
Submitted to the IEEE Control Systems Magazine

Revised: January 28, 2006.

A Crash Course in Feedback Control

A matlabR©-based introduction with one prerequisite:

high school algebra

By Jorge Cortés and William B. Dunbar

Introduction

Motivation for outreach has been generated within the control community in the last decade.

In particular, there is a need for new and improved course materials for both traditional

(engineering undergraduate and graduate students) and non-traditional (high school, or non-

engineering students) audiences. In 1998, an article resulting from an NSF/CSS Workshop on

New Directions in Control Engineering Education [1] made the following recommendations

regarding needed reform in undergraduate control education:

• “to provide practical experience in control systems engineering to first year college



students to stimulate future interest and introduce fundamental notions like feedback

and the systems approach to engineering,” and

• “to encourage the development of new courses and course materials that would signifi-

cantly broaden the standard first introductory control systems course at the undergrad-

uate level.”

In 2003, a Panel on Future Directions in Control, Dynamics, and Systems provided a re-

newed vision of future challenges and opportunities, along with recommendations to agencies

and universities to ensure continued progress in areas of importance to the industrial and

defense base [2]. One of the five primary recommendations is that the community and fund-

ing agencies invest in “new approaches to education and outreach for the dissemination of

control concepts and tools to nontraditional audiences. As a first step toward implement-

ing this recommendation, new courses and textbooks should be developed for both experts

and nonexperts.” The Panel also recommended the integration of software tools such as

matlabR© into these new courses. In 2002, the undergraduate introduction to control course

at Caltech (CDS 110) was revamped to incorporate high-level presentation lectures for both

non-engineering and engineering students in addition to the more detailed lectures for engi-

neering students [3]. As part of the effort, a new book is also under development [4].

Motivation for outreach has also been provided from outside our field. Ten years ago, feed-

back control was identified by the National Science Education Standards as being fundamen-

tal to understanding systems, and systems in turn was identified as a unifying concept for

K-12 science education [5]. In the bigger picture, in 2005, the need for curricular material

that motivates middle-school and high school students to pursue advanced work in science

and mathematics in the United States was underscored by the Committee on Prospering

in the Global Economy of the 21st Century, a subcommittee of the National Academy of

2



Sciences, National Academy of Engineering, and the Institute of Medicine [6].

This paper presents an overview of a recently designed and implemented introductory course

on feedback control amenable to traditional and nontraditional audiences. The course ma-

terial is based on fundamental concepts in dynamical systems, modeling, stability analysis,

robustness to uncertainty, feedback as it occurs naturally, and the design of feedback con-

trol laws to engineer desirable static and dynamic response. The material also includes an

introduction to matlabR©, provides many matlabR© exercises to reinforce concepts, and

concludes with a control design and simulation-based analysis to achieve wall tracking with

a kinematic robot. The only prerequisite for the course material is high school algebra. In

July of 2005, a four-week course based on the material was taken by a group of 17 talented

high school students, with a range of 9 to 11 in grade level. By the end of the course (∼30

hours of lecture time), each student had successfully implemented a wall tracking controller

on a robot (called Robobrain) designed specifically for the course. All course material is

freely available online, see [7].

The target audience for our course material includes not only high school students, but un-

dergraduates, graduate and postdoctoral researchers, who may have taken few math courses

beyond what is required in high schools in the United States, and who want a primer on

dynamics and control. The material could be used to initiate an interdisciplinary collabo-

ration between control theoreticians and biologists, for example, by helping the biologists

begin to learn the language and principles behind feedback control. The course might also be

integrated as part of a first year general engineering course. By design, the material provides

explicit motivation for learning more advanced mathematics, a component often missing in

introductory engineering curriculums. In the fall of 2006, a first year one-quarter under-

graduate course will be developed in the Baskin School of Engineering at UC Santa Cruz

3



based on this material. In the remainder of the paper, an overview of the course material is

provided, followed by a description of the venue for the course given in the summer of 2005,

and feedback from high school students that took the course.

Overview of Lecture Material

The material is broken down into nine lectures, each taking 1-3 hours to cover, depending

on the complexity of the specific lecture topics and the ability of the audience. The first

lecture is a set of presentation slides. All other lectures include two parts: first, a 15-20

minute slide-based introduction, giving an overview of the topics covered in that lecture and

reiterating the big picture; second, 45-160 minutes of white board lecture and matlabR©

exercises, guided by our lecture notes. Lectures are structured in an interactive way, alter-

nating between short explanations of important concepts given to the whole class, and time

allocated for the students to solve simple exercises individually. As stated, all slides, lecture

notes and relevant matlabR© files are freely available online at [7]. The material assumes

each participant has access to a computer with matlabR© installed.

Lectures 1 and 2: Introduction to the Course and matlabR©

Lecture 1 is a presentation providing a high-level introduction to the concept of feedback

control, as it occurs naturally and as it is designed for use in engineering (Figure 1 shows one

of the slides from this lecture). The introduction also gives an overview of the mathematics

and analysis tools utilized in the course, and a preview of the robotic platform Robobrain

encountered at the end of the course. Lecture 2 provides an introduction to matlabR©,

including variable assignment, vectors, plotting, making m-file functions, and loop-functions

for plotting data. There are many matlabR© primers available, such as in [11], that could

be used to supplement the minimal number of topics that we cover. Still, for the purpose

4



Feedback Control Realizes the Guided Behavior in
the Presence of Uncertainty

Control
Compute action

Actuate
Accelerator

Goals
• Stability: maintain desired operating condition (constant speed)
• Performance: achieve desired condition asap!
• Robustness: tolerate uncertainty and perturbations (mass, drag, road

surface, etc.)

Navigation
Vehicle speed

Guidance
(ideal)

(reality)

(the correction to match reality with ideal)

Figure 1. Introductory slide presenting feedback control in the context of guidance,
navigation and control of an autonomous off-road vehicle [8]. The slide presents control
as a means of correcting the actual system response to match a desired (guidance)
response. The example also helps introduce the concepts of stability, performance and
robustness using the familiar objective of cruise control of a vehicle.

5



of moving to the next topics in our course, we found that our coverage was sufficient in

practice (see the section later entitled “Implementation of the Course Material” below for a

discussion on our experience with teaching the course).

Lectures 3 and 4: Introduction to Discrete-Time Dynamics

Without a background in differential equations, an introduction to dynamics and modeling

is facilitated by considering systems in discrete time. In order not to rely on a background in

linear algebra, the models considered must also be low dimensional. Therefore, one and two-

dimensional linear and nonlinear discrete-time models are considered in Lectures 3 and 4.

In the context of these models, basic high school algebra is sufficient to make a beginning.

Dynamics are introduced with the following one-dimensional, discrete-time and time-invariant

real-valued map:

xk+1 = f(xk). (1)

To understand causality, the orbit {x0, x1, x2, ..., xN} is defined as the unique sequence of

numbers, or trajectory, that arises from a given initial point x0 and by evaluating the func-

tion (1) repeatedly, up to some desired number of times N . We then define what it means

for f to be linear (f(x) = ax, given a ∈ R), and not linear, or nonlinear (f(x) = cos(x),

for example). The concept of fixed point (equilibrium) is then defined for these maps, and

the quantitative (in the case of linear f) and qualitative behavior of (1) near such points

is explored. In turn, we are able to qualitatively define stability and attractivity of a fixed

point of (1), by examining orbits for a set of initial conditions near the fixed point.

As a preview into the complexity that is possible with such a simple equation (1), the one-

dimensional logistic map [9] is examined, where f(x) = rx(1 − x), given r ∈ [0, 4]. As a

6



first real test of their matlabR© skills, students are asked to generate a plot that shows the

limiting behavior of orbits as the parameter r is varied. Here are the instructions given in

the Lecture 4 notes.

Name: Orbit diagram algorithm

Goal: Plot orbit diagram of logistic equation

The idea is to have a figure where many orbits of the logistic map are plotted (one for each

value of r between 3.4 and 4). So the x-axis of the figure will correspond to values of r,

and the y-axis will correspond to values of the orbits.

1: Set i = 0.

2: Set r = 3.4 + i.

3: Iterate the logistic map for 200 cycles (after 200 cycles, the system should settle down

to its eventual behavior — the settling portion of the response is called the transient)

starting from x0 = .6.

4: Once the transients have decayed, plot many points, say x201, . . . , x400, versus the cur-

rent value of r in the figure.

5: Set i = i + 0.005. If i = 0.6, exit the algorithm. Otherwise, return to step 2.

For those unfamiliar with the logistic map, the resulting figure is an illustration of chaos.

Not only does the exercise promote applied learning of writing for-loops and functions in

matlabR©, but the images they generate promote enthusiasm for more programming oppor-

tunities and more advanced dynamics. Most student like the idea that they are capable of

creating chaos!

Lecture 5: Introduction to Modeling

Mathematical models of systems are presented as a tool for prediction, so one can characterize

7



how a system behaves under a variety of conditions. Based on the previous material, students

can think of this as identifying a function f that generates an orbit closely matching the

actual evolving behavior of a given system. At the outset, the concepts of uncertainty and

robustness are impressed upon the students. Models are never perfect; the hope is that

they are good enough for a close match, and eventually, for control design and analysis. An

excerpt from Lecture 5 given here shows the language with which we attempt to introduce

these fundamental concepts.

8



Excerpt from Lecture 5
Of course, models are not perfect. They try to describe very complex natural and engineered
phenomena. Therefore, we should have in mind that a model is always an approximation
of the actual behavior of the real system. This uncertainty comes from various sources:
we usually do not know with total exactness, for example, the values of the parameters of
the system (the mass, the friction coefficient, etc.). Another reason is that many dynamic
processes are just too difficult to model exactly, and we are often forced to make approximate
models.
When approximations are required in modeling, and this is always the case, a principle
that has the power to save us is called robustness. Robustness is the ability of a system
to be relatively insensitive to measurement, parameter and environmental variations or
uncertainties. Let us consider examples of such variations, in the case of cruise control.

Example 1 (Sources of uncertainty in cruise control). Recall the cruise control model
(presented in Lecture 4)

vk+1 = vk +
∆

m
[−bvk + ueng,k + uhill,k]. (2)

Here, vk is car speed, uhill,k is road incline, ueng,k is accelerator control input, all at time step
k. The sample period is ∆ and the mass is m. An example of measurement uncertainty
is if your measurements of vk are not exact. For example, your speed sensor is actually
giving you vk + σk, where σk is a variable that changes randomly, contaminating the speed
measurement. An example of parameter uncertainty is if we do not know the mass m
exactly. This is the case as fuel is being burned causing a decrease in mass and we are
not taking this into account since it is assumed that m is constant for all time. Lastly, an
example of environmental uncertainty is uhill,k. At best, we might be able to say how large
this term gets over a certain time period, but we do not know in general the exact value of
the road incline, now or in the future. �

Robustness is one of the most useful properties of control. Think again about the cruise
controller of your parents’ car. You want to keep the car going at constant speed, right?
The cruise controller automatically adapts the accelerator setting so that the system is
insensitive to climbing uphill or going downhill, and it does so with no exact knowledge
of the true incline of the road traveled! In short, the cruise controller makes the actual
behavior of the car robust to changes in the road incline conditions.

The lecture continues with a two-dimensional predator-prey model

Hk+1 = Hk +
br

D
Hk −

a

D
LkHk,

Lk+1 = Lk −
df

D
Lk +

a

D
LkHk,

9



used to predict how hare populations Hk and lynx populations Lk influence one another over

time, as a function of the model parameters. The example is the first leap into modeling in

more than one dimension, extending the students matlabR© function writing skills to gen-

erate orbit plots for the two populations. This example is followed by the three-dimensional

kinematic model of the Robobrain robot used as the experimental platform at the end of

the course. The model corresponds to that of a unicycle, and is given by

xk+1 = xk + ∆uk cos(θk),

yk+1 = yk + ∆uk sin(θk),

θk+1 = θk + ∆vk.

(3)

Definitions for state, control inputs, disturbances, parameters and outputs are given, and

examples of each are identified for both models. For example, (vk, uk) are the rotational and

translational velocity of the robot, respectively, and correspond to the two control inputs.

Since the robot model has control inputs, the concept of fixed point is restated, now with

the equilibrium state dependent upon the choice of controls. The next lecture introduces

feedback control abstractly (not just for the robot), and leverages the learned matlabR©

programming skills for model-based prediction, as well as the previous topics of fixed points

and stability.

Lecture 6: Introduction to Feedback Control

The utility of models for prediction is emphasized in the previous Lecture 5 material, and

Lecture 6 introduces model-based feedback control design and analysis. To engineer au-

tonomy in systems, e.g., in robots or cruise-controlled cars, models are also used to design

and analyze feedback control policies. The advantage of doing control design and analysis

with a model, as opposed to trying different controllers on the real system from the begin-

ning, is impressed upon the students. Some of the recent advertisements for matlabR© and

10



simulinkR© by The MathWorks Company in the IEEE Spectrum Magazine are useful in

making this point. In particular, the recent ad in [10] identifies the savings and success of

prediction-based (simulation-based) control design in the case of the Mars rovers, for which

zero test flights to Mars are possible.

Based on the mathematics we have presented so far, feedback control is introduced in this

lecture as a means of shaping the dynamics, so that (i) one can reassign the fixed point(s) of

a model as desired, and (ii) these desired fixed points are stable and attractive. Generically,

we rewrite the model in (1) to include a control input uk as

xk+1 = f(xk, uk). (4)

Next, by example, the unforced or open-loop dynamic model of the cruise-controlled car is

reexamined, by setting ueng,k = 0 for all k in (2). Students are asked to calculate and analyze

the fixed point speed veq in the absence of any road incline, yielding convergence to veq = 0

(due to the friction term) from any initial speed. For this one-dimensional example, the

stability can be analyzed explicitly be seeing that vk always tends to slow down. In high-

dimensional examples later, simulations (orbit calculations) are the sole means of determining

stability, since students are not expected to know any matrix algebra. Continuing with

the cruise-control example, students are next asked to recalculate the fixed point with the

control in (2) defined as ueng,k = K(vdes−vk), where vdes is the desired speed of the car when

the cruise-controller is working. The result (assuming a constant, possibly non-zero incline

disturbance) is

veq =
K

b + K
vdes +

1

b + K
uhill.

Thus, one can engineer a fixed point, by choice of control. In this case, the larger the value

11



of K, the closer the steady-state speed approaches its desired value, and the less influence

the road incline has on the steady-state speed (robustness). By calculating orbits, students

also get to examine the stability and attractivity of the new fixed point.

The remaining lectures prior to the experimental implementation are about control design

and analysis, first for a two-dimensional model (the inverted pendulum), and next for the

three-dimensional robot model in (3).

Lecture 7: Feedback Control of an Inverted Pendulum

This lecture provides a case study in control design and simulation-based analysis. In Lec-

ture 7, a normalized discrete-time model of a pendulum with angle θk and torque control uk

is given as

1

∆2
(θk+1 − 2θk + θk−1) = − sin θk + uk,

with the objective of designing uk to make the pendulum upright position θeq = π (a fixed

point) stable and attractive. If students have been exposed to Newton’s second law in a

physics course (about half of our COSMOS students had taken high school physics), this

model is easy enough to derive, making using of the finite difference approximation of the

second time derivative of the variable θ. The first trick is to convert this model into the form

of (4), since all analysis to this point has relied on the difference equations being in first-order

form. Although students are often mystified when first introduced to a change of variables,

the technique is mandatory in many control theory and application results. Therefore, this

example serves the additional purpose of providing a simple example of applying a change of

variables. Specifically, in (4), the state xk and function f become two-dimensional, defined

12



as xk = (zk, yk) = (θk, θk−1) and

f(xk, uk) =

 2zk − yk −∆2 sin zk + uk

zk

 .

Students are then asked to find the constant torque ueq such that the fixed point state is the

upright position, i.e., xeq = (π, π). Next, defining the overall control as uk = ueq + ũk, the

desired fixed point is to be stabilized by choosing the parameters K1 and K2 in the feedback

control

ũk = K1(θeq − zk) + K2(θeq − yk).

By using the canned matlabR© function pendulum.m, students examine the response of the

pendulum to a variety of control parameter choices, and identify those parameters that result

in stability and attractivity. In the later portion of Lecture 7, an integrator (summation

term for discrete-time control) is also explored in the cruise-control model (2) to remove the

steady-state error in the steady-state speed veq shown above. Although the students are by

now capable of making a function like pendulum.m, the infrastructure allowed us to maintain

the desired pace of the course.

Lecture 8: Open-loop analysis of the Robobrain robot

In Lecture 8, the robot model in (3) is tackled. As with the previous models, the open-loop

analysis is performed. The first step is to identify the equilibrium states of the dynamics,

with the corresponding equilibrium control inputs. Students are then asked to decide if

these equilibrium states are stable and attractive. Once they decide they are not, they

are then faced with the need to design a feedback control to achieve our ultimate control

objective: autonomous wall tracking, so that, starting from an arbitrary initial configuration,

13



the Robobrain robot turns to track any wall at a desired separation distance, and at a

constant velocity.

In preparation for this task, students are guided through a series of exercises involving the

robot model, targeted at reinforcing the concepts of open-loop versus closed-loop control,

uncertainty and robustness to disturbances. Students are asked to create two matlabR©

programs, robobrain.m and robobrainDist.m. The first one plots the orbit of the robot

given some specific control signals from a generic initial configuration.

Students realize that the controls are specified ahead of time, without ever looking at the ac-

tual evolution of the Robobrain robot during its motion. The other program, robobrainDist.m,

is meant to show the risks associated with this open-loop strategy. Students are asked to

simulate the same model, with the exact same values for the parameters and the initial

conditions as before, but with a slight disturbance in the equations. In our experience, this

exercise convinces students of the need for feedback control when solving the wall tracking

problem, which is the subject of the next lecture.

Lectures 9: Feedback Control of the Robobrain robot

This lecture is structured into three parts. First, students are reintroduced to the discrete-

time model (3) of the unicycle, and the correspondence between the control inputs uk, vk in

the equations and the angular velocities of the physical robot (which are the actual quantities

directly controlled) is reviewed.

In the second part, students are guided through the task of defining a strategy for the robot

to find the wall and then make it turn to track the wall at a specified separation distance dsep.

The measured distances to the wall from each infrared (IR) sensor (see Figure 2) are defined

by dl,f (distance from the left front sensor), dl,m (distance from the left middle sensor), and

14



dl,b (distance from the left back sensor). Students are asked to figure out how to convert the

three left scalar distance measurements into the state values x and θ of the robot, and write

a matlabR© program to compute them, assuming a straight long hallway.

x

x y

u

u v
v θ

y dsep

Figure 2. Left, Robobrain robot developed at UCSC; right, schematic drawing of robot.
The three (red) triangle shapes on the left side of the robot represent IR sensors used
to determine distance and heading relative to the wall, and the single (green) triangle
shape on the front represents an IR sensor used to determine the distance to the wall
in the forward direction. The objective is to have the robot track the wall at a constant
separation distance dsep.

The logic used to find the wall is simple. The robot moves forward at a constant speed with

u = vnom (the nominal wall tracking velocity is some percentage of the maximum velocity

of each wheel) and v = 0, until the front sensor reads df ≈ 2dsep. Once this occurs, the

robot turns clockwise slowly in place with control u = 0 and v = −0.05vnom. The robot

keeps turning until dl,b = dl,m = dl,f . After this, the robot uses the sensors to keep track of

distance and heading relative to the wall.

The third part of the lecture consists of designing and analyzing the actual controller run-

ning on the robot to track the wall. Students are exposed to a discrete-time proportional-

15



derivative wall tracking control given by

uk = vnom, vk = kp (xk − dsep) + kd
xk − xk−1

∆
. (5)

Students are asked to modify the matlabR© program robobrain.m, created in Lecture 8,

to include the feedback controller (5). The new function asks for the initial configuration

x0, y0, θ0 of the robot, the time step ∆, the number of iterations N , the desired separation

distance dsep and the control gains kp, kd, and outputs a vector with components x, y, θ

and the elapsed time. An example simulation where this controller is employed is shown in

Figure 3.

−2 0 2 4
−4

−2

0

2

4

6

8

X motion (m)

Y
 m

ot
io

n 
(m

)

Position Space (Tracking)

Figure 3. Simulation of feedback control for keeping a desired separation from the wall
at a constant speed. Initial condition is (x0, y0, θ0) = (3,−2, 0), nominal wall tracking
velocity is vnom = 1 and desired separation is dsep = 1. Control gains are kp = 1/3 and
kd = 1. Sample period is ∆ = 0.05.

To conclude the lecture, students are asked to tune the values of the control parameters kp

and kd. The knowledge of linear algebraic tools would allow them to do this analytically.

Since these are not assumed, they are encouraged to select some values a priori, use the

16



newly defined program to simulate the system, and modify their selection accordingly until

the desired behavior is obtained. In our experience, it was at this point that students were

somewhat disappointed with not being able to do something more rigorous to ensure that the

control yields the desired wall tracking behavior. Guessing parameters and simulating the

model was, in other words, lame. When told that more advanced math, specifically calculus

and college-level linear algebra, would enable them to determine the control parameters

analytically to get the desired result, the students were enthusiastic to learn these subjects.

Once the control parameter tuning task is completed, students are instructed to transcribe

their parameter choices into the actual robot program, which is run in C. Our course finale

consisted of each robot trying to track a curved indoor path. The students competed to

see which robot could track the wall for the largest distance along the wall. Figure 4 shows

experimental results for one of the successful cases.

0 5 10 15 20

0

10

20

30

time (sec)

(c
m

)

x
d

sep

0 5 10 15 20
0

0.5

1

1.5

2

2.5

time (sec)

(r
ad

)

θ
π/2

Figure 4. Experimental results of feedback control for keeping the robot at a desired
separation (x = dsep) from the wall at a constant speed (uk = vnom) and constant
heading (θ = π/2). The feedback control law (5) was turned on at time t = 2 seconds.

17



Implementation of the Course Material: COSMOS

In the summer of 2005, a four-week course based on the material was taken by a group of

talented high school students, with a range of 9 to 11 in grade level. The course was part of

the COSMOS program held at the UC Santa Cruz campus.

COSMOS (the California State Summer School for Mathematics and Science) is a selective

four-week summer residential program for young scholars with demonstrated interest and

achievement in math and science [12]. The program is located on four University of California

campuses: Davis, Irvine, San Diego, and Santa Cruz. The student population of COSMOS

2005 at Santa Cruz was composed of 76 female and 75 male students, with 37% of the total

being underrepresented. Each COSMOS student enrolls in one of several topical “clusters”

for the duration of the program. Each cluster is comprised of two courses, each designed and

instructed by UCSC faculty, lecturers, researchers and/or graduate students. Cluster 2 (out

of 7 total clusters) was comprised of the courses “Nanotechnology” and “Making Robots

and Making Robots Intelligent,” the latter being our crash course in feedback control. Our

course met for typically 90–120 minutes each day for 16 lecture days out of the four weeks,

and minimal assignments outside of the classroom were required.

The overall experience was very positive and the lecture format worked extremely well.

Students responded well to the introduction to matlabR©, and our lecture model consisting

of short theoretical explanations combined with simple computer exercises to reinforce the

theory. The general introduction to the course at the very first day of class served them well

to broadly understand the main ideas of feedback control. We often referred to this lecture

during the course, placing the specific contents of the class into the big picture. We believe

that students appreciated and were aided by the general introduction on day one and the

18



brief high-level introductions at the beginning of each subsequent lecture.

In future offerings of the course, we plan to integrate the Robobrain robots into the lectures

sooner, instead of waiting until the final lecture. By our experience, we anticipate that

presenting the students with hardware that they would eventually use would motivate them

to learn the theoretical content of the course. Students would be eager to understand the

math that will allow them to make the robot operate autonomously.

This experience will be turned into an introductory undergraduate course in the engineering

curriculum at UC Santa Cruz. In the fall of 2006, the course “Computer Engineering 8 –

Robot Automation: Intelligence through Feedback Control” will be offered, and introduce

first-year undergraduate students to matlabR©, programming, dynamics, feedback control

and robotics using our lecture material. We believe that this course will serve as a great

recruiting tool for bright students. Additionally, the experience will hopefully motivate

them to learn the more advanced mathematics, programming and hardware courses avail-

able within the computer engineering, electrical engineering and applied mathematics and

statistics curricula at UC Santa Cruz.

Feedback from Students

At the end of the course, we conducted an online survey about the satisfaction of students

with the course. According to the students’ evaluations and the parents’ comments at the

end of the course, the experience was as challenging and rewarding for the students as it was

for us. Various parents expressed the feeling that the COSMOS experience will shape their

kids’ future careers.

We asked the students to express their opinions in 6 multiple-choice questions and 8 qualita-

tive questions. Out of 17 enrolled students, we received 14 evaluations. Table 1 summarizes

19



the outcome to the quantitative questions.

Poor Fair Satisfactory Very Good Excellent
Clarity and understandability - - - 10 4
Preparation and organization - - 1 7 6
Course as learning experience - - - 5 9
Will recommend course to buddies - - 1 1 12

Table 1. Quantification of student satisfaction with the course.

Below are some of the students responses to the qualitative questions:

• What did you like most about the course?

– “It was a challenge so I never got bored. I also enjoyed discovering all of the

practical applications of the material we were learning. It was also an experience

I never could have had in high school.”

– “I liked most how first we learned the idea, then the math, then the application

of it all. I really liked how it all came together eventually, it was really clear at

the end.”

– “I liked working on the programming of the Robobrain and I guess that includes

the work leading up to the Robobrain. The last day of class was amazing, but

that was only because we had to work up to it. If the Robobrain was just handed

to us than I don’t think it would have been as good an experience.”

• How much and in what ways did the handouts help your learn the material in this course?

– “The handouts were key in the course — they explained and helped to reinforce

the reasoning and purpose of all that was taught in the class. The handouts gave

meanings and definitions to the terms, assigned tasks to help the student have a

better understanding of the material, matlabR©, and making robots intelligent.”

20



– “The handouts were very helpful. I liked how they were written and how they in-

troduced the ideas, explained, and then had us do a task to learn them. Referring

back to the handouts was helpful as well.”

• Please tell us the concepts covered in the course that you understood the most and the

least.

– “Most of the concepts I had a good grasp on, although there were a few I was a

little hazy about. Equilibrium, steady-state, fixed points, stability, etc., I under-

stood really well. The only idea I really had any trouble on was towards the end

with finding derivatives, because I’m not all that familiar with it.”

– “I understood all of the algebra and altering the equations very well. I also

understood why we change the equations like we do. I got the graphing very well

too, both writing the programs to produce the graphs and reading the graphs to

tell what they meant. I understood the calculus the least, because i haven’t had

the class yet. Most of the derivative stuff I just hitched a ride on.”

– “The concepts covered in the course that I understood the most included the

mathematical concepts and the entire necessity of feedback control for robotics.

The concepts I understood least probably included much of the later math for

Robobrain, which to me was a little rushed. I’m sure if we went over the math a

few more days, I would be able to understand.”

In the summer of 2006, we will be offering the same course within the COSMOS program.

Conclusions

We have summarized the contents of an introductory course to feedback control developed at

21



UC Santa Cruz. The course material, available at [7], is based upon fundamental concepts

in dynamical systems, modeling, stability, robustness, and the design of feedback control

laws. We have also reported our very positive experience in using the material in a summer

course for motivated high school students during the summer of 2005. We believe that

researchers from systems and control theory will find the material useful for a variety of

activities, ranging from education and outreach to high school and undergraduate students,

to interdisciplinary collaborations with scientists from other disciplines.

An interesting study performed in [13] examines how novices learn feedback control concepts,

an in particular how they learn a perspective on control that includes abstraction, so that the

concepts are not tied to a specific problem description. The study involved the use of a GUI-

based software that allows the students to connect and simulate a set of standard functional

objects (e.g., sensor, actuator, set point unit) that exist in many control applications. As

part of an introductory engineering course, the software was made available to a group of

high school students for ∼45 minutes per day for 5 days. A key finding of the study is that

“the idea of a signal is a core concept in an experts conception of feedback systems, and

is intricately tied to the definition of the functional components that make for a feedback

control system.” It is also reported that by the end of the course, students still had trouble

with the concept of signals.

In our summer course, we used matlabR© and described vectors (which most had seen in a

math or physics course) as a sequence of measurements taken at snapshots of time. It did

take most students a few days and several exercises to connect the “list of numbers” (vector)

in matlabR© with the evolution of a model of a real physical system. Once they grasped this

idea, we were able to describe the use of models for prediction and control design. We never

formally introduced the word signal, and did not attempt to generalize the vector description

22



to more general scenarios (continuous time, for example), as this seemed unnecessary. As

a future direction, our material, based largely on algebra and matlabR©-based examples,

and a GUI-based approach to control could be combined to help students comprehend the

concepts.

Acknowledgments

We sincerely thank Mr. Bill Thompson, the high school instructor assigned to our cluster,

for his help and enthusiasm. During the preparation of the materials for the course, Bill

was our constant source of guidance in the difficult task of approaching the minds of 17 high

school students. His advice on how to best shape our materials to reach them were always

very helpful.

We thank Noah Wilson and Daniel Garalde, who assembled the Robobrain robots. Noah was

also responsible for the C programs that students used to implement the feedback controller

designed in class.

We would also like to thank all of the students who took the course with us and provided

invaluable feedback. Their enthusiastic response to the course materials far exceeded our

best expectations. Teaching feedback control to them was truly a joyful experience.

References

[1] P. Antsaklis, T. Basar, R. DeCarlo, N. H. McClamroch, M. Spong, and S. Yurkovich,

editors. NSF/CSS Workshop on New Directions in Control Engineering Education.

23



National Science Foundation and IEEE Control Systems Society, 1998. Available at

http://robot0.ge.uiuc.edu/∼spong/workshop.

[2] R. M. Murray, K. J. Astrom, S. P. Boyd, R. W. Brockett, and G. Stein, “Future directions

in control in an information-rich world,” IEEE Control Systems Magazine, vol. 23, no. 2,

pp. 20–33, 2003.

[3] Caltech course Control and Dynamical Systems 101/110, Analysis and Design of Feed-

back Systems, http://www.cds.caltech.edu/∼murray/cds101/.

[4] K. J. Astrom and R. M. Murray. Analysis and design of feedback systems. Preprint,

2003.

[5] National Research Council. National Science Education Standards. Washington, DC:

National Research Council, 1996.

[6] Committee on Prospering in the Global Economy of the 21st Century: An Agenda for

American Science and Technology. Rising Above The Gathering Storm: Energizing and

Employing America for a Brighter Economic Future. National Academy of Sciences,

National Academy of Engineering and Institute of Medicine, The National Academies

Press, 2005. Available at http://www.nap.edu/catalog/11463.html.

[7] All course material is available at http://www.soe.ucsc.edu/˜jcortes/controlcrashcourse/.

[8] Autonomous vehicle photo of Caltech’s 2004 DARPA Grand Challenge entry, courtesy

of Richard Murray.

[9] S. H. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, Cambridge, 1994.

[10] Advertisement for matlabR© and simulinkR© by The MathWorks Co. (back

cover page), IEEE Spectrum, August, 2005. More information available at

http://mathworks.com/mbd.

24



[11] K. Sigmon and T.A. Davis, matlabR© Primer, Sixth Ed., CRC Press, 2002.

[12] The California State Summer School for Mathematics and Science (COSMOS),

http://www.ucop.edu/cosmos. At UC Santa Cruz, http://epc.ucsc.edu/cosmos/.

[13] J. Ma, “A case study of student reasoning about feedback control in a computer-based

learning environment,” In Proc. 29th ASEE/IEEE Frontiers in Education Conf., San

Juan, Puerto Rico, 1999, pp. 12d4-7–12d4-12.

Jorge Cortés received the Licenciatura degree in mathematics from the Universidad de

Zaragoza, Spain, in 1997 and his Ph.D. degree in engineering mathematics from the Univer-

sidad Carlos III de Madrid, Spain, in 2001. He is an assistant professor in the Department

of Applied Mathematics and Statistics at UC Santa Cruz. Prior to coming to UCSC in

2004, he held postdoctoral positions at the Systems, Signals and Control Department of

the University of Twente, and at the Coordinated Science Laboratory of the University of

Illinois at Urbana-Champaign. His research interests focus on mathematical control theory,

distributed motion coordination for groups of autonomous agents, and geometric mechan-

ics and geometric integration, and he is the author of the book “Geometric, control and

numerical aspects of nonholonomic systems” (Springer Verlag, 2002).

William B. Dunbar (dunbar@soe.ucsc.edu) earned a B.S. degree in engineering sci-

ence and mechanics from Virginia Tech in 1997, an M.S. degree in applied mechanics and en-

gineering science from UC San Diego in 1999, and a Ph.D. in control and dynamical systems

from Caltech in 2004. He is currently an assistant professor in the Department of Computer

Engineering at UC Santa Cruz. His research areas include distributed model predictive con-

trol, consistent approximations of optimization algorithms, and supply chain management

problems. All correspondence regarding this article can be addressed to: William B. Dunbar,

25



University of California, 1156 High Street, Mail Stop: SOE3, Santa Cruz, CA 95064 USA.

Fax: 831-459-4829.

26


