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SUMMARY

Typically, disease incidence or mortality data are available as rates or counts for spec-

ified regions, collected over time. We propose Bayesian nonparametric spatial modeling

approaches to analyze such data. We develop a hierarchical specification using spatial ran-

dom effects modeled with a Dirichlet process prior. The Dirichlet process is centered around

a multivariate normal distribution. This latter distribution arises from a log-Gaussian pro-

cess model that provides a latent incidence rate surface, followed by block averaging to the

areal units determined by the regions in the study. With regard to the resulting posterior

predictive inference, the modeling approach is shown to be equivalent to an approach based

on block averaging of a spatial Dirichlet process to obtain a prior probability model for

the finite dimensional distribution of the spatial random effects. We introduce a dynamic

formulation for the spatial random effects to extend the model to spatio-temporal settings.

Posterior inference is implemented with efficient Gibbs samplers through strategically cho-

sen latent variables. We illustrate the methodology with simulated data as well as with a

data set on lung cancer incidences for all 88 counties in the state of Ohio over an observation
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period of 21 years.

Keywords: Areal unit spatial data; Dirichlet process mixture models; Disease mapping;

Dynamic spatial process models; Gaussian processes.

1. INTRODUCTION

Data on disease incidence (or mortality) are typically available as rates or summary

counts for contiguous geographical regions, e.g., census tracts, post or zip codes, districts, or

counties, and collected over time. Hence, though cases occur at point locations (residences),

the available responses are associated with entire subregions in the study region. We denote

the disease incidence counts (number of cases) by yit, where i = 1, ..., n indexes the regions

Bi, and t = 1, ..., T indexes the time periods. In practice, we may have covariate information

associated with the region, e.g., percent African American, median family income, percent

with some college education. In some cases, though we only know the areal unit into which

a case falls, we may have covariate information associated with the case, e.g., sex, race,

age, previous comorbidities. Moreover, any of this covariate information could be time

dependent. We devote Section 2.3 below to a discussion of how to accommodate such

information in our modeling framework. However, the focus here is on flexible modeling of

areal unit spatial random effects and so, to avoid obscuring our primary contribution, we

do not consider covariates elsewhere.

A primary inferential objective in the analysis of disease incidence data is summarization

and explanation of spatial and spatio-temporal patterns of disease (disease mapping); also of

interest is spatial smoothing and temporal prediction (forecasting) of disease risk. The field

of spatial epidemiology has grown rapidly in the past fifteen years with the introduction of

spatial and spatio-temporal hierarchical (parametric) models; see, e.g., Elliott et al. (2000),

and Banerjee et al. (2004) for reviews and further references.

Working with counts, the typical assumption (for rare diseases) is that the yit, condi-
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tionally on parameters Rit, are independent Po(yit | EitRit) (we will write Po(· | m) for the

Poisson probability mass function/distribution with mean m). Here, Eit is the expected

disease count, and Rit is the relative risk, for region i at time period t.2 Eit is obtained

as R∗nit, with R∗ an overall disease rate, using either external or internal standardization,

the former developing R∗ from reference tables (available for certain types of cancer), the

latter computed from the given data set, e.g., R∗ =
∑

it yit/
∑

it nit. Next, the relative risks

Rit are explained through different types of random effects. For instance, a specification

with random effects additive in space and time is log Rit = µit + ui + vi + δt, where µit

is a component for the regional covariates (e.g., µit = x′
itβ for regression coefficients β),

ui are regional random effects (typically, the ui are assumed i.i.d. N(0, σ2
u)), vi are spatial

random effects, and δt are temporal effects (say, with an autoregressive prior).

The most commonly used prior model for the vi is based on some form of a conditional

autoregressive (CAR) structure (see, e.g., Clayton and Kaldor, 1987; Cressie and Chan,

1989; Besag et al., 1991; Bernardinelli et al., 1995; Besag et al., 1995; Waller et al., 1997;

Pascutto et al., 2000). For instance, the widely-used specification suggested by Besag et al.

(1991) is characterized through local dependence structure by considering for each region i

a set, ϑi, of neighbors, which, for example, can be defined as all regions contiguous to region

i. Then the (improper) joint prior density for the vi is built from the prior full conditionals

vi | {vj : j 6= i}. These are normal distributions with mean m−1
i

∑

j∈ϑi
vj and variance

λm−1
i , where λ is a precision hyperparameter and mi is the number of neighbors of region

i. Alternatively, a multivariate normal distribution for the vi, with correlations driven by

the distances between region centroids, has been used (see, e.g., Wakefield and Morris,

1999; Banerjee et al., 2003). A different hierarchical formulation, discussed in Böhning et

2Below we will use an alternative and, we assert, preferable, specification, writing nitpit for the Poisson

mean, where nit is the specified number of individuals at risk in region i at time t and pit is the corresponding

disease rate.
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al. (2000), involves replacing the normal mixing distribution with a discrete distribution

taking values ϕj , j = 1, ..., k (that represent the relative risks for k underlying time-space

clusters) with corresponding probabilities pj , j = 1, ..., k. Hence, marginalizing over the

random effects, the distribution for each region i and time period t emerges as a discrete

Poisson mixture,
∑k

j=1 pjPo(yit | Eitϕj). See, also, Schlattmann and Böhning (1993) and

Militino et al. (2001) for use of such discrete Poisson mixtures in the simpler setting

without a temporal component. In this setting, related is the Bayesian work of Knorr-Held

and Rasser (2000) and Giudici et al. (2000) based on spatial partition structures, which

divide the study region into a number of clusters (i.e., sets of contiguous regions) with

constant relative risk, assuming, in the prior model, random number, size, and location for

the clusters. Further related Bayesian work is that of Green and Richardson (2002).

When spatio-temporal interaction is sought, the additive form vi + δt is replaced by vit.

The latter has been modeled using independent CAR models over time, dynamically with

independent CAR innovations, or as a CAR in space and time (see Banerjee et al., 2004).

Rather than modeling the spatial dependence through the finite set of spatial random

effects, one for each region, an alternative prior specification arises by modeling the un-

derlying continuous-space relative risk (or rate) surface and obtaining the induced prior

models for the relative risks (or rates) through aggregation of the continuous surface. This

approach is less commonly used in modeling for disease incidence data (among the excep-

tions are Best et al., 2000, and Kelsall and Wakefield, 2002). However, it, arguably, offers

a more coherent modeling framework, since by modeling the underlying continuous sur-

faces, it avoids the dependence of the prior model on the data collection procedure, i.e.,

the number, shapes, and sizes of the regions chosen in the particular study. It replaces

the specification of a proximity matrix, which spatially connects the subregions, with a

covariance function, which directly models dependence between arbitrary pairs of locations

(and induces a covariance between arbitrary subregions using block averaging).
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In this paper, we follow this latter approach, our main objective being to develop a

flexible nonparametric model for the needed risk (or rate) surfaces. In particular, denote

by D the union of all regions in the study area and let z t,D = {zt(s) : s ∈ D} be the latent

disease rate surface for time period t, on the logarithmic scale. Hence, zt(s) = log pt(s),

where pt(s) is the probability of disease at time t and spatial location s. (With rare diseases,

the logarithmic transformation is practically equivalent to the logit transformation). We

propose spatial and spatio-temporal nonparametric prior models for the vectors of log-

rates zt = (z1t, ..., znt), which we define by block averaging the surfaces z t,D over the

regions Bi, i.e., zit = |Bi|
−1

∫

Bi
zt(s)ds, where |Bi| is the area for region Bi. We develop

the spatial prior model by block averaging a Gaussian process (GP) to the areal units

determined by the regions Bi, and then centering a Dirichlet process (DP) prior (Ferguson,

1973; Antoniak, 1974) around the resulting n-variate normal distribution. We show that

the model is equivalent to the prior model that is built by block averaging a spatial DP

(Gelfand et al., 2005). To model the zt, we can specify them to be independent replications

under the DP or we can add a further dynamic level to the model with z t evolving from

zt−1 through independent DP innovations. We use the former in our simulation example

in Section 4.1; we use the latter with our real data example in Section 4.2.

With regard to the existing literature, our approach is, in spirit, similar to that of Kelsall

and Wakefield (2002) where an isotropic GP was used for the log-relative risk surface.

However, as exemplified in Section 2.2, we relax both the isotropy and the Gaussianity

assumptions. In addition, we develop modeling for disease incidence data collected over

space and time. Moreover, as we show in Section 2.1, our nonparametric model has a

mixture representation, which is more general than that of Böhning et al. (2000) as it

incorporates spatial dependence and it allows model-based identification of the extent of

clustering through the structure of the DP prior.

The plan of the paper is as follows. Section 2 develops the methodology for the spatial
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and spatio-temporal modeling approaches. Section 3 discusses methods for posterior infer-

ence with more details given in the Appendix. Section 4 includes illustrations motivated

by a previously analyzed dataset involving lung cancers for the 88 counties in Ohio over a

period of 21 years. In fact, in Section 4.1 we develop a simulated dataset for these counties

which is analyzed using both our modeling specification as well as a GP model, revealing

the benefit of our approach. We also reanalyze the original data in Section 4.2. Finally,

Section 5 provides a summary and discussion of possible extensions.

2. BAYESIAN NONPARAMETRIC MODELS FOR DISEASE INCIDENCE DATA

The spatial prior model is discussed in Section 2.1. Section 2.2 briefly reviews spa-

tial DPs and demonstrates how their use provides foundation for the modeling approach

presented in Section 2.1. Section 2.3 discusses how to include different types of covari-

ate information. Lastly, Section 2.4 develops a nonparametric spatio-temporal modeling

framework.

2.1 The spatial prior probability model

Here, we treat the log-rate surfaces zt,D as independent realizations (over time) from a

stochastic process over D. We build the model by viewing the counts yit and the log-rates

zit as aggregated versions of underlying (continuous-space) stochastic processes. The finite-

dimensional distributional specifications for the yit and the zit are induced through block

averaging of the corresponding spatial surfaces.

For the first stage of our hierarchical model, we use the standard Poisson specification

working with the nitpit form for the mean, following the footnote in the Introduction. We

note that this parametrization seems preferable to the EitRit form, since it avoids the need

to develop the Eit through standardization; the overall log-rate emerges as the intercept in

our model. Thus, the yit are assumed conditionally independent, given zit = log pit, from

Po(yit | nit exp(zit)).
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This specification can be derived through aggregation of an underlying Poisson process

under assumptions and approximations as follow. For the time period t, assume that the

disease incidence cases, over region D, are distributed according to a non-homogeneous

Poisson process with intensity function nt(s)pt(s), where {nt(s) : s ∈ D} is the popula-

tion density surface and pt(s) is the disease rate at time t and location s. If we assume a

uniform population density over each region at each time period (this assumption is, implic-

itly, present in standard modeling approaches for disease mapping), we can write nt(s) =

nit|Bi|
−1 for s ∈ Bi. Hence, aggregating the Poisson process over the regions Bi, we obtain,

conditionally on zt,D, that the yit are independent, and each yit follows a Poisson distribu-

tion with mean
∫

Bi
nt(s)pt(s)ds = nitp

∗
it, where p∗it = |Bi|

−1
∫

Bi
pt(s)ds. If we approximate

the distribution of the p∗it with the distribution of the exp(zit), we can write yit | zit
ind.
∼

Po(yit | nit exp(zit)) for the first stage distribution. We note that the stochastic integral for

p∗it is not accessible analytically. Moreover, using Monte Carlo integration to approximate

the p∗it is computationally infeasible (Short et al., 2005). Also, Kelsall and Wakefield (2002)

use a similar approximation working with relative risk surfaces. Brix and Diggle (2001) do

so as well, using a stochastic differential equation to model pt(s).

To build the prior model for the log-rates zt, we begin with the familiar form, zt(s) =

µt(s) + θt(s), for the log-rate surfaces zt,D. Here, µt(s) is the mean structure and θt,D =

{θt(s) : s ∈ D} are spatial random effects surfaces. As discussed in Section 2.3, the surfaces

{µt(s) : s ∈ D} can be elaborated through covariate surfaces over D. In the absence of

such covariate information, we might set µt(s) = µ, for all t, and use a normal prior for

µ. Alternatively, we could set µt(s) = µt, where the µt are i.i.d. N(0, σ2
µ) with random

hyperparameter σ2
µ. In what follows for the spatial prior model, we illustrate with the

common µ specification.

To develop the model for the spatial random effects, first, let the θ t,D, t = 1, ..., T ,

given σ2 and φ, be independent realizations from a mean-zero isotropic GP with variance
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σ2 and correlation function ρ (||s − s′||;φ) (say, ρ (||s − s′||;φ) = exp(−φ||s − s′||) as in the

examples in Section 4). Hence by aggregating over the regions Bi, we obtain zit = µ + θit,

where θit = |Bi|
−1

∫

Bi
θt(s)ds is the block average of the surface θt,D over region Bi. The

induced distribution for θt = (θ1t, ..., θnt) is a mean-zero n-variate normal with covariance

matrix σ2Rn(φ), where the (i, j)-th element of Rn(φ) is given by

|Bi|
−1|Bj|

−1

∫

Bi

∫

Bj

ρ
(

||s − s′||;φ
)

dsds′.

Next, consider a DP prior for the spatial random effects θt with precision parameter α > 0

and centering (base) distribution Nn(· | 0, σ2Rn(φ)) (we will write Np(· | λ,Σ) for the

p-variate normal density/distribution with mean vector λ and covariance matrix Σ). We

denote this DP prior by DP(α,Nn(· | 0, σ2Rn(φ))). The choice of the DP in this context

yields data-driven deviations from the normality assumption for the spatial random effects;

at the same time, it allows relatively simple implementation of simulation-based model

fitting.

Note that the above structure implies for the vector of counts y t = (y1t, ..., ynt) a non-

parametric Poisson mixture model given by
∫

∏n
i=1 Po(yit | nit exp(µ + θit))dG(θt), where

the mixing distribution G ∼ DP(α,Nn(· | 0, σ2Rn(φ))). Under this mixture specification,

the distribution for the vectors of log-rates, z t = µ1n + θt, is discrete (a property induced

by the discreteness of DP realizations), a feature of the model that could be criticized.

Moreover, although posterior simulation is feasible, it requires more complex MCMC al-

gorithms (e.g., the methods suggested by MacEachern and Müller, 1998, and Neal, 2000)

than the standard Gibbs sampler for DP based hierarchical models (e.g., West et al., 1994;

Bush and MacEachern, 1996). Thus, to overcome both concerns above, we replace the DP

prior for the zt with a DP mixture prior,

zt | µ, τ2, G
ind.
∼

∫

Nn(zt | µ1n + θt, τ
2In)dG(θt),

where, again, G ∼ DP(α,Nn(· | 0, σ2Rn(φ))). That is, we now write zit = µ + θit + uit,
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with uit i.i.d. N(0, τ 2). Introduction of a heterogeneity effect in addition to the spatial

effect is widely employed in the disease mapping literature dating to Besag et al. (1991)

and Bernardinelli et al. (1995), though with concerns about balancing priors for the effects

(see, e.g., Banerjee et al., 2004, and references therein). Here, in responding to the above

concerns, we serendipitously achieve this benefit.

Hence, the mixture model for the yt now assumes the form

f(yt | µ, τ2, G) =

∫ n
∏

i=1

p(yit | µ, τ2, θit)dG(θt),

where p(yit | µ, τ2, θit) =
∫

Po(yit | nit exp(zit))N(zit | µ+ θit, τ
2)dzit is a Poisson-lognormal

mixture. Equivalently, the model can be written in the following semiparametric hierarchi-

cal form

yit | zit
ind.
∼ Po(yit|nit exp(zit)), i = 1, ..., n, t = 1, ..., T

zit | µ, θit, τ
2 ind.

∼ N(zit | µ + θit, τ
2), i = 1, ..., n, t = 1, ..., T

θt | G
i.i.d.
∼ G, t = 1, ..., T

G | σ2, φ ∼ DP(α,Nn(· | 0, σ2Rn(φ))).

(1)

The model is completed with independent priors p(µ), p(τ 2) and p(σ2), p(φ) for µ, τ 2, and

for the hyperparameters σ2, φ of the DP prior. In particular, we use a normal prior for

µ, inverse gamma priors for τ 2 and σ2, and a discrete uniform prior for φ. Although not

implemented for the examples of Section 4, a prior for α can be added, without increasing

the complexity of the posterior simulation method (Escobar and West, 1995).

In practice, we work with a marginalized version of model (1),

p(µ)p(τ 2)p(σ2)p(φ)p(θ1, ...,θT | σ2, φ)

n
∏

i=1

T
∏

t=1

Po(yit|nit exp(zit))N(zit | µ + θit, τ
2), (2)

which is obtained by integrating the random mixing distribution G over its DP prior (Black-

well and MacQueen, 1973). The resulting joint prior distribution for the θ t, p(θ1, ...,θT |
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σ2, φ), is given by

Nn(θ1 | 0, σ2Rn(φ))

T
∏

t=2

{

α

α + t − 1
Nn(θt | 0, σ2Rn(φ)) +

1

α + t − 1

∑t−1

j=1
δθj

(θt)

}

, (3)

where δa denotes a point mass at a. Hence, the θt are generated according to a Pólya urn

scheme; θ1 arises from the base distribution, and then for each t = 2, ..., T , θt is either

set equal to θj, j = 1, ..., t − 1, with probability (α + t − 1)−1 or is drawn from the base

distribution with the remaining probability.

Note that we have defined the prior model for the spatial random effects θ t by starting

with a GP prior for the surfaces θt,D, block averaging the associated GP realizations over

the regions to obtain the Nn(0, σ2Rn(φ)) distribution, and, finally, centering a DP prior

for the θt around this n-variate normal distribution. This approach might suggest that the

DP prior is dependent, in an undesirable fashion, on the specific choice of the regions (e.g.,

their number and size). The next section addresses this potential criticism by connecting

the model in (1) with the spatial DP (SDP) from Gelfand et al. (2005).

2.2 Formulation of the model through spatial Dirichlet processes

We first briefly review SDPs, which provide nonparametric prior models for random

fields WD = {W (s) : s ∈ D} over a region D ⊆ Rd, and thus yield suitable nonparametric

priors for the analysis of spatial or spatio-temporal geostatistical data. Central to their

development is the constructive definition of the DP (Sethuraman, 1994). According to

this definition, a random distribution arising from DP(α,G0), where G0 denotes the base

distribution, is almost surely discrete and admits the representation
∑∞

`=1 ω`δϕ`
, where ω1

= z1, ω` = z`

∏`−1
r=1(1 − zr), ` = 2,3,..., with {zr, r = 1,2,...} i.i.d. from Beta(1, α), and,

independently, {ϕ`, ` = 1,2,...} i.i.d. from G0. Under the standard setting for DPs, ϕ` is

either scalar or vector valued.

To modelWD, ϕ` is extended to a realization of a random field, ϕ`,D = {ϕ`(s) : s ∈ D},

and thus G0 is extended to a spatial stochastic process G0D over D. A stationary GP is used
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for G0D. The resulting SDP provides a (random) distribution for W D, with realizations

GD given by
∑∞

`=1 ω`δϕ`,D
. The interpretation is that for any collection of spatial locations

in D, say, (s1, ..., sM ), GD induces a random probability measure G(M) on the space of

distribution functions for (W (s1), ...,W (sM )). In fact, G(M) ∼ DP(α,G
(M)
0 ), where G

(M)
0

is the M -variate normal distribution for (W (s1), ...,W (sM )) induced by G0D. It can be

shown that the random process GD yields non-Gaussian finite dimensional distributions, has

nonconstant variance, and is nonstationary, even though it is centered around a stationary

GP G0D.

SDPs provide an illustration of dependent Dirichlet processes (MacEachern, 1999) in

that they yield a stochastic process of random distributions, one at each location in D.

These distributions are dependent but such that, at each index value, the distribution is

a univariate DP. See De Iorio et al. (2004) for an illustration in the ANOVA setting; Teh

et al. (2006) for related work on hierarchical DPs; and Griffin and Steel (2006) and Duan,

Guindani and Gelfand (in preparation) for recent extensions and alternative constructions.

In practice, modeling with SDPs requires some form of replication from the spatial pro-

cess (although missingness across replicates can be handled). Assuming T replicates, the

data can be collected in vectors yt = (yt(s1), ..., yt(sn))′, t = 1,...,T , where (s1, ..., sn) are

the locations where the observations are obtained. Working with continuous real-valued

measurements, the SDP is used as a prior for the spatial random effects surfaces, say,

ζt,D = {ζt(s) : s ∈ D}, in the standard hierarchical spatial modeling framework, Yt(s) =

µt(s) + ζt(s) + εt(s). Here, εt(s) are i.i.d. N(0, τ 2), and µt(s) is the mean structure.

For instance, with Xt a p × n matrix of covariate values (whose (i, j)-th element is the

value of the i-th covariate at the j-th location for the t-th replicate) and β a p × 1 vec-

tor of regression coefficients, we could write X ′
tβ for the mean structure associated with

yt. Hence, the yt, given β, τ 2, and G(n), are independent from the DP mixture model

∫

Nn

(

yt | X ′
tβ + ζt, τ

2In

)

dG(n)(ζt), where ζt = (ζt(s1), ..., ζt(sn)), G(n) ∼ DP(α,G
(n)
0 ) (in-
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duced by the SDP prior for the ζ t,D), with G
(n)
0 an n-variate normal (induced at (s1, ..., sn)

by the base GP of the SDP prior). Details for prior specification, simulation-based model

fitting, and spatial prediction can be found in Gelfand et al. (2005).

The hierarchical nature of the modeling framework enables extensions by replacing the

first stage Gaussian distribution (the kernel of the DP mixture) with any other distribution.

For instance, the yt(si) could arise from an exponential-dispersion family. Hence, we can

formulate nonparametric spatial generalized linear models, extending the work in Diggle et

al. (1998) where a stationary GP was used for the spatial random effects (see also, e.g.,

Heagerty and Lele, 1998, Diggle et al., 2002, and Christensen and Waagepetersen, 2002).

In this spirit, and returning to the setting for disease incidence data, the SDP can be

proposed as the prior for the spatial random effects surfaces θ t,D to replace the isotropic

GP prior that we used to build the DP model in Section 2.1. Therefore, now the model

is developed by assuming that the θt,D, t = 1, ..., T , given GD, are independent from GD,

where GD, given σ2 and φ, follows a SDP prior with precision parameter α and base process

G0D = GP(0, σ2ρ (||s − s′||;φ)) (i.e., the same isotropic GP used in Section 2.1).

Next, we block average the θt,D over the regions Bi with respect to their distribution that

results by marginalizing GD over its SDP prior. Recall that for any set of spatial locations

sr, r = 1, ...,M , over D, the random distribution G(M) induced by GD follows a DP with

base distribution G
(M)
0 induced by G0D. Because we can choose M arbitrarily large and

the set of locations sr to be arbitrarily dense over D, using the Pólya urn characterization

for the DP, we obtain that, marginally, the θt,D arise according to the following Pólya

urn scheme. First, θ1,D is a realization from G0D, and then, for each t = 2, ..., T , θt,D is

identical to θj,D, j = 1, ..., t − 1, with probability (α + t− 1)−1 or is a new realization from

G0D with probability α(α + t − 1)−1.

Hence, if we block average θ1,D, we obtain the Nn(0, σ2Rn(φ)) distribution for θ1. Then,

working with the conditional specification for θ2,D given θ1,D, if we block average θ2,D, θ2

12



arises from Nn(0, σ2Rn(φ)) with probability α(α+1)−1 or θ2 = θ1 with probability (α+1)−1.

Analogously, for any t = 2, ..., T , the induced conditional prior p(θ t | θ1, ...,θt−1, σ
2, φ) is a

mixed distribution with point masses at θj , j = 1, ..., t − 1, and continuous piece given by

the Nn(0, σ2Rn(φ)) distribution; the corresponding weights are (α+t−1)−1, j = 1, ..., t−1,

and α(α+t−1)−1. Thus, the prior distribution for the θt in (3) can be obtained by starting

with a SDP prior for the θt,D (centered around the same isotropic GP prior used in Section

2.1 for the θt,D), and then block averaging the (marginal) realizations from the SDP prior

over the regions.

As in Section 2.1, we extend zt = µ1n + θt to zt = µ1n + θt + ut, where the ut

are independent Nn(0, τ2In). Hence, model (2) is equivalent to the marginal version of the

model above, i.e., with GD marginalized over its SDP prior.

The argument above, based on SDPs, provides formal justification for model (1) – (3).

The SDP is a nonparametric prior for the continuous-space stochastic process of spatial

random effects; regardless of the number and geometry of regions chosen to partition D, it

induces the appropriate corresponding version of the model in (2).

2.3 Introducing covariates

As noted in the Introduction, often in looking at disease incidence/mapping data we

will seek to bring in covariate information. Here, we indicate how we would do this in the

context of the model given in (1). Our approach is to consider how we would handle the

idealized situation of point-referenced case/non-case data and then propagate the effect of

the assumptions and approximations in Section 2.1. Our approach is similar in spirit to

that of Wakefield and Shaddick (2006). In particular, illustrating with a single covariate

surface {Xt(s) : s ∈ D}, suppose zt(s) = β0t + β1tXt(s) + θt(s).

If Xt(s) is an areal unit level covariate, i.e., Xt(s) = Xit, for all s ∈ Bi, then p∗it =

exp(β0t +β1tXit) |Bi|
−1

∫

Bi
exp(θt(s))ds. So, for such covariates, no approximation beyond
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that of Section 2.1 is required.

Next, associate with each of the nit individuals at risk in areal unit i at time t an (un-

known) location sij , j = 1, 2, ..., nit, and covariate level Xt(sij) (suppressing time t in the

notation for sij). At each location there is a Bernoulli trial with probability pt(Xt(sij)).

(Here, we write pt(Xt(sij)), instead of pt(sij), to emphasize the dependence on the covari-

ate.) Since incidence rates are usually very small, we can envision a Poisson approximation

to the sum of the nit Bernoulli trials in areal unit i at time t with expectation equal to

pit =
∑nit

j=1 pt(Xt(sij)).

Suppose that Xt(s) is categorical, in fact, for convenience, binary. Then, though we do

not know where they occur, we do know that n0it of the Xt(sij) are 0 and n1it of the Xt(sij)

are 1. So, in the absence of spatial effects,
∑nit

j=1 pt(Xt(sij)) = n0itpt(0) + n1itpt(1) = nitp
∗
it

where p∗it = n−1
it (n0itpt(0) + n1itpt(1)). With spatial effects and with locations assigned at

random, we obtain

nit
∑

j=1

pt(Xt(sij)) =
∑

{sij :Xt(sij)=0}

exp(β0t + θt(sij)) +
∑

{sij :Xt(sij)=1}

exp(β0t + β1t + θt(sij)).

Again, we know the number of 0s and 1s but can only assume they are randomly assigned

to the sij. Hence, for ` = 0, 1,

∑

{sij :Xt(sij)=`}

exp(θt(sij)) ≈
n`it

nit

nit
∑

j=1

exp(θt(sij)) ≈ n`it|Bi|
−1

∫

Bi

exp(θt(s))ds,

and, thus,
∑nit

j=1 pt(Xt(sij)) ≈ nitp
∗
it, with

p∗it =
n0it

nit
exp(β0t)|Bi|

−1

∫

Bi

exp(θt(s))ds +
n1it

nit
exp(β0t + β1t)|Bi|

−1

∫

Bi

exp(θt(s))ds.

Finally, making the same integral approximation (i.e., exp(θit) ≈ |Bi|
−1

∫

Bi
exp(θt(s))ds),

we can write p∗it ≈ exp(β0t +θit){1+n−1
it n1it[exp(β1t)−1]} ≈ exp(β0t +θit)[1+n−1

it n1itβ1t] ≈

exp(β0t + n−1
it n1itβ1t + θit).

Lastly, with a continuous covariate, we may envision two scenarios – (i) that it is avail-

able for each of the nit individuals at risk in areal unit i at time t or (ii) more generally,
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that it is available as a surface known over the entire study region. Again, the quantity

of interest is
∑nit

j=1 pt(Xt(sij)) =
∑nit

j=1 exp(β0t + β1tXt(sij) + θt(sij)) = nitp
∗
it where p∗it =

n−1
it exp(β0t)

∑nit

j=1 exp(β1tXt(sij) + θt(sij)). In case (i), let Vit = n−1
it

∑nit

j=1 Xt(sij) while

in case (ii) let Vit = |Bi|
−1

∫

Bi
Xt(s)ds; under our assumptions, in either case, Vit can be

calculated. Then, as earlier, we approximate the distribution of p∗
it by the distribution of

exp(zit). In either case, we obtain p∗it ≈ exp(β0t + β1tVit + θit).

2.4 A spatio-temporal modeling framework

To extend the spatial model of Section 2.1 to a spatio-temporal setting, we cast our

modeling in the form of a dynamic spatial process model (see Banerjee et al., 2004, for

parametric hierarchical modeling in this context, and for related references). We now view

the log-rate process zt,D = {zt(s) : s ∈ D} as a temporally evolving spatial process.

To develop a dynamic formulation, we begin, as in Section 2.1, by writing zt(s) = µt +

θt(s) and add temporal structure to the model through transition equations for the θt(s),

say,

θt(s) = νθt−1(s) + ηt(s), (4)

where, in general, |ν| < 1, and the innovations ηt,D = {ηt(s) : s ∈ D} are independent

realizations from a spatial stochastic process. We can now define the nonparametric prior

for the block averages ηit = |Bi|
−1

∫

Bi
ηt(s)ds of the ηt,D surfaces following the approach of

Section 2.1 or, equivalently, of Section 2.2. Proceeding with the latter, we assume that the

ηt,D, given GD, are independent from GD, and assign a SDP prior to GD with parameters

α and G0D = GP(0, σ2ρ (||s − s′||;φ)). Marginalizing GD over its prior, the induced prior,

p(η1, ...,ηT | σ2, φ), for the ηt = (η1t, ..., ηnt) is given by (3) (with ηt replacing θt). Block

averaging the surfaces in the transition equations (4), we obtain θ t = νθt−1 + ηt, where

θt−1 = (θ1,t−1, ..., θn,t−1). Adding, as before, the i.i.d. N(0, τ 2) terms to the zit, we obtain

15



the following general form for the spatio-temporal hierarchical model

yit | zit
ind.
∼ Po(yit|nit exp(zit)), i = 1, ..., n, t = 1, ..., T

zit | µt, θit, τ
2 ind.

∼ N(zit | µt + θit, τ
2), i = 1, ..., n, t = 1, ..., T

θt = νθt−1 + ηt

η1, ...,ηT | σ2, φ ∼ p(η1, ...,ηT | σ2, φ).

(5)

The specification for the µt will depend on the particular application. For instance, the

µt could be i.i.d., say, from a N(0, σ2
µ) distribution (with random σ2

µ), or they could be

explained through a parametric function h(t;β), say, a polynomial trend, h(t;β) = β0 +

∑m
j=1 βjt

j, or the autoregressive structure could be extended to include the µt, say, µt =

νµµt−1 + γt, with |νµ| < 1, and γt i.i.d. N(0, σ2
µ). For the Ohio state lung cancer data

(discussed in Section 4.2), we work with a linear trend function µt = β0 + β1t. We set θ1 =

η1, i.e., θ0 = 0 (alternatively, an informative prior for θ0 can be used). We choose priors

for τ2, σ2 and φ as in model (2); we take independent normal priors for the components of

β; and a discrete uniform prior for ν.

3. POSTERIOR INFERENCE AND PREDICTION

We discuss here the types of posterior inference that can be obtained based on the

models of Section 2. In particular, Section 3.1 comments on the (smoothed) inference for

the disease rates while, under the dynamic model, Section 3.2 discusses forecasting of disease

rates using the extension of Section 2.4.

3.1 Spatial model

As is evident from expression (3), the DP prior induces a clustering in the θ t (in their

prior and hence also in the posterior for model (2)). Let T ∗ be the number of distinct θt in

(θ1, ...,θT ) and denote by θ∗ = {θ∗j : j = 1, ..., T ∗} the vector of distinct values. Defining

the vector of configuration indicators, w = (w1, ..., wT ), such that wt = j if and only if θt =
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θ∗j , (θ∗,w, T ∗) yields an equivalent representation for (θ1, ...,θT ). Denote by ψ the vector

that includes (θ∗,w, T ∗) and all other parameters of model (2). Draws from the posterior

p(ψ | data), where data = {(yit, nit) : i = 1, ..., n, t = 1, ..., T}, can be obtained using the

Gibbs sampler discussed in the Appendix.

The multivariate density estimate for the vector of log-rates associated with the subre-

gions Bi is given by the posterior predictive density for a new z0 = (z10, ..., zn0),

p(z0 | data) =

∫ ∫

p(z0 | θ0, µ, τ2)p(θ0 | θ∗,w, T ∗, σ2, φ)p(ψ | data). (6)

Here, p(z0 | θ0, µ, τ2) is a Nn(µ1n + θ0, τ
2In) density, θ0 = (θ10, ..., θn0) is the vector of

spatial random effects corresponding to z0, and

p(θ0 | θ∗,w, T ∗, σ2, φ) =
α

α + T
Nn(θ0 | 0, σ2Rn(φ)) +

1

α + T

T ∗

∑

j=1

Tjδθ∗j
(θ0), (7)

where Tj is the size of the j-th cluster θ∗j . Therefore, p(z0 | data) arises by averaging the

mixture

α

α + T
Nn(z0 | µ1n, τ2In + σ2Rn(φ)) +

1

α + T

T ∗

∑

j=1

TjNn(z0 | µ1n + θ∗j , τ
2In)

with respect to the posterior of ψ. Hence, the model has the capacity to capture, through

the mixing in the θ∗j , non-standard features in the distribution of log-rates over the regions.

3.2 Spatio-temporal model

Turning to the spatio-temporal model of Section 2.4, let µt = β0 + β1t (as in the example

of Section 4.2). Denoting by ψ = (β0, β1, τ
2, ν, σ2, φ, {(zt,ηt) : t = 1, ..., T}) the parameter

vector corresponding to model (5), the posterior p(ψ|data) is proportional to

p(β0)p(β1)p(ν)p(τ 2)p(σ2)p(φ)p(η1, ...,ηT | σ2, φ)
T

∏

t=1

Nn(zt|λt, τ
2In)

n
∏

i=1

T
∏

t=1

Po(yit|nit exp(zit)),

(8)
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where λt = (β0 + β1t)1n +
∑t

`=1 νt−`η`. The Gibbs sampler given in the Appendix can be

used to obtain draws from p(ψ|data). For instance, of interest might be inference for z t, the

vector of log-rates corresponding to specific time periods t. Moreover, given the temporal

structure of model (5), of interest is temporal forecasting for disease rates at future time

points. In particular, the posterior forecast distribution for the vector of log-rates zT+1 at

time T + 1,

p(zT+1|data) =

∫ ∫

p(zT+1|η1, ...,ηT ,ηT+1, β0, β1, ν, τ2)p(ηT+1|η1, ...,ηT , σ2, φ)p(ψ|data),

where p(zT+1|η1, ...,ηT ,ηT+1, β0, β1, ν, τ2) is an n-variate normal distribution with mean

vector (β0 + β1(T + 1))1n +
∑T+1

`=1 νT+1−`η` and covariance matrix τ 2In, and

p(ηT+1|η1, ...,ηT , σ2, φ) can be expressed as in (7) by replacing θ0 with ηT+1 and using

the, analogous to (θ∗,w, T ∗), clustering structure in the (η1, ...,ηT ).

4. DATA ILLUSTRATIONS

Our data consists of the number of annual lung cancer deaths in each of the 88 counties

of Ohio from 1968 to 1988. The population of each county is also recorded. Figure 1

depicts the geographical locations and neighborhood structure of the 88 counties in Ohio.

The county location, area, and polygons are obtained from the “map” package in R.

Regarding prior specification, for both models (1) and (5) we work with an exponen-

tial correlation function, ρ (||s − s′||;φ) = exp (−φ||s − s′||). For both data examples, the

discrete uniform prior for φ takes values in [0.001, 1], corresponding to the range from 3 to

3000 miles; σ−2 and τ−2 have gamma(0.1, 0.1) priors (with mean 1); and α is set equal to

1 (results were practically identical under α = 5 and α = 10). Finally, the normal priors

for µ (Section 4.1) and for β0 and β1 (Section 4.2) have mean 0 and large variance (there

was very little sensitivity to choices between 102 and 108 for the prior variance).

We observed very good mixing and fast convergence in the implementation of the Gibbs

samplers discussed in the Appendix. In both of our simulation and Ohio lung cancer
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example below, we obtain 15,000 samples from the Gibbs sampler, and discard the first

3,000 samples as burn-in. We use 3,000 subsamples from the remaining 12,000 samples,

with thinning equal to 4, for our posterior inference.

4.1 Simulation example

We illustrate the fitting of our spatial model in (1) – (3) with a simulated data set for the

88 counties of Ohio. We simulate the areal incidence rate from a two-component mixture of

multivariate normal distributions whose correlation matrix is calculated by block averaging

isotropic GPs. The GPs cover the entire area of Ohio. The induced correlation matrix of

the 88 blocks is computed by Monte Carlo integration.

In particular, we proceed as follows. For i = 1, ..., 88 and t = 1, ..., T (with T = 40),

we first generate zit independent N(µ + θit, τ
2) and, then, yit independent Po(ni exp(zit)),

where ni is the population of county i in 1988. The distribution of the spatial random effects

θt = (θ1t, . . . , θnt) arises through a mixture of two block-averaged GPs. In particular, for

` = 1, 2, let θ(`) =
(

θ
(`)
1 , . . . , θ

(`)
n

)

∼ Nn((−1)`µθ1n, σ2
` R), with the (i, j)-th element of the

correlation matrix R given by |Bi|
−1|Bj|

−1
∫

Bi

∫

Bj
exp (−φ||s − s′||) dsds′. Then, each θt is

independently sampled from 0.5θ(1) + 0.5θ(2). The values of the parameters are µ = −6.5,

µθ = 0.5, σ2
1 = σ2

2 = 1/32, τ 2 = 1/256, and φ = 0.6. Under these choices, marginally, each

θit has a bimodal distribution of the form 0.5N
(

−µθ, σ
2
1

)

+ 0.5N
(

µθ, σ
2
2

)

.

We fit model (1) to this data set. The Bayesian goodness of fit is illustrated with

univariate and bivariate posterior predictive densities for the log-rates, which are estimated

using (6). In Figure 2 we compare the true densities of the model from which we simulated

the data with the SDP model posterior predictive densities for four selected counties. They

are “Delaware” and “Franklin” in central Ohio, “Hamilton” in southwest, and “Stark” in

northeast. “Franklin” includes Columbus and “Hamilton” includes Cincinnati so these are

highly populated counties. “Delaware” is more suburban and “Stark” is very rural. The
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“+” mark the values of the 40 observed log-rates log(yit/ni) in each of these four counties.

In addition, Figure 2 includes posterior predictive densities from a parametric model based

on a GP(0, σ2 exp(−φ||s − s′||)) for the spatial random effects surfaces. This specification

results in a limiting version of model (1) (for α → ∞) where the θ t, given σ2 and φ, are

i.i.d. Nn(0, σ2Rn(φ)). The SDP model clearly outperforms the GP model with regard to

posterior predictive inference.

Next, we pair the four counties above to show in Figure 3 the predictive joint densities,

based on the SDP model, and, again, to compare with the true joint densities (using samples

in both cases). The first pair “Delaware” and “Franklin” are next to each other. The second

pair “Hamilton” and “Stark” are distant. We note that, with only 40 replications, our model

captures quite well both marginal and joint densities for the log-rates.

4.2 Ohio lung cancer data

The exploratory study of the Ohio lung cancer mortality data reveals a spatio-temporal

varying structure in the incidence rates. We display the observed log-rates log(yit/nit)

for the aforementioned four counties in Figure 4. This plot shows clear evidence of an

increasing, roughly linear, trend in the log-rate. Therefore we apply the dynamic SDP

model (5) with a linear trend over time, setting µt = β0 + β1t. Moreover, because negative

values for ν do not appear plausible, we use a discrete uniform prior on [0, 1) for ν.

The time t is normalized to be from year t = 1 to 21. In order to validate our model, we

leave year 21 (year 1988) out in our model fitting and predict the log-rates for all 88 counties

in that year, using the posterior forecast distribution developed in Section 3.2. Posterior

point (posterior medians) and 95% equal-tail interval estimates for β0, β1 and for ν are

given by −8.208 (−8.319,−8.100), 0.0367 (0.0292, 0.0448) and 0.7 (0.6, 0.8), respectively.

There was also prior to posterior learning for the other hyperparameters, in particular,

point and interval estimates were 0.0586 (0.0552, 0.0656) for φ; 0.104 (0.0855, 0.113) for τ 2;
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and 0.133 (0.101, 0.152) for σ2.

In Figure 5 we display the marginal posterior forecast density of the log-rate for the

earlier four counties in the hold-out year 1988. We also calculated 95% marginal predictive

intervals for all 88 counties in 1988 and found that 83 out of 88 observed log-rates (94.3 %)

are within their 95% interval; we do not seem to be overfitting or underfitting. In Figure 6

we provide the contour plot of the predictive log-rate surface for 1988, using medians from

the posterior forecast distribution for each county.

5. DISCUSSION

We have argued that, with regard to disease mapping, it may be advantageous to con-

ceptualize the model as a spatial point process rather than through more customary areal

unit spatial dependence specifications. Aggregation of the point process to suitable spatial

units enables us to use it for the observable data. Specifying a non-homogeneous point

process requires a model for the latent risk surface. Here, we have argued that there are

advantages to viewing this surface as a process realization rather than through parametric

modeling. But then, the flexibility of a nonparametric process model as opposed to the

limitations of a stationary GP model becomes attractive. The choice of a spatial DP finally

yields our proposed approach. We applied the modeling to both real and simulated data.

With the simulated data we clearly demonstrated the advantage of such flexibility.

Extensions in several directions may be envisioned. Three examples are the following.

In treating the specification for the µt we could provide a nonparametric model as well

through i.i.d. realizations obtained under DP mixing or the associated dynamic version

with independent innovations under such a model. Next, we often study concurrent disease

maps to try to understand the pattern of joint incidence of diseases. In our setting, for

a pair of diseases, this would take us to a pair of dependent surfaces from a bivariate

spatial process. We could envision modeling based upon a bivariate SDP centered around
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a bivariate GP. Finally, how would we handle misalignment issues in this nonparametric

setting? That is, what should we do if disease counts are observed for one set of areal

units while covariate information is supplied for a different set of units? Banerjee et al.

(2004) suggest strategies for treating misalignment but exclusively in the context of GPs.

Extensions to our SDP setting would be useful.
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APPENDIX: POSTERIOR SIMULATION METHODS

Here, we provide the details for MCMC posterior simulation for the spatial and spatio-

temporal models discussed in Sections 2.1 and 2.4, respectively. In both cases, the poste-

rior of the model can be explored using a Gibbs sampler that combines standard MCMC

techniques for DP mixtures (West et al., 1994; Bush and MacEachern, 1996) with updates

for the latent zit.

Spatial model: Under model (2), the full conditional for each zit can be expressed as

p(zit | ...,data) ∝ exp(−nit exp(zit))N(zit | µ + θit + τ2yit, τ
2). We can sample from

this full conditional introducing an auxiliary variable uit, with positive values, such that

p(zit, uit | ...,data) ∝ N(zit | µ + θit + τ2yit, τ
2) 1(0<uit<exp(−nit exp(zit))). Now the Gibbs

sampler is extended to draw from p(uit | zit,data) and p(zit | uit, ...,data). The former

is a uniform distribution over (0, exp(−nit exp(zit))). The latter is a N(µ + θit + τ2yit, τ
2)

distribution truncated over the interval (−∞, log(−n−1
it log uit)). Alternatively, adaptive re-

jection sampling can be used to draw from the full conditional for zit noting that its density

is log-concave.
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Having updated all the zit, the mixing parameters θt, t = 1, ..., T , and hyperparameters

µ, τ2, σ2, φ, can be updated as in the spatial DP mixture model (reviewed briefly in Section

2.2), with zt playing the role of the data vector yt. (We refer to the Appendix in Gelfand et

al., 2005, for details.) All these updates require computations involving the matrix Rn(φ).

To approximate the entries of this matrix, we use Monte Carlo integrations based on sets

of locations distributed independently and uniformly over each region Bi, i = 1, ..., n. Note

that, with the discrete uniform prior for φ, these calculations need only be performed once

at the beginning of the MCMC algorithm.

Spatio-temporal model: The posterior for model (5) is given by expression (8). The

form of the full conditionals for the zit is similar to the one for the spatial model, and,

thus, either auxiliary variables or adaptive rejection sampling can be used to update these

parameters.

For each t = 1, ..., T , the full conditional for ηt,

p(ηt|...,data) ∝ p(ηt|{ηj : j 6= t}, σ2, φ)

T
∏

`=t

Nn(z`|d` + ν`−tηt, τ
2In)

where d` = (β0 + β1`)1n +
∑`

m=1,m6=t ν`−mηm, ` = t, ..., T . The product term above is

proportional to a Nn(ηt|µt,Σt) density, with µt = (
∑T

`=t ν2(`−t))−1
∑T

`=t ν`−t(z` − d`) and

Σt = τ2(
∑T

`=t ν2(`−t))−1In. Let T ∗− be the number of distinct ηj in {ηj : j 6= t}, η∗−j ,

j = 1, ..., T ∗−, be the distinct values, and T−
j be the size of the cluster corresponding

to η∗−j . The prior full conditional p(ηt|{ηj : j 6= t}, σ2, φ) is a mixed distribution with

point masses T−
j (α + T − 1)−1 at the η∗−j and continuous mass α(α + T − 1)−1 on the

Nn(0, σ2Rn(φ)) distribution. Hence, p(ηt|...,data) is also a mixed distribution with point

masses, proportional to T−
j qj, at the η∗−j and continuous mass, proportional to αq0, on

an n-variate normal distribution with covariance matrix Ht = (Σ−1
t + σ−2R−1

n (φ))−1 and

mean vector HtΣ
−1
t µt. Here, qj is the value of the Nn(µt,Σt) density at η∗−

j , and q0 =

∫

Nn(u|0, σ2Rn(φ))Nn(u|µt,Σt)du, an integral that is available analytically.
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Updating σ2 and φ proceeds as in the spatial model. The full conditional for τ 2 is an

inverse gamma distribution, and β0 and β1 have normal full conditionals. Finally, working

with a discrete uniform prior for ν, we sample directly from its discretized full conditional.

REFERENCES

ANTONIAK, C.E. (1974). Mixtures of Dirichlet processes with applications to nonpara-

metric problems. The Annals of Statistics 2, 1152-1174.

BANERJEE, S., CARLIN, B.P. AND GELFAND, A.E. (2004). Hierarchical Modeling and

Analysis for Spatial Data. Boca Raton: Chapman & Hall.

BANERJEE, S., WALL, M.M. AND CARLIN, B.P. (2003). Frailty modeling for spatially

correlated survival data, with application to infant mortality in Minnesota. Biostatis-

tics 4, 123-142.

BERNARDINELLI, L., CLAYTON, D.G. AND MONTOMOLI, C. (1995). Bayesian es-

timates of disease maps: How important are priors? Statistics in Medicine 14, 2411-

2432.

BESAG, J., YORK, J. AND MOLLIE, A. (1991). Bayesian image restoration with two

applications in spatial statistics. Annals of the Institute of Statistical Mathematics

43, 1-59.

BESAG, J., GREEN, P., HIGDON, D. AND MENGERSEN, K. (1995). Bayesian com-

putation and stochastic systems (with discussion). Statistical Science 10, 3-66.

BEST, N.G., ICKSTADT, K. AND WOLPERT, R.L. (2000). Spatial Poisson regression

for health and exposure data measured at disparate resolutions. Journal of the Amer-

ican Statistical Association 95, 1076-1088.

24



BLACKWELL, D. AND MACQUEEN, J.B. (1973). Ferguson distributions via Pólya urn
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Figure 1: Map of the 88 counties in the state of Ohio.
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Figure 2: For the simulation example in Section 4.1, posterior predictive densities for the

log-rates, corresponding to four counties, based on the SDP model (thick curves) and the

GP model (dashed curves). The true densities are denoted by the thin curves, and the

observed log-rates by “+”.
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Figure 3: For the simulation example of Section 4.1, posterior predictive densities (left

column) and true bivariate densities (middle column) for log-rates associated with two

pairs of counties. The right column includes plots of the corresponding observed log-rates.
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Figure 4: Observed log-rates for four counties from 1968 to 1988 for the Ohio data example

of Section 4.2.
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Figure 5: Posterior forecast densities for the log-rate of four counties in the hold-out year

(year 1988) for the Ohio data example of Section 4.2. The vertical line in each plot is the

observed log-rate.
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Figure 6: For the Ohio data example of Section 4.2, medians of the posterior forecast
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