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Abstract

Typically, disease incidence or mortality data are avail-
able as rates or counts for specified regions, collected over
time. We propose Bayesian nonparametric spatial mod-
eling approaches to analyze such data. We develop a hi-
erarchical specification using spatial random effects mod-
eled with a Dirichlet process prior. The Dirichlet pro-
cess is centered around a multivariate normal distribu-
tion. This latter distribution arises from a log-Gaussian
process model that provides a latent incidence rate sur-
face, followed by block averaging to the areal units de-
termined by the regions in the study. With regard to the
resulting posterior predictive inference, the modeling ap-
proach is shown to be equivalent to an approach based
on block averaging of a spatial Dirichlet process to ob-
tain a prior probability model for the finite dimensional
distribution of the spatial random effects. We introduce
a dynamic formulation for the spatial random effects to
extend the model to spatio-temporal settings. Posterior
inference is implemented with efficient Gibbs samplers
through strategically chosen latent variables. We illus-
trate the methodology with simulated data as well as with
a data set on lung cancer incidences for all 88 counties in
the state of Ohio over an observation period of 21 years.

Keywords: Areal unit spatial data; Dirichlet process
mixture models; Disease mapping; Dynamic spatial pro-
cess models; Gaussian processes

1 Introduction

Data on disease incidence (or mortality) are typically
available as rates or summary counts for contiguous ge-
ographical regions, e.g., census tracts, post or zip codes,
districts, or counties, and collected over time. Hence,
though cases occur at point locations (residences), the
available responses are associated with entire subregions
in the study region. We denote the disease incidence
counts (number of cases) by yit, where i = 1, ..., n in-
dexes the regions Bi, and t = 1, ..., T indexes the time
periods. In practice, we may have covariate information
associated with the region, e.g., percent African Amer-
ican, median family income, percent with some college
education. In some cases, though we only know the areal
unit into which a case falls, we may have covariate in-
formation associated with the case, e.g., sex, race, age,
previous comorbidities. Moreover, any of this covariate

information could be time dependent. Such information
can be accommodated in our modeling framework as dis-
cussed in Kottas et al. (2006). However, the focus here is
on flexible modeling of areal unit spatial random effects
and so we do not consider covariates.

A primary inferential objective in the analysis of dis-
ease incidence data is summarization and explanation of
spatial and spatio-temporal patterns of disease (disease
mapping); also of interest is spatial smoothing and tem-
poral prediction (forecasting) of disease risk. The field of
spatial epidemiology has grown rapidly in the past fifteen
years with the introduction of spatial and spatio-temporal
hierarchical (parametric) models; see, e.g., Elliott et al.

(2000), and Banerjee et al. (2004) for reviews and further
references.

Working with counts, the typical assumption (for rare
diseases) is that the yit, conditionally on parameters Rit,
are independent Po(yit | EitRit) (we will write Po(· | m)
for the Poisson probability mass function/distribution
with mean m). Here, Eit is the expected disease count,
and Rit is the relative risk, for region i at time period t.
(Below we will use an alternative and, we assert, prefer-
able, specification, writing nitpit for the Poisson mean,
where nit is the specified number of individuals at risk
in region i at time t and pit is the corresponding disease
rate.) Eit is obtained as R∗nit, with R∗ an overall disease
rate, using either external or internal standardization,
the former developing R∗ from reference tables (available
for certain types of cancer), the latter computed from
the given data set, e.g., R∗ =

∑

it yit/
∑

it nit. Next, the
relative risks Rit are explained through different types of
random effects. For instance, a specification with random
effects additive in space and time is log Rit = µit + ui

+ vi + δt, where µit is a component for the regional co-
variates (e.g., µit = x′

itβ for regression coefficients β), ui

are regional random effects (typically, the ui are assumed
i.i.d. N(0, σ2

u)), vi are spatial random effects, and δt are
temporal effects (say, with an autoregressive prior).

The most commonly used prior model for the vi

is based on some form of a conditional autoregressive
(CAR) structure (see, e.g., Clayton and Kaldor, 1987;
Cressie and Chan, 1989; Besag et al., 1991; Bernardinelli
et al., 1995; Besag et al., 1995; Waller et al., 1997; Pas-
cutto et al., 2000). For instance, the widely-used spec-
ification suggested by Besag et al. (1991) is character-
ized through local dependence structure by considering
for each region i a set, ϑi, of neighbors, which, for exam-
ple, can be defined as all regions contiguous to region i.



Then the (improper) joint prior density for the vi is built
from the prior full conditionals vi | {vj : j 6= i}. These
are normal distributions with mean m−1

i

∑

j∈ϑi
vj and

variance λm−1
i , where λ is a precision hyperparameter

and mi is the number of neighbors of region i. Alterna-
tively, a multivariate normal distribution for the vi, with
correlations driven by the distances between region cen-
troids, has been used (see, e.g., Wakefield and Morris,
1999; Banerjee et al., 2003).

A different hierarchical formulation, discussed in
Böhning et al. (2000), involves replacing the normal
mixing distribution with a discrete distribution taking
values ϕj , j = 1, ..., k (that represent the relative risks
for k underlying time-space clusters) with correspond-
ing probabilities pj , j = 1, ..., k. Hence, marginalizing
over the random effects, the distribution for each region
i and time period t emerges as a discrete Poisson mix-
ture,

∑k

j=1 pjPo(yit | Eitϕj). See, also, Schlattmann
and Böhning (1993) and Militino et al. (2001) for use
of such discrete Poisson mixtures in the simpler setting
without a temporal component. In this setting, related is
the Bayesian work of Knorr-Held and Rasser (2000) and
Giudici et al. (2000) based on spatial partition structures,
which divide the study region into a number of clusters
(i.e., sets of contiguous regions) with constant relative
risk, assuming, in the prior model, random number, size,
and location for the clusters. Further related Bayesian
work is that of Gangnon and Clayton (2000), Green and
Richardson (2002), and Lawson and Clark (2002).

When spatio-temporal interaction is sought, the ad-
ditive form vi + δt is replaced by vit. The latter has
been modeled using independent CAR models over time,
dynamically with independent CAR innovations, or as a
CAR in space and time (see Banerjee et al., 2004).

Rather than modeling the spatial dependence through
the finite set of spatial random effects, one for each region,
an alternative prior specification arises by modeling the
underlying continuous-space relative risk (or rate) surface
and obtaining the induced prior models for the relative
risks (or rates) through aggregation of the continuous sur-
face. This approach is less commonly used in modeling
for disease incidence data (among the exceptions are Best
et al., 2000, and Kelsall and Wakefield, 2002). However,
it, arguably, offers a more coherent modeling framework,
since by modeling the underlying continuous surfaces, it
avoids the dependence of the prior model on the data col-
lection procedure, i.e., the number, shapes, and sizes of
the regions chosen in the particular study. It replaces the
specification of a proximity matrix, which spatially con-
nects the subregions, with a covariance function, which
directly models dependence between arbitrary pairs of lo-
cations (and induces a covariance between arbitrary sub-
regions using block averaging).

In this paper, we follow this latter approach, our main
objective being to develop a flexible nonparametric model
for the needed risk (or rate) surfaces. In particular, de-
note by D the union of all regions in the study area and let

zt,D = {zt(s) : s ∈ D} be the latent disease rate surface
for time period t, on the logarithmic scale. Hence, zt(s) =
log pt(s), where pt(s) is the probability of disease at time
t and spatial location s. (With rare diseases, the log-
arithmic transformation is practically equivalent to the
logit transformation). We propose spatial and spatio-
temporal nonparametric prior models for the vectors of
log-rates zt = (z1t, ..., znt), which we define by block av-
eraging the surfaces zt,D over the regions Bi, i.e., zit =
|Bi|

−1
∫

Bi
zt(s)ds, where |Bi| is the area for region Bi.

We develop the spatial prior model by block averaging
a Gaussian process (GP) to the areal units determined
by the regions Bi, and then centering a Dirichlet process
(DP) prior (Ferguson, 1973; Antoniak, 1974) around the
resulting n-variate normal distribution. We show that
the model is equivalent to the prior model that is built
by block averaging a spatial DP (Gelfand et al., 2005).
To model the zt, we can specify them to be indepen-
dent replications under the DP or we can add a further
dynamic level to the model with zt evolving from zt−1

through independent DP innovations. We use the former
in our simulation example in Section 4.1; we use the latter
with our real data example in Section 4.2.

With regard to the existing literature, our approach is,
in spirit, similar to that of Kelsall and Wakefield (2002)
where an isotropic GP was used for the log-relative risk
surface. However, as exemplified in Section 2.2, we relax
both the isotropy and the Gaussianity assumptions. In
addition, we develop modeling for disease incidence data
collected over space and time. Moreover, as we show in
Section 2.1, our nonparametric model has a mixture rep-
resentation, which is more general than that of Böhning
et al. (2000) as it incorporates spatial dependence and it
allows, through the structure of the DP prior, a random
number of mixture components.

The plan of the paper is as follows. Section 2 devel-
ops the methodology for the spatial and spatio-temporal
modeling approaches. Section 3 discusses methods for
posterior inference. Section 4 includes illustrations mo-
tivated by a previously analyzed dataset involving lung
cancers for the 88 counties in Ohio over a period of 21
years. In fact, in Section 4.1 we develop a simulated
dataset for these counties which is analyzed using both
our modeling specification as well as a GP model, reveal-
ing the benefit of our approach. We also reanalyze the
original data in Section 4.2. Finally, Section 5 provides a
summary and discussion of possible extensions.

2 Bayesian nonparametric models for disease

incidence data

The spatial prior model is discussed in Section 2.1. Sec-
tion 2.2 briefly reviews spatial DPs and demonstrates how
their use provides foundation for the modeling approach
presented in Section 2.1. Section 2.3 develops a nonpara-
metric spatio-temporal modeling framework.



2.1 The spatial prior probability model

Here, we treat the log-rate surfaces zt,D as independent
realizations (over time) from a stochastic process over D.
We build the model by viewing the counts yit and the log-
rates zit as aggregated versions of underlying (continuous-
space) stochastic processes. The finite-dimensional distri-
butional specifications for the yit and the zit are induced
through block averaging of the corresponding spatial sur-
faces.

For the first stage of our hierarchical model, we use the
standard Poisson specification working with the nitpit

form for the mean. We note that this parametrization
seems preferable to the EitRit form, since it avoids the
need to develop the Eit through standardization; the
overall log-rate emerges as the intercept in our model.
Thus, the yit are assumed conditionally independent,
given zit = log pit, from Po(yit | nit exp(zit)).

This specification can be derived through aggregation
of an underlying Poisson process under assumptions and
approximations as follow. For the time period t, assume
that the disease incidence cases, over region D, are dis-
tributed according to a non-homogeneous Poisson process
with intensity function nt(s)pt(s), where {nt(s) : s ∈ D}
is the population density surface and pt(s) is the disease
rate at time t and location s. If we assume a uniform pop-
ulation density over each region at each time period (this
assumption is, implicitly, present in standard modeling
approaches for disease mapping), we can write nt(s) =
nit|Bi|

−1 for s ∈ Bi. Hence, aggregating the Poisson
process over the regions Bi, we obtain, conditionally on
zt,D, that the yit are independent, and each yit follows a
Poisson distribution with mean

∫

Bi
nt(s)pt(s)ds = nitp

∗
it,

where p∗it = |Bi|
−1

∫

Bi
pt(s)ds. If we approximate the dis-

tribution of the p∗it with the distribution of the exp(zit),

we can write yit | zit
ind.
∼ Po(yit | nit exp(zit)) for the

first stage distribution. We note that the stochastic inte-
gral for p∗it is not accessible analytically. Moreover, using
Monte Carlo integration to approximate the p∗

it is com-
putationally infeasible (Short et al., 2005). Also, Kelsall
and Wakefield (2002) use a similar approximation work-
ing with relative risk surfaces. Brix and Diggle (2001)
do so as well, using a stochastic differential equation to
model pt(s).

To build the prior model for the log-rates zt, we begin
with the familiar form, zt(s) = µt(s) + θt(s), for the
log-rate surfaces zt,D. Here, µt(s) is the mean structure
and θt,D = {θt(s) : s ∈ D} are spatial random effects
surfaces. The surfaces {µt(s) : s ∈ D} can be elaborated
through covariate surfaces over D. In the absence of such
covariate information, we might set µt(s) = µ, for all t,
and use a normal prior for µ. Alternatively, we could set
µt(s) = µt, where the µt are i.i.d. N(0, σ2

µ) with random
hyperparameter σ2

µ. In what follows for the spatial prior
model, we illustrate with the common µ specification.

To develop the model for the spatial random effects,
first, let the θt,D, t = 1, ..., T , given σ2 and φ, be inde-
pendent realizations from a mean-zero isotropic GP with

variance σ2 and correlation function ρ (||s − s′||; φ) (say,
ρ (||s − s′||; φ) = exp(−φ||s − s′||) as in the examples in
Section 4). Hence by aggregating over the regions Bi,
we obtain zit = µ + θit, where θit = |Bi|

−1
∫

Bi
θt(s)ds is

the block average of the surface θt,D over region Bi. The
induced distribution for θt = (θ1t, ..., θnt) is a mean-zero
n-variate normal with covariance matrix σ2Rn(φ), where
the (i, j)-th element of Rn(φ) is given by

|Bi|
−1|Bj |

−1

∫

Bi

∫

Bj

ρ (||s − s′||; φ) dsds′.

Next, consider a DP prior for the spatial random effects
θt with precision parameter α > 0 and centering (base)
distribution Nn(· | 0, σ2Rn(φ)) (we will write Np(· | λ, Σ)
for the p-variate normal density/distribution with mean
vector λ and covariance matrix Σ). We denote this DP
prior by DP(α, Nn(· | 0, σ2Rn(φ))). The choice of the
DP in this context yields data-driven deviations from the
normality assumption for the spatial random effects; at
the same time, it allows relatively simple implementation
of simulation-based model fitting.

Note that the above structure implies for the vec-
tor of counts yt = (y1t, ..., ynt) a nonparametric Pois-
son mixture model given by

∫
∏n

i=1 Po(yit | nit exp(µ +
θit))dG(θt), where the mixing distribution G ∼
DP(α, Nn(· | 0, σ2Rn(φ))). Under this mixture specifi-
cation, the distribution for the vectors of log-rates, zt =
µ1n + θt, is discrete (a property induced by the discrete-
ness of DP realizations), a feature of the model that could
be criticized. Moreover, although posterior simulation
is feasible, it requires more complex MCMC algorithms
(e.g., the methods suggested by MacEachern and Müller,
1998, and Neal, 2000) than the standard Gibbs sampler
for DP-based hierarchical models (e.g., West et al., 1994;
Bush and MacEachern, 1996). Thus, to overcome both
concerns above, we replace the DP prior for the zt with
a DP mixture prior,

zt | µ, τ2, G
ind.
∼

∫

Nn(zt | µ1n + θt, τ
2In)dG(θt),

where, again, G ∼ DP(α, Nn(· | 0, σ2Rn(φ))). That is,
we now write zit = µ + θit + uit, with uit i.i.d. N(0, τ2).
Introduction of a heterogeneity effect in addition to the
spatial effect is widely employed in the disease mapping
literature dating to Besag et al. (1991) and Bernardinelli
et al. (1995), though with concerns about balancing pri-
ors for the effects (see, e.g., Banerjee et al., 2004, and
references therein). Here, in responding to the above con-
cerns, we serendipitously achieve this benefit.

Hence, the mixture model for the yt now assumes the
form

f(yt | µ, τ2, G) =

∫ n
∏

i=1

p(yit | µ, τ2, θit)dG(θt),

where p(yit | µ, τ2, θit) =
∫

Po(yit | nit exp(zit))N(zit |
µ + θit, τ

2)dzit is a Poisson-lognormal mixture. Equiv-



alently, the model can be written in the following semi-
parametric hierarchical form

yit | zit
ind.
∼ Po(yit|nit exp(zit))

zit | µ, θit, τ
2 ind.

∼ N(zit | µ + θit, τ
2)

θt | G
i.i.d.
∼ G

G | σ2, φ ∼ DP(α, Nn(· | 0, σ2Rn(φ))).

(1)

The model is completed with independent priors p(µ),
p(τ2) and p(σ2), p(φ) for µ, τ2, and for the hyperpa-
rameters σ2, φ of the DP prior. In particular, we use a
normal prior for µ, inverse gamma priors for τ 2 and σ2,
and a discrete uniform prior for φ. Although not imple-
mented for the examples of Section 4, a prior for α can be
added, without increasing the complexity of the posterior
simulation method (Escobar and West, 1995).

In practice, we work with a marginalized version of
model (1),

p(µ)p(τ2)p(σ2)p(φ)p(θ1, ...,θT | σ2, φ)
n
∏

i=1

T
∏

t=1
Po(yit|nit exp(zit))N(zit | µ + θit, τ

2),
(2)

which is obtained by integrating the random mixing dis-
tribution G over its DP prior (Blackwell and MacQueen,
1973). The resulting joint prior distribution for the θt,
p(θ1, ...,θT | σ2, φ), is given by

T
∏

t=2

{

α
α+t−1Nn(θt | 0, σ2Rn(φ)) + 1

α+t−1

∑t−1
j=1 δθj

(θt)
}

Nn(θ1 | 0, σ2Rn(φ)),

(3)

where δa denotes a point mass at a. Hence, the θt are
generated according to a Pólya urn scheme; θ1 arises from
the base distribution, and then for each t = 2, ..., T , θt

is either set equal to θj , j = 1, ..., t − 1, with probability
(α + t− 1)−1 or is drawn from the base distribution with
the remaining probability.

Note that we have defined the prior model for the spa-
tial random effects θt by starting with a GP prior for
the surfaces θt,D, block averaging the associated GP re-
alizations over the regions to obtain the Nn(0, σ2Rn(φ))
distribution, and, finally, centering a DP prior for the θt

around this n-variate normal distribution. This approach
might suggest that the DP prior is dependent, in an unde-
sirable fashion, on the specific choice of the regions (e.g.,
their number and size). The next section addresses this
potential criticism by connecting the model in (1) with
the spatial DP (SDP) from Gelfand et al. (2005).

2.2 Formulation of the model through spatial

Dirichlet processes

We first briefly review SDPs, which provide nonparamet-
ric prior models for random fields WD = {W (s) : s ∈ D}
over a region D ⊆ Rd, and thus yield suitable nonpara-
metric priors for the analysis of spatial or spatio-temporal
geostatistical data. Central to their development is the

constructive definition of the DP (Sethuraman, 1994).
According to this definition, a random distribution aris-
ing from DP(α, G0), where G0 denotes the base distribu-
tion, is almost surely discrete and admits the representa-
tion

∑∞
`=1 ω`δϕ`

, where ω1 = z1, ω` = z`

∏`−1
r=1(1 − zr),

` = 2,3,..., with {zr, r = 1,2,...} i.i.d. from Beta(1, α),
and, independently, {ϕ`, ` = 1,2,...} i.i.d. from G0. Un-
der the standard setting for DPs, ϕ` is either scalar or
vector valued.

To model WD, ϕ` is extended to a realization of a
random field, ϕ`,D = {ϕ`(s) : s ∈ D}, and thus G0 is
extended to a spatial stochastic process G0D over D. A
stationary GP is used for G0D . The resulting SDP pro-
vides a (random) distribution for WD, with realizations
GD given by

∑∞
`=1 ω`δϕ`,D

. The interpretation is that for
any collection of spatial locations in D, say, (s1, ..., sM ),
GD induces a random probability measure G(M) on the
space of distribution functions for (W (s1), ..., W (sM )). In

fact, G(M) ∼ DP(α, G
(M)
0 ), where G

(M)
0 is the M -variate

normal distribution for (W (s1), ..., W (sM )) induced by
G0D . It can be shown that the random process GD yields
non-Gaussian finite dimensional distributions, has non-
constant variance, and is nonstationary, even though it is
centered around a stationary GP G0D.

SDPs provide an illustration of dependent Dirich-
let processes (MacEachern, 1999) in that they yield a
stochastic process of random distributions, one at each
location in D. These distributions are dependent but
such that, at each index value, the distribution is a uni-
variate DP. See De Iorio et al. (2004) for an illustration in
the ANOVA setting; Teh et al. (2006) for related work on
hierarchical DPs; and Griffin and Steel (2006) and Duan,
Guindani and Gelfand (2005) for recent extensions and
alternative constructions.

In practice, modeling with SDPs requires some form
of replication from the spatial process (although miss-
ingness across replicates can be handled). Assuming T
replicates, the data can be collected in vectors yt =
(yt(s1), ..., yt(sn))′, t = 1,...,T , where (s1, ..., sn) are the
locations where the observations are obtained. Working
with continuous real-valued measurements, the SDP is
used as a prior for the spatial random effects surfaces,
say, ζt,D = {ζt(s) : s ∈ D}, in the standard hierarchi-
cal spatial modeling framework, Yt(s) = µt(s) + ζt(s) +
εt(s). Here, εt(s) are i.i.d. N(0, τ2), and µt(s) is the mean
structure. For instance, with Xt a p×n matrix of covari-
ate values (whose (i, j)-th element is the value of the i-th
covariate at the j-th location for the t-th replicate) and β
a p×1 vector of regression coefficients, we could write X ′

tβ

for the mean structure associated with yt. Hence, the yt,
given β, τ2, and G(n), are independent from the DP mix-
ture model

∫

Nn

(

yt | X ′
tβ + ζt, τ

2In

)

dG(n)(ζt), where

ζt = (ζt(s1), ..., ζt(sn)), G(n) ∼ DP(α, G
(n)
0 ) (induced by

the SDP prior for the ζt,D), with G
(n)
0 an n-variate nor-

mal (induced at (s1, ..., sn) by the base GP of the SDP
prior). Details for prior specification, simulation-based
model fitting, and spatial prediction can be found in



Gelfand et al. (2005).
The hierarchical nature of the modeling framework en-

ables extensions by replacing the first stage Gaussian dis-
tribution (the kernel of the DP mixture) with any other
distribution. For instance, the yt(si) could arise from an
exponential-dispersion family. Hence, we can formulate
nonparametric spatial generalized linear models, extend-
ing the work in Diggle et al. (1998) where a stationary
GP was used for the spatial random effects (see also, e.g.,
Heagerty and Lele, 1998, Diggle et al., 2002, and Chris-
tensen and Waagepetersen, 2002).

In this spirit, and returning to the setting for disease
incidence data, the SDP can be proposed as the prior
for the spatial random effects surfaces θt,D to replace the
isotropic GP prior that we used to build the DP model
in Section 2.1. Therefore, now the model is developed
by assuming that the θt,D, t = 1, ..., T , given GD , are
independent from GD , where GD , given σ2 and φ, follows
a SDP prior with precision parameter α and base process
G0D = GP(0, σ2ρ (||s − s′||; φ)) (i.e., the same isotropic
GP used in Section 2.1).

Next, we block average the θt,D over the regions
Bi with respect to their distribution that results by
marginalizing GD over its SDP prior. Recall that for
any set of spatial locations sr, r = 1, ..., M , over D, the
random distribution G(M) induced by GD follows a DP

with base distribution G
(M)
0 induced by G0D. Because we

can choose M arbitrarily large and the set of locations sr

to be arbitrarily dense over D, using the Pólya urn char-
acterization for the DP, we obtain that, marginally, the
θt,D arise according to the following Pólya urn scheme.
First, θ1,D is a realization from G0D, and then, for each
t = 2, ..., T , θt,D is identical to θj,D, j = 1, ..., t− 1, with
probability (α+ t−1)−1 or is a new realization from G0D

with probability α(α + t − 1)−1.
Hence, if we block average θ1,D, we obtain the

Nn(0, σ2Rn(φ)) distribution for θ1. Then, working with
the conditional specification for θ2,D given θ1,D, if we
block average θ2,D, θ2 arises from Nn(0, σ2Rn(φ)) with
probability α(α + 1)−1 or θ2 = θ1 with probability
(α + 1)−1. Analogously, for any t = 2, ..., T , the induced
conditional prior p(θt | θ1, ...,θt−1, σ

2, φ) is a mixed dis-
tribution with point masses at θj , j = 1, ..., t−1, and con-
tinuous piece given by the Nn(0, σ2Rn(φ)) distribution;
the corresponding weights are (α+t−1)−1, j = 1, ..., t−1,
and α(α + t − 1)−1. Thus, the prior distribution for the
θt in (3) can be obtained by starting with a SDP prior
for the θt,D (centered around the same isotropic GP prior
used in Section 2.1 for the θt,D), and then block averag-
ing the (marginal) realizations from the SDP prior over
the regions.

As in Section 2.1, we extend zt = µ1n + θt to zt = µ1n

+ θt + ut, where the ut are independent Nn(0, τ2In).
Hence, model (2) is equivalent to the marginal version of
the model above, i.e., with GD marginalized over its SDP
prior.

The argument above, based on SDPs, provides formal
justification for model (1) – (3). The SDP is a nonpara-

metric prior for the continuous-space stochastic process
of spatial random effects; regardless of the number and
geometry of regions chosen to partition D, it induces the
appropriate corresponding version of the model in (2).

2.3 A spatio-temporal modeling framework

To extend the spatial model of Section 2.1 to a spatio-
temporal setting, we cast our modeling in the form of a
dynamic spatial process model (see Banerjee et al., 2004,
for parametric hierarchical modeling in this context, and
for related references). We now view the log-rate process
zt,D = {zt(s) : s ∈ D} as a temporally evolving spatial
process.

To develop a dynamic formulation, we begin, as in Sec-
tion 2.1, by writing zt(s) = µt + θt(s) and add temporal
structure to the model through transition equations for
the θt(s), say,

θt(s) = νθt−1(s) + ηt(s), (4)

where, in general, |ν| < 1, and the innovations
ηt,D = {ηt(s) : s ∈ D} are independent realizations
from a spatial stochastic process. We can now de-
fine the nonparametric prior for the block averages
ηit = |Bi|

−1
∫

Bi
ηt(s)ds of the ηt,D surfaces following

the approach of Section 2.1 or, equivalently, of Section
2.2. Proceeding with the latter, we assume that the
ηt,D, given GD, are independent from GD, and assign
a SDP prior to GD with parameters α and G0D =
GP(0, σ2ρ (||s − s′||; φ)). Marginalizing GD over its prior,
the induced prior, p(η1, ...,ηT | σ2, φ), for the ηt =
(η1t, ..., ηnt) is given by (3) (with ηt replacing θt). Block
averaging the surfaces in the transition equations (4), we
obtain θt = νθt−1 + ηt, where θt−1 = (θ1,t−1, ..., θn,t−1).
Adding, as before, the i.i.d. N(0, τ2) terms to the zit, we
obtain the following general form for the spatio-temporal
hierarchical model

yit | zit
ind.
∼ Po(yit|nit exp(zit))

zit | µt, θit, τ
2 ind.

∼ N(zit | µt + θit, τ
2)

θt = νθt−1 + ηt

η1, ...,ηT | σ2, φ ∼ p(η1, ...,ηT | σ2, φ).

(5)

The specification for the µt will depend on the particular
application. For instance, the µt could be i.i.d., say, from
a N(0, σ2

µ) distribution (with random σ2
µ), or they could

be explained through a parametric function h(t;β), say,
a polynomial trend, h(t;β) = β0 +

∑m

j=1 βjt
j , or the

autoregressive structure could be extended to include the
µt, say, µt = νµµt−1 + γt, with |νµ| < 1, and γt i.i.d.
N(0, σ2

µ). For the Ohio state lung cancer data (discussed
in Section 4.2), we work with a linear trend function µt =
β0 + β1t. We set θ1 = η1, i.e., θ0 = 0 (alternatively, an
informative prior for θ0 can be used). We choose priors
for τ2, σ2 and φ as in model (2); we take independent
normal priors for the components of β; and a discrete
uniform prior for ν.



3 Posterior inference and prediction

We discuss here the types of posterior inference that can
be obtained based on the models of Section 2. In particu-
lar, Section 3.1 comments on the (smoothed) inference for
the disease rates while, under the dynamic model, Sec-
tion 3.2 discusses forecasting of disease rates using the
extension of Section 2.3.

3.1 Spatial model

As is evident from expression (3), the DP prior induces a
clustering in the θt (in their prior and hence also in the
posterior for model (2)). Let T ∗ be the number of distinct
θt in (θ1, ...,θT ) and denote by θ∗ = {θ∗j : j = 1, ..., T ∗}
the vector of distinct values. Defining the vector of con-
figuration indicators, w = (w1, ..., wT ), such that wt = j
if and only if θt = θ∗j , (θ∗,w, T ∗) yields an equivalent rep-
resentation for (θ1, ...,θT ). Denote by ψ the vector that
includes (θ∗,w, T ∗) and all other parameters of model
(2). Draws from the posterior p(ψ | data), where data =
{(yit, nit) : i = 1, ..., n, t = 1, ..., T}, can be obtained us-
ing the Gibbs sampler discussed briefly below.

The full conditional for each zit can be expressed
as p(zit | ..., data) ∝ exp(−nit exp(zit))N(zit | µ +
θit + τ2yit, τ

2). We can sample from this full condi-
tional introducing an auxiliary variable uit, with pos-
itive values, such that p(zit, uit | ..., data) ∝ N(zit |
µ + θit + τ2yit, τ

2) 1(0<uit<exp(−nit exp(zit))). Now the
Gibbs sampler is extended to draw from p(uit | zit, data)
and p(zit | uit, ..., data). The former is a uniform dis-
tribution over (0, exp(−nit exp(zit))). The latter is a
N(µ + θit + τ2yit, τ

2) distribution truncated over the in-
terval (−∞, log(−n−1

it log uit)). Alternatively, adaptive
rejection sampling can be used to draw from the full con-
ditional for zit noting that its density is log-concave.

Having updated all the zit, the mixing parameters θt,
t = 1, ..., T , and hyperparameters µ, τ 2, σ2, φ, can be
updated as in the spatial DP mixture model (reviewed
briefly in Section 2.2), with zt playing the role of the data
vector yt. (We refer to the Appendix in Gelfand et al.,
2005, for details.) All these updates require computations
involving the matrix Rn(φ). To approximate the entries
of this matrix, we use Monte Carlo integrations based
on sets of locations distributed independently and uni-
formly over each region Bi, i = 1, ..., n. Note that, with
the discrete uniform prior for φ, these calculations need
only be performed once at the beginning of the MCMC
algorithm.

The multivariate density estimate for the vector of log-
rates associated with the subregions Bi is given by the
posterior predictive density for a new z0 = (z10, ..., zn0),

p(z0 | data) =
∫ ∫

p(z0 | θ0, µ, τ2)p(θ0 | θ∗,w, T ∗, σ2, φ)
p(ψ | data).

(6)

Here, p(z0 | θ0, µ, τ2) is a Nn(µ1n + θ0, τ
2In) density,

θ0 = (θ10, ..., θn0) is the vector of spatial random effects

corresponding to z0, and

p(θ0 | θ∗,w, T ∗, σ2, φ) = α
α+T

Nn(θ0 | 0, σ2Rn(φ))+

1
α+T

T∗

∑

j=1

Tjδθ∗
j
(θ0),

(7)

where Tj is the size of the j-th cluster θ∗j . Therefore,
p(z0 | data) arises by averaging the mixture

α
α+T

Nn(z0 | µ1n, τ2In + σ2Rn(φ))+

1
α+T

T∗

∑

j=1

TjNn(z0 | µ1n + θ∗j , τ
2In)

with respect to the posterior of ψ. Hence, the model
has the capacity to capture, through the mixing in the
θ∗j , non-standard features in the distribution of log-rates
over the regions.

3.2 Spatio-temporal model

Turning to the spatio-temporal model of Section 2.3, let
µt = β0 + β1t (as in the example of Section 4.2). De-
noting by ψ = (β0, β1, τ

2, ν, σ2, φ, {(zt,ηt) : t = 1, ..., T})
the parameter vector corresponding to model (5), the pos-
terior p(ψ|data) is proportional to

p(β0)p(β1)p(ν)p(τ2)p(σ2)p(φ)p(η1, ...,ηT | σ2, φ)
T
∏

t=1
Nn(zt|λt, τ

2In)
n
∏

i=1

T
∏

t=1
Po(yit|nit exp(zit)),

(8)

where λt = (β0+β1t)1n +
∑t

`=1 νt−`η`. The Gibbs sam-
pler described below can be used to obtain draws from
p(ψ|data).

The form of the full conditionals for the zit is similar to
the one for the spatial model, and, thus, either auxiliary
variables or adaptive rejection sampling can be used to
update these parameters.

For each t = 1, ..., T , the full conditional for ηt is pro-
portional to

p(ηt|{ηj : j 6= t}, σ2, φ)

T
∏

`=t

Nn(z`|d` + ν`−tηt, τ
2In)

where d` = (β0 + β1`)1n +
∑`

m=1,m6=t ν`−mηm,
` = t, ..., T . The product term above is pro-
portional to a Nn(ηt|µt, Σt) density, with µt =

(
∑T

`=t ν2(`−t))−1
∑T

`=t ν`−t(z` − d`) and Σt =

τ2(
∑T

`=t ν2(`−t))−1In. Let T ∗− be the number of
distinct ηj in {ηj : j 6= t}, η∗−

j , j = 1, ..., T ∗−, be

the distinct values, and T−
j be the size of the clus-

ter corresponding to η∗−
j . The prior full conditional

p(ηt|{ηj : j 6= t}, σ2, φ) is a mixed distribution with

point masses T−
j (α+T −1)−1 at the η∗−

j and continuous

mass α(α+T −1)−1 on the Nn(0, σ2Rn(φ)) distribution.
Hence, p(ηt|..., data) is also a mixed distribution with
point masses, proportional to T−

j qj , at the η∗−
j and



continuous mass, proportional to αq0, on an n-variate
normal distribution with covariance matrix Ht =
(Σ−1

t + σ−2R−1
n (φ))−1 and mean vector HtΣ

−1
t µt. Here,

qj is the value of the Nn(µt, Σt) density at η∗−
j , and q0 =

∫

Nn(u|0, σ2Rn(φ))Nn(u|µt, Σt)du, an integral that is
available analytically.

Updating σ2 and φ proceeds as in the spatial model.
The full conditional for τ2 is an inverse gamma distribu-
tion, and β0 and β1 have normal full conditionals. Finally,
working with a discrete uniform prior for ν, we sample
directly from its discretized full conditional.

Having sampled from p(ψ|data), we can obtain the pos-
terior for zt, the vector of log-rates corresponding to spe-
cific time periods t. Moreover, given the temporal struc-
ture of model (5), of interest is temporal forecasting for
disease rates at future time points. In particular, the
posterior forecast distribution for the vector of log-rates
zT+1 at time T + 1,

p(zT+1|data) =
∫ ∫

p(zT+1|η1, ...,ηT ,ηT+1, β0, β1, ν, τ2)
p(ηT+1|η1, ...,ηT , σ2, φ)p(ψ|data),

where p(zT+1|η1, ...,ηT ,ηT+1, β0, β1, ν, τ2) is an n-
variate normal with mean vector (β0 + β1(T + 1))1n

+
∑T+1

`=1 νT+1−`η` and covariance matrix τ 2In, and
p(ηT+1|η1, ...,ηT , σ2, φ) can be expressed as in (7) by
replacing θ0 with ηT+1 and using the, analogous to
(θ∗,w, T ∗), clustering structure in the (η1, ...,ηT ).

4 Data illustrations

Our data consists of the number of annual lung cancer
deaths in each of the 88 counties of Ohio from 1968 to
1988. The population of each county is also recorded.
Figure 1 depicts the geographical locations and neighbor-
hood structure of the 88 counties in Ohio. The county
location, area, and polygons are obtained from the “map”
package in R.

Regarding prior specification, for both models (1) and
(5) we work with an exponential correlation function,
ρ (||s − s′||; φ) = exp (−φ||s − s′||). For both data ex-
amples, the discrete uniform prior for φ takes values in
[0.001, 1], corresponding to the range from 3 to 3000
miles; σ−2 and τ−2 have gamma(0.1, 0.1) priors (with
mean 1); and α is set equal to 1 (results were practically
identical under α = 5 and α = 10). Finally, the nor-
mal priors for µ (Section 4.1) and for β0 and β1 (Section
4.2) have mean 0 and large variance (there was very little
sensitivity to choices between 102 and 108 for the prior
variance).

We observed very good mixing and fast convergence in
the implementation of the Gibbs samplers discussed in
the Appendix. In both of our simulation and Ohio lung
cancer example below, we obtain 15,000 samples from
the Gibbs sampler, and discard the first 3,000 samples
as burn-in. We use 3,000 subsamples from the remaining
12,000 samples, with thinning equal to 4, for our posterior
inference.

4.1 Simulation example

We illustrate the fitting of our spatial model in (1) –
(3) with a simulated data set. We use exactly the same
geographical structure with the 88 Ohio counties, but
generate the areal incidence rate from a two-component
mixture of multivariate normal distributions whose cor-
relation matrix is calculated by block averaging isotropic
GPs. The GPs cover the entire area of Ohio. The in-
duced correlation matrix of the 88 blocks is computed by
Monte Carlo integration.

In particular, we proceed as follows. For i = 1, ..., 88
and t = 1, ..., T (with T = 40), we first generate zit

independent N(µ + θit, τ
2) and, then, yit independent

Po(ni exp(zit)), where ni is the population of county
i in 1988. The distribution of the spatial random ef-
fects θt = (θ1t, . . . , θnt) arises through a mixture of two
block-averaged GPs. In particular, for ` = 1, 2, let

θ(`) =
(

θ
(`)
1 , . . . , θ

(`)
n

)

∼ Nn((−1)`µθ1n, σ2
` R), with the

(i, j)-th element of the correlation matrix R given by
|Bi|

−1|Bj |
−1

∫

Bi

∫

Bj
exp (−φ||s − s′||) dsds′. Then, each

θt is independently sampled from 0.5θ(1) + 0.5θ(2). The
values of the parameters are µ = −6.5, µθ = 0.5, σ2

1 =
σ2

2 = 1/32, τ2 = 1/256, and φ = 0.6. Under these
choices, marginally, each θit has a bimodal distribution
of the form 0.5N

(

−µθ, σ
2
1

)

+ 0.5N
(

µθ, σ
2
2

)

.

We fit model (1) to this data set. The Bayesian
goodness of fit is illustrated with univariate and bivari-
ate posterior predictive densities for the log-rates, which
are estimated using (6). In Figure 2 we compare the
true densities of the model from which we simulated
the data with the SDP model posterior predictive den-
sities for four selected counties. They are “Delaware”
and “Franklin” in central Ohio, “Hamilton” in southwest,
and “Stark” in northeast. “Franklin” includes Columbus
and “Hamilton” includes Cincinnati so these are highly
populated counties. “Delaware” is more suburban and
“Stark” is very rural. The “+” mark the values of the
40 observed log-rates log(yit/ni) in each of these four
counties. In addition, Figure 2 includes posterior pre-
dictive densities from a parametric model based on a
GP(0, σ2 exp(−φ||s− s′||)) for the spatial random effects
surfaces. This specification results as a limiting version of
model (1) (for α → ∞) where the θt, given σ2 and φ, are
i.i.d. Nn(0, σ2Rn(φ)). The SDP model clearly outper-
forms the GP model with regard to posterior predictive
inference.

Next, we pair the four counties above to show in Figure
3 the predictive joint densities, based on the SDP model,
and, again, to compare with the true joint densities (us-
ing samples in both cases). The first pair “Delaware”
and “Franklin” are next to each other. The second pair
“Hamilton” and “Stark” are distant. We note that, with
only 40 replications, our model captures quite well both
marginal and joint densities for the log-rates.
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Figure 1: Map of the 88 counties in the state of Ohio.
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Figure 2: Simulation example. Posterior predictive densities for the log-rates, corresponding to four counties, based
on the SDP model (thick curves) and the GP model (dashed curves). The true densities are denoted by the thin
curves, and the observed log-rates by “+”.
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Figure 3: Simulation example. Posterior predictive densities (left column) and true bivariate densities (middle
column) for log-rates associated with two pairs of counties. The right column includes plots of the corresponding
observed log-rates.

4.2 Ohio lung cancer data

The exploratory study of the Ohio lung cancer mortal-
ity data reveals a spatio-temporal varying structure in
the incidence rates. We display the observed log-rates
log(yit/nit) for the aforementioned four counties in Fig-
ure 4. This plot shows clear evidence of an increasing,
roughly linear, trend in the log-rate. Therefore we ap-
ply the dynamic SDP model (5) with a linear trend over
time, setting µt = β0 + β1t. Moreover, because negative
values for ν do not appear plausible, we use a discrete
uniform prior on [0, 1) for ν.

The time t is normalized to be from year t = 1 to 21. In
order to validate our model, we leave year 21 (year 1988)
out in our model fitting and predict the log-rates for all 88
counties in that year, using the posterior forecast distri-
bution developed in Section 3.2. Posterior point (poste-
rior medians) and 95% equal-tail interval estimates for β0,
β1 and for ν are given by −8.208 (−8.319,−8.100), 0.0367
(0.0292, 0.0448) and 0.7 (0.6, 0.8), respectively. There
was also prior to posterior learning for the other hyperpa-
rameters, in particular, point and interval estimates were
0.0586 (0.0552, 0.0656) for φ; 0.104 (0.0855, 0.113) for τ 2;
and 0.133 (0.101, 0.152) for σ2.

In Figure 5 we display the marginal posterior forecast
density of the log-rate for the earlier four counties in the
hold-out year 1988. We also calculated 95% marginal
predictive intervals for all 88 counties in 1988 and found
that 83 out of 88 observed log-rates (94.3 %) are within
their 95% interval; we do not seem to be overfitting or

underfitting. In Figure 6 we provide the contour plot of
the predictive log-rate surface for 1988, using medians
from the posterior forecast distribution for each county.

5 Discussion

We have argued that, with regard to disease mapping,
it may be advantageous to conceptualize the model as
a spatial point process rather than through more cus-
tomary areal unit spatial dependence specifications. Ag-
gregation of the point process to suitable spatial units
enables us to use it for the observable data. Specifying a
non-homogeneous point process requires a model for the
latent risk surface. Here, we have argued that there are
advantages to viewing this surface as a process realization
rather than through parametric modeling. But then, the
flexibility of a nonparametric process model as opposed
to the limitations of a stationary GP model becomes at-
tractive. The choice of a spatial DP finally yields our
proposed approach. We applied the modeling to both
real and simulated data. With the simulated data we
clearly demonstrated the advantage of such flexibility.

Extensions in several directions may be envisioned.
Three examples are the following. In treating the specifi-
cation for the µt we could provide a nonparametric model
as well through i.i.d. realizations obtained under DP mix-
ing or the associated dynamic version with independent
innovations under such a model. Next, we often study
concurrent disease maps to try to understand the pat-
tern of joint incidence of diseases. In our setting, for a
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Figure 4: Observed log-rates for four counties from 1968 to 1988 for the Ohio data example.
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Figure 5: Posterior forecast densities for the log-rate of four counties in the hold-out year (year 1988) for the Ohio
data example. The vertical line in each plot is the observed log-rate.
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Figure 6: For the Ohio data example of Section 4.2, medians of the posterior forecast distribution for the log-rate
in each county for year 1988.

pair of diseases, this would take us to a pair of depen-
dent surfaces from a bivariate spatial process. We could
envision modeling based upon a bivariate SDP centered
around a bivariate GP. Finally, how would we handle mis-
alignment issues in this nonparametric setting? That is,
what should we do if disease counts are observed for one
set of areal units while covariate information is supplied
for a different set of units? Banerjee et al. (2004) suggest
strategies for treating misalignment but exclusively in the
context of GPs. Extensions to our SDP setting would be
useful.
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