

(

1 + ξ

(

zi − µ

σ

))

)

× exp

(

−

T
∑

i=1

(

1 + ξ

(

zi − µ

σ

))−1/ξ
)
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p(σ|z1, . . . , zT , µ, ξ) ∝σ
T
ξ
−1 exp

(

(

−
1

ξ
− 1

) T
∑

i=1

log(ξ(zi − µ) + σ)

)

× exp

(

−

T
∑

i=1

(

1 + ξ

(

zi − µ

σ

))−1/ξ
)

p(ξ|z1, . . . , zT , µ, σ) ∝ exp

(

(

−
1

ξ
− 1

) T
∑

i=1

log

(

1 + ξ

(

zi − µ

σ

))

)

× exp

(

−

T
∑

i=1

(

1 + ξ

(

zi − µ

σ

))−1/ξ
)

We used Metropolis-Hasting steps to obtain samples from each conditional distributions
given their non-standard forms. We run the MCMC for 20,000 iterations. Geweke
(1972) and Heidelberger-Welch (1983) tests were performed to check the convergence
of the chain. Output results of the Running means of the Bayesian Output Analysis
(BOA) Program for S-plus indicate convergence. The estimated values of the posterior
means are presented in Table 1 for Maiquet́ıa station and Table 2 for La Mariposa
station.

Parameter Mean SD MSE q0.025 q0.5 q0.975

µ 48.9792 0.6679 0.0114 47.7059 48.9874 50.2713
σ 21.1406 2.1960 0.0434 17.4865 20.9179 26.0737
ξ 0.2999 0.0100 0.000066 0.2801 0.2999 0.3195

Table 1: Statistics summary for the GEV model at Maiquet́ıa station

Parameter Mean SD MSE q0.025 q0.5 q0.975

µ 45.9994 0.0101 0.00007 45.9794 45.9994 46.0190
σ 13.7843 1.6983 0.0579 10.9307 13.6235 17.6196
ξ 0.1203 0.0099 0.00006 0.1011 0.1202 0.1401

Table 2: Statistics summary for the GEV model at La Mariposa station

The posterior densities for the simulated values are presented in Figure 5 for Mai-
quet́ıa and 6 for La Mariposa. It is important to note that the estimated mean value
of the parameter ξ is 0.2998 in Maiquet́ıa , and 0.1203 in La Mariposa. The values
corresponding to 95% posterior probability intervals are all positive, indicating that
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the extreme limit distributions belong to the Fréchet family. Therefore, these data sets
can be used to validate the theoretical results found in section 2 about the domain
of attraction of the TPT TSM. We expect that the distribution of rainfall for these
stations will correspond to a truncated t-Student.
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Figure 5: Posterior densities of the parameters of the GEV model at Maiquet́ıa station

3.3 Predictive inference for the GEV model

In this section we present a validation of the results from the GEV model. Our diag-
nostics are based on comparing observed values with simulations from the predictive
distribution of the annual maxima. The comparison is conducted as follows: i) Choose
one sample for every 200 iterations of the MCMC. This produces 100 simulated values
of the parameters. ii) Use each simulated value, say, µ(i), σ(i) and ξ(i), i = 1, . . . , 100
to sample annual maxima from the GEV model that corresponds to such values. The
resulting sample corresponds to the posterior predictive distribution of the annual
maxima.

The posterior predictive median and the 2.5% and 97.5% quantiles from the poste-
rior predictive distribution are presented in Figure 7 for Maiquet́ıa station and Figure 8
for La Mariposa station. For comparison, in each case the observed maxima have been
superimposed. In most cases the observed values are located within the 95% probabil-
ity intervals and are close to the median of the predictive distribution. We observe that
the value for year 1999 is out of the probability intervals in Maiquet́ıa station. This
is not surprising, since this is an extremely unlikely event. In fact, from simulations
of the predictive distribution we can estimate that P (z > 350 mm) ∼= 0.006. The
return levels zp vs. return period 1/p and their corresponding probability intervals are
presented in Figure 9 for Maiquet́ıa station and in Figure 10 for La Mariposa station.
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Figure 6: Posterior densities of the parameters of the GEV model at La Mariposa
station

These values are calculated by plugging in the posterior median and the 2.5% and
97.5% quantiles of µ, σ and ξ into the GEV model. The observed maximum in Mai-
quet́ıa close to 400 mm, causing the fatal events of year 1999 has an estimated return
period of 500 years with a high uncertainty level.

3.4 Fitting the TPT TSM to the daily time series

The TPT TSM model was described in (1) where W ∼ Student(µ, σ2, α) with para-
meter space given by the set Θ = {(µ, σ2, α, β) : −∞ < µ < ∞, σ2 > 0, α > 0, β > 0}
The t-Student distribution with parameters µ, σ2, α can be modeled through the hier-
archical structure (Dickey, 1968) W ∼ N(µ, σ2/η), η ∼ Gamma(α/2, α/2) . In order
to fit the truncated model we consider latent variables vi < 0 that correspond to the
dry periods. Within the MCMC, these are treated as additional model parameters.

Thus, letting Yt be the total daily precipitation for t = 1, . . . , n at a particular
location, then

Yt =

{

W β
t if Wt > 0

0 if Wt ≤ 0

where

Wt ∼ N
(

µt,
σ2

ηt

)

ηt ∼ Gamma
(

α
2
, α

2

)

.
(8)

We observed that the seasonal variation of precipitation in the region under study may
have a bimodal behavior during the year. Thus, a two-harmonics Fourier component
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Figure 7: Quantiles for the simulated annual maxima in Maiquet́ıa station

was added to the model. The resulting mean is of the form

µt = a0 +
2
∑

k=1

[

ak cos

(

2kπt

365

)

+ bk sin

(

2kπt

365

)]

for t = 1, 2, . . . , n, where n is the number of daily records. In matrix form −→µ = H−→a ,
where −→µ is a vector of dimension n, H is a n×5 matrix of sines and cosines and −→a is the
vector of the unknown harmonics coefficients of dimension 5 (−→a = (a0, a1, b1, a2, b2)).
Given observations yt for t = 1, . . . , n, we can write the model as

wt =

{

y
1/β
t if t ∈ T

vt if t ∈ Tl
,

where Tl = {t : yt = 0} and T = {t : yt 6= 0} correspond to the time indices for dry
and non-dry periods respectively.

Given the above notation, the model likelihood can be written as:

f(w1, . . . , wn|
−→a , σ2, α, β,−→η ,−→v ) ∝

(σ2)−(n/2)

βk

(

n
∏

t=1

ηt

)1/2 (
∏

t∈T

wt

)1/β−1

× exp

{

−
1

2σ2
(−→w − H −→a )′D (−→w − H −→a )

}

(9)

where D = diag(η1, . . . , ηn). To complete the model we assume that the priors are
proportional to f(−→w |−→a , σ2, α, β,−→η ,−→v )p(−→a )p(σ2)p(α)p(β)p(−→η )p(−→v ). MCMC meth-
ods were implemented to obtain samples from the joint posterior distribution. We
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Figure 8: Quantiles for the simulated annual maxima in La Mariposa station

assume that p(ηt)Gamma(α/2, α/2), p(−→a ) ∝ 1, p(σ2) =IGamma(a0, b0), p(α) ∝ 1/α.
The resulting full conditionals are given by

p(−→a |σ2, α, β,−→η ,−→v ,−→w ) ∝ N5(
−→
â , σ2(H ′DH)−1)

p(ηt|
−→a , σ2, α, β,−→v ,−→w ) ∝ Gamma

(

α

2
+

1

2
,

α

2
+

(wt − (H−→a )t)
2

2σ2

)

t = 1, . . . , n

p(σ2|−→a , α, β,−→η ,−→v ,−→w ) ∝ IGamma

(

a0 +
n

2
, b0 +

1

2
(−→w − H −→a )′D (−→w − H −→a )

)

p(α|−→a , σ2, β,−→η ,−→v ,−→w ) ∝
1

α

(

n
∏

t=1

ηt

)α/2−1

exp

{

−
α

2

n
∑

t=1

ηt

}

and

p(β|−→a , σ2, α,−→η ,−→v ,−→w ) ∝
1

βk

(

∏

t∈T

wt

)1/β−1

exp

{

−
1

2σ2

∑

t∈T

ηt(wt − (H1
−→a )t)

2

}

× p(β),

where H1 is the sub-matrix of H corresponding to t ∈ T , and (H1
−→a )t is the t-th coor-

dinate of that vector. A prior distribution for β was chosen such that its distribution
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Figure 9: Return periods vs. return levels at Maiquet́ıa station

was highly concentrated around 3, according to preliminary information available on
this parameters and previous experience with this type of models. We used

p(β) ∝ β9001−1 exp{−3000β} for β > 0 .

Finally, the posterior conditional distribution for −→v is given by

p(−→v |−→a , σ2, α, β,−→η ,−→w ) ∝ exp

{

−
1

2σ2

∑

t∈Tl

ηt(vt − (H2
−→a )t)

2

}

p(−→v )
∏

t∈Tl

I{vt≤0}(vt)

where H2 is the sub-matrix of H which corresponds to t ∈ Tl , and (H2
−→a )t is the t-th

coordinate of the respective vector. By assuming prior independence of vector −→v and
p(vt) ∝ 1 we get:

p(vt|
−→a , σ2, α, β,−→η ,−→w ) ∝ N

(

(H2
−→a )t,

σ2

ηt

)

Ivt(vt)≤0 ∀t ∈ Tl .

Sampling from this distribution implies simulating values from the negative side of a
normal distribution. The Acceptance-Rejection algorithm of Devroye (1985) was used
for this purpose.

A Gibbs sampler can be used to get samples from the conditional posterior distrib-
utions of −→a , −→η , −→v and σ, while a Metropolis-Hastings step is used for α and β. This
MCMC was implemented for the Maiquet́ıa and La Mariposa data. We used 5,000
iterations to perform Geweke (1972) and Heidelberger-Welch (1983) tests to check the
convergence of each chain. A summary of the statistics for the model parameters is pre-
sented in Table 3 for Maiquet́ıa station and Table 4 for La Mariposa station. Summary
statistics for the harmonic coefficients are presented in Tables 5 and 6 respectively.
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Figure 10: Return periods vs. return levels at La Mariposa station

Parameter Mean SD MSE q0.025 q0.5 q0.975

α 7.0340 0.0449 0.0005 6.9475 7.0332 7.1232
β 2.4068 0.0234 0.0008 2.3605 2.4061 2.4516

α/β 2.9227 0.0343 0.0010 2.8563 2.9228 2.9910
σ2 3.9511 0.1326 0.0064 3.6992 3.9477 4.2132

Table 3: Statistical summary of the parameters: α, β, the ratio α/β and σ2

for Maiquet́ıa station

From these results it is important to notice that the value of the posterior mean of
α/β is 2.9227 for Maiquet́ıa station, and 8.3897 for La Mariposa station. These results
are very close to the posterior mean of the inverse of the parameter ξ of the GEV
distribution. This provides an empirical finite sample confirmation of the theoretical
results found in section 2 about the relationship between the shape parameter of the
GEV distribution and the parameters α and β. Notice that the value of β is very
similar for both stations. This implies that the tail behavior of the extreme value
distribution is solely determined by the degrees of freedom of the student distribution
underlying the distribution of the daily records.

16



Parameter Mean SD MSE q0.025 q0.5 q0.975

α 19.2304 0.0728 0.0017 19.0918 19.2302 19.3690
β 2.2923 0.0199 0.0013 2.2558 2.2910 2.3300

α/β 8.3897 0.0783 0.0050 8.2385 8.3908 8.5382
σ2 3.7362 0.1079 0.0074 3.5234 3.7398 3.9508

Table 4: Statistical summary of the parameters: α, β, the ratio α/β and σ2

for La Mariposa station

Parameter Mean SD MSE q0.025 q0.5 q0.975

a0 -1.4005 0.0410 0.0017 -1.4776 -1.4009 -1.3284
a11 -0.5121 0.0367 0.0009 -0.5826 -0.5131 -0.4424
a12 -0.8504 0.0410 0.0011 -0.9297 -0.8503 -0.7752
b11 0.2778 0.0361 0.0009 0.2076 0.2771 0.3516
b12 -0.1676 0.0366 0.0009 -0.2381 -0.1676 -0.0973

Table 5: Statistical summary for simulated traces of harmonic coefficients in
Maiquet́ıa station

4 Validation of theoretical results through predic-

tive inference

Predictive inference was used to validate the theoretical results by simulating daily time
series from the TPT TSM predictive distribution. The objective of this analysis is to
check whether the annual maxima of the simulated series follow a Fréchet model with
shape parameter δ = 1/ξ = α/β. While in the previous section we compared directly
the posterior means of the parameters of the maxima and parental distributions, in
this case the posterior predictive distribution is used to show that this relationship can
be reproduced through predictive simulation.

Thirty time series of daily values of the same length as the observed time series
were simulated by using the predictive distribution of the TSM. The annual maxima
for each time series was calculated and their median and 95% quantile intervals are
presented in Figures 11 and 12 jointly with the observed values in Maiquet́ıa and La
Mariposa station respectively.

To each of the thirty time series, a Fréchet model was fitted using the Bayesian
approach described before. Twenty thousand samples of the posterior distribution of
the model parameters were produced for each of the thirty time series. For Maiquet́ıa
the median of the simulated values is around 2.9. This is similar to the posterior median
obtained by using the observed annual maxima as well as to the posterior mean of α/β
in Table 3. For La Mariposa station the posterior median is around 8.3, which is also
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Parameter Mean SD MSE q0.025 q0.5 q0.975

a0 -0.4076 0.0271 0.0013 -0.4585 -0.4086 -0.3591
a11 -0.6963 0.0296 0.0012 -0.7529 -0.6969 -0.6415
a12 -1.0889 0.0350 0.0013 -1.1484 -1.0897 -1.0272
b11 0.4654 0.0284 0.0010 0.4109 0.4649 0.5208
b12 -0.2709 0.0286 0.0010 -0.3254 -0.2710 -0.2166

Table 6: Statistical summary for simulated traces of harmonic coefficients in
La Mariposa station
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Figure 11: Quantiles from simulations of the predictive distribution at Maiquet́ıa sta-
tion

very close to the posterior median produced with the observed annual maxima and to
the posterior mean of α/β in Table 4. This is an additional finite sample empirical
validation of the theoretical results in Section 2.

5 Conclusions

By using extreme values classic convergence theory it was possible to demonstrate that
the annual maxima for the truncated and power transformed Normal model follows
a limit distribution from the Gumbel family. On the other hand, when the parent
distribution follows a TPT TSM model, the extreme limit distribution belongs to the
Fréchet family. This result is intuitively interesting, since taller tails from the t-Student
model result in higher probabilities of risky events for a given location.

The connection between the parameters of the t-Student truncated model, as the
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Figure 12: Quantiles from simulations of the predictive distribution at La Mariposa
station

parent distribution of the daily rainfall values, and the Fréchet model is also an in-
teresting. It is natural to connect the shape of the extreme value distribution with
the tail behavior of the parent distribution. In the case of the TPT TSM model, two
parameters are directly associated with the tails characteristics of the TSM: the num-
ber of degrees of freedom α and the power transformation parameter β. Nevertheless,
empirical evidence shows that α is actually the most relevant one.

The theoretical results have been widely confirmed in this study from two points
of view: first by comparing the posterior distribution of the extreme model parame-
ters with the posterior distribution of the daily rainfall model parameters; second by
sampling from the posterior predictive distributions of the daily rainfall and fitting
the GEV extreme model to the annual maxima simulations. The posterior mean of
the shape parameter δ from the Fréchet model was compared with the posterior mean
of the ratio α/β resulting from the t-Student fit to the daily rainfall values. These
comparisons were in good agreement and do validate the theoretical results presented
in section 2. These theoretical results were validated for two important stations in
Venezuela: Maiquet́ıa, located in Vargas State and La Mariposa, located in Miranda
State.

Further analysis on the extreme rainfall behavior of Venezuelan rainfall for several
locations appears to indicate an interesting relationship according to the climatological
nature of the daily rainfall values and their natural spatial variability. Further research
is being carried out in this direction.
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Rodŕıguez-Iturbe, I., Cox, D. R., Isham, V. S. (1987). Some models for rainfall based
on stochastic point processes. Proceeding Royal Society London A, 410, 269−288.
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