
Correctness Analysis and Optimality Bounds
of Multi-spacecraft Formation Initialization

Algorithms

Mike Schuresko and Jorge Cortés∗

May 16, 2007

Abstract

This paper considers formation initialization for a class of autonomous space-
craft operating in deep space with arbitrary initial positions and velocities. For-
mation initialization is the task of getting a group of autonomous agents to obtain
the relative and/or global dynamic state information necessary to begin formation
control. We associate a “worst-case total angle traversed” optimality notionwith
the execution of any formation initialization algorithm, and present performance
bounds valid for any correct algorithm. We design the SPATIAL SPACECRAFT LO-
CALIZATION ALGORITHM , HALF TWIST ALGORITHM and the WAIT AND CHECK

ALGORITHM, analyze their correctness properties and characterize their perfor-
mance in terms of worst-case optimality and execution time.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Algorithm definition . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Total angle traversed and solid angle covered . . . . . . . . .. . . . 6

2.2.1 Total angle traversed during algorithm execution . . .. . . . 6
2.2.2 Solid angle traversed during algorithm execution . . .. . . . 6

2.3 Formation initialization problem . . . . . . . . . . . . . . . . . .. . 7

3 Correctness and optimality of formation initialization algorithms 7

∗M. Schuresko and J. Cortés are with the Department of Applied Mathematics and Statis-
tics, Baskin School of Engineering, University of California at Santa Cruz, CA 95064, USA
{mds,jcortes}@soe.ucsc.edu



4 Provably correct formation initialization algorithms 10
4.1 Formation initialization in two dimensions . . . . . . . . . .. . . . . 11
4.2 SPATIAL SPACECRAFT LOCALIZATION ALGORITHM . . . . . . . . . 11
4.3 HALF TWIST ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 2d Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.3 Regions in 3d space and partial reduction to 2d lemmas .. . . 15
4.3.4 Use of “Shortest Common Supersequence” algorithm . . .. . 16
4.3.5 HALF TWIST ALGORITHM . . . . . . . . . . . . . . . . . . . 18

4.4 WAIT AND CHECK ALGORITHM . . . . . . . . . . . . . . . . . . . . 19

5 Conclusions and future work 22

1 Introduction

Motivation and problem statement

Deploying large structures in space requires multiple spacecraft to coordinate their ac-
tivities, due, in part, to the limited payload capabilitiesof launch vehicles. Key aspects
of spacecraft coordination which are likely to be used in a broad variety of contexts in-
clude: (i) formation initialization, i.e., the establishment and maintenance of relative
dynamic state information and/or on-board inter-spacecraft communication; (ii) for-
mation acquisition, i.e., making the group of spacecraft attain a desired geometry; and
(iii) formation regulation and tracking, i.e., maintaining fixed inter-spacecraft range,
bearing, and inertial attitudes with high accuracy along the execution of a desired tra-
jectory.

In this paper, we focus our attention on the formation initialization problem. This
problem is especially important for spacecraft operating in deep space, where conven-
tional Earth-based GPS does not provide sufficiently accurate position information.
Here, we consider a spacecraft model motivated, in part, by the design possibilities of
NASA’s “Terrestrial Planet Finder” mission. Our spacecraft model is similar to the one
proposed in [1]. The spacecraft have laser-based directional relative position sensors,
like the kind described in [2], which require two sensors to lock on to each other before
getting a position measurement. The spacecraft are assumedto be in deep space, far
from the effects of gravitational curvature.

Literature review

A fairly extensive bibliography of missions which plan to use spacecraft formation fly-
ing can be found in [3]. These include Terrestrial Planet Finder [4], EO-1 [5], TechSat-
21 [6] and Orion-Emerald [7]. A driving motivation behind formation flying research
is that of large aperture adaptive optics in space, e.g. [4] and [8]. A good overview on
current research on formation flying for optical missions iscontained in [2]. Most of
the work on control algorithm design has focused on formation acquisition and track-
ing. A survey of algorithms is given in [9]. Leader-following approaches, e.g. [10, 11],
and virtual structures approaches, e.g. [12], prescribe the overall group behavior by



specifying the behavior of a single leading agent, either real or virtual. Motion plan-
ning and optimal control problems are analyzed in [13]. The only work known to us
that has dealt in detail with formation initialization is [1].

Statement of contributions

The contributions of this paper are twofold. On the one hand,we provide optimal-
ity bounds on the performance of any correct formation initialization algorithm. Our
analysis consists of a systematic study of optimality of algorithms, both in two and
three dimensions, with regard to worst-case total angle rotated by any member of the
group of spacecraft. As a byproduct of our analysis, we provide justification for the
Opposing Sensor Constraintin [1] by showing that optimal algorithms exist which
invoke it. Our optimality bounds give rise to necessary conditions valid for any correct
algorithm, that we use to show that the rotation phases of thealgorithm presented in [1]
fail to achieve formation initialization.

On the other hand, we present three original algorithms. TheSPATIAL SPACE-
CRAFT LOCALIZATION ALGORITHM achieves formation initialization through a sim-
ple sequence of rotational maneuvers, each of which sweeps aregion of a particular
partition of space. The WAIT AND CHECK ALGORITHM validates our lower bound on
total angle by sacrificing time efficiency for better angle efficiency, while the HALF

TWIST ALGORITHM achieves a total angle between that of SPATIAL SPACECRAFT LO-
CALIZATION ALGORITHM and WAIT AND CHECK ALGORITHM without additional
wait times. For these algorithms, we assess their correctness, and formally character-
ize their performance with regards to the optimality measures mentioned above.

Organization

This tech report is primarily intended as a companion to our conference paper [15]
(in which the proofs of various theorems were omitted). Section 2 presents a set of
definitions which will be used throughout the paper. In Section 3 we give necessary
conditions for the correctness of any candidate solution tothis problem, from which
we derive lower bounds for the optimality of any working solution. Section 4 presents
provable formation initialization algorithms, includinga simple algorithm for 3-D in
Section 4.2 a slightly more optimal version in Section 4.3 which was not mentioned
in [15] for space reasons and a nearly-optimal algorithm which achieves angle effi-
ciency at the expense of long wait times in Section 4.4.

2 Preliminaries

Each spacecraft consists of a rigid body containing instruments on one side, which need
to be shielded from the sun (see Fig. 1). To serve this purpose, asun shieldis mounted
to the spacecraft body on the side opposite the instruments.The sun shield normal
vector,~nSUN(S), indicates the direction of the sun shield of spacecraftS. We make the
approximation that the vector to the sun,~vSUN, is the same for each feasible spacecraft
position. In order to operate without damaging the instrumentation, each spacecraft
must maintain the constraint~nSUN(S) ·~vSUN ≥ cos(Θsun) for some pre-specifiedΘsun



~nSUN(S)

~vsensor(S)

Sun shield

Θfov

Figure 1: Configuration of spacecraft geometry, and body frame definition.

at all times. Relative position and velocity measurements between two spacecraft are
made through themetrology sensorsof the two craft. The metrology sensor of space-
craftSsenses within a conical region (CS) with a half angle ofΘfov (assumed here to be
greater thenπ4 unless otherwise stated) about thesensor cone centerline. Accurate ori-
entation information is available for all spacecraft through measurements of reference
stars. The spacecraft are placed such that the curvature of earth’s gravitational field
has a negligible effect (for instance a Lagrange point). We therefore assume that if no
spacecraft undergo translational acceleration, then the spacecraft move with constant
(initially unknown) velocity in straight lines relative toeach other.

Definition 2.1. Theglobal frame of referenceis an arbitrary orthonormal frame, GF=
{Xg,Yg,Zg}, where Xg =~vSUN. For a spacecraft S, PS denotes the position of the center
of mass of S in the frame GF. Thecenter of mass frameof S, CMF(S), corresponds to
translating the global frame GF to PS. Thebody frameof S, BF(S) = {X̂S,ŶS, ẐS} is
defined byX̂S =~nSUN(S), ẐS =~vsen(S) andŶS = ẐS× X̂S. In this frame,{0,0,0} is at
the center of mass of S.

The state of each spacecraftS∈ {S1, · · · ,Sn} can be described by(PS,MS) ∈ R
3×

SO(3).MS transformsBF(S) ontoCMF(S) andPS defines the translation betweenCMF(S)
andGF. The spacecraft are fully actuated.

The sensor coneCS : R
3×SO(3) → 2R

3
of S is

CS(PS,MS) = {~x∈ R
3 :

[0,0,1]TMS(~x−PS)

‖~x−PS‖
≤ cos(Θfov)}. (1)

When it is clear from the context, we will use the simpler notationCS. In order to get a
relative position reading between two spacecraft,S1 andS2, PS1 ∈CS2 andPS2 ∈CS1

must hold. This condition is calledsensor lock.
The algorithms we present all require then spacecraft performing the algorithm to

be split into two disjoint groups,G1 andG2 such thatG1∪G2 = {S1, ...,Sn}. This can
either be done a priori before launch or (preferably) with a distributed algorithm prior
to running formation initialization (see [16]).



Two spacecraft,S1 andS2, are said to be maintaining theOpposing Sensor Con-
straint if ~vsen(S1) = −~vsen(S2).While this constraint is not strictly necessary for a cor-
rect solution to the formation initialization problem, we will show in Section 3 that
it is a convenient constraint to work with. Note that this does not fully constrain the
relative orientation ofS1 with respect toS2. When specifying an algorithm requiring
theOpposing Sensor Constraint, we will often specify the more restrictive constraint

M−1
S1

MS2 = Mopp = diag(1,−1,−1).

We call this constraint theOpposing Frame Constraint. In addition to maintaining
theOpposing Sensor Constraint, theOpposing Frame Constraintalso guarantees
that if spacecraftS1 verifies the sun-angle constraint, thenS2 also verifies it.

2.1 Algorithm definition

In this section we formally define what we mean by an “algorithm.” In what follows,
Dmsgdenotes the set of possible messages a spacecraft can communicate at any instant,
andDsensor= (Z2×R

3×R
3)n the set of possible sensor cone readings for a spacecraft.

Definition 2.2 (Algorithm notion). An algorithm is a tuple AS = (StS,0,FS,GS,δ tstep),
where StS,0 ∈ DSt, the initial internal state of S, contains no information about the
location of the other spacecraft and FS is a map of the form

FS : R×SO(3)×DSt → R
3

(t,MS,StS) 7→ ωS,

and GS is a map of the form

GS : R×SO(3)×DSt×Dn−1
msg×Dsensor→ DSt×Dmsg

(t,MS,StS,MSGS,in,SENSORS) 7→ (StS,MSGS,out).

Definition 2.3. (Execution of an algorithm):An execution by a spacecraft S of an algo-
rithm AS = (StS,FS,GS,δ tstep) during the time interval[t0, t f ] is given by t∈ [t0, t f ] →
(PS(t),MS(t)) ∈ R

3×SO(3) and StS : [t0, t f ] → DSt defined as follows:

• ṖS(t) = VS, for some constant VS∈ R
3;

• ṀS(t) = F̂S(t,StS(t))MS(t), t ∈ [t0, t f ], whereω̂ is the matrix operator for the
cross product withω ∈ R

3;

• StS is the piecewise constant function defined by

StS(ti+1) =

GS((ti ,MS(ti),StS(ti),MSGS,in(ti),SENSORS)(ti)),

for i = 0, . . . ,m−1, with t0, t1, . . . , tm∈ [t0, t f ] a finite increasing sequence, where
ti = kδ tstep for some k∈ N or ti corresponds to the time instant when a change
occurs in the value of the sensor cone readings. The initial value of StS(t0) is
StS,0.



The lack of concrete specification ofDmsg andDSt reflects our intent to provide
lower bounds on algorithmic performance for spacecraft with a wide range of computa-
tional and communication capabilities. In practice, the working algorithms we present
in Section 4 require basic computational capabilities on the part of each spacecraft.

2.2 Total angle traversed and solid angle covered

Here, we present the notions of total angle traversed and solid angle covered during the
execution of an algorithm.

2.2.1 Total angle traversed during algorithm execution

In 3-D, recall thatMS = [mx,my,mz] is an orthonormal basis matrix representing the
orientation of spacecraftS. From Equation 8.6.5 of [17], we havêω = ṀSM−1

S . ,
whereω̂ is the matrix operator for “cross product withω.”

The total angle traversed during the execution of an algorithm in 3-D is therefore
∫ t f

t0

√
ω̂2

1,2 + ω̂2
1,3 + ω̂2

2,3dt.

One can think of the 2-D problem as the 3-D problem with rotations confined to
the{Y,Z} plane. Under this constraint, the previous expression reduces to

∫ t f

t0
|ω̂2,3|dt.

2.2.2 Solid angle traversed during algorithm execution

It will be useful to compute the total solid angle covered by the sensor coneCS of a
spacecraft performing a formation initialization algorithm in 3-D. If a spacecraft,S,
with sensor cone field of viewΘfov rotates by an angle ofπ about an axisl where
l ·~vsen(S) = cos(Θ), Θ > Θfov, the new solid angle covered in this sweepcan be found
by tracing a band about the unit sphere and calculating its area. See Figure 2 for an
illustration.

Θ

S
~vsen(S)

Figure 2: Method to compute rate of change of solid angle swept.

Recall that the solid angle of a cap of half angleα is
∫ α

0 2π sin(t)dt. The area of
this band can be found by subtracting caps of half anglesΘ−Θfov andπ −Θ−Θfov



from the unit sphere and dividing by 2. , giving a result of

4π −2π(1−cos(π −Θ−Θfov))−2π(1−cos(Θ−Θfov))

2
.

Dividing by π gives a rate of change of coverage of solid angle for this operation , when
performed at angular velocityω, as 2‖ω‖sin(Θ)sin(Θfov). A similar argument gives
the expression for whenΘ ≤ Θfov as‖ω‖(1+sin(Θ)sin(Θfov)−cos(Θ)cos(Θfov))

The total solid angle covered by a spacecraftSexecuting an algorithm,A, between
timest0 andt is then

Fsld(t) =
∫ t

t0
fsld(ω(τ))dτ,

where fsld(ω) : R
3 →R is defined byfsld(ω) = 2‖ω×~vsen(S)sin(Θfov)‖ for arccos(ω ·

~vsen(S)/‖ω‖) > Θfov, and fsld(ω) = ‖ω ×~vsen(S)sin(Θfov)‖+‖ω‖−|ω ·~vsen(S)| oth-
erwise. For us, the total solid angle covered bySduring the course of the algorithm to
beFsld(t f )+ α0 wheret f is the earliest time at which formation initialization is guar-
anteed to be complete andα0 = 2π(1−cos(Θfov) is the solid angle contained inCS(t0)
at timet0.

Remark 2.4. Note that0≤ fsld(ω) ≤ 2‖ω‖sin(Θfov). •
Analogously, the total angle covered by a spacecraftSperforming an algorithmA

in 2-D between timest0 andt is

Fangle(t) =
∫ t

t0
|ω|dt.

2.3 Formation initialization problem

Formation initialization solutions entail establishing communication and/or relative po-
sition information. Here we restrict ourselves to the establishment of relative position
and velocity information between each pair of spacecraft. We assume that this in-
formation can come from any combination of direct sensor readings, odometry and
communication with other spacecraft.

Definition 2.5. Let [ts, t f ] be the duration of time during which a formation initializa-
tion algorithm runs. Define G(t) to be therelative position connectivity network at
time t, defined by G(T) = (V,E) where v(Si) ∈V correspond to the spacecraft Si , and
the edge(v(Si),v(Sj)) is in E if and only if spacecraft Si and Sj are in a state of sensor
lock. A solution to the formation initialization problem isone that guarantees that the
graph∪t∈[ts,t f ]G(t) is connected.

3 Correctness and optimality of formation initialization
algorithms

We start this section by providing a necessary condition forthe correctness of any
formation initialization algorithm. Then, we proceed to use this condition as the basis



for a series of optimality bounds. We also present optimality results which justify the
Opposing Sensor Constraintand allow us to more easily reason about then spacecraft
case (wheren > 2).

Theorem 3.1. Let S be executing a correct formation initialization algorithm in d
dimensions, with d∈ {2,3}. For every v∈ R

d, let tv be the first time such that v∈
CS(tv) = CS(PS(tv),MS(tv)). Then, there must exist t∗ > tv such that−v∈CS(t∗).

Proof. For simplicity, let vers(u) = u/‖u‖, for u ∈ R
d. Consider two spacecraft,S1

andS2. S2 travels in the plane defined by it’s velocity (VS2), and pcl(S1,S2), where
pcl(S1,S2) is the point of closest approach betweenS1 andS2 in CMF(S1). At time t

S2 makes an angle withpcl(S1,S2) of arctan(
‖VS2

‖
‖pcl(S1,S2)‖ t + t0) for somet0. S2’s initial

conditions can be chosen to match any arbitraryVS2, pcl(S1,S2) andt0. Because of this,
given anε and times,t1 andt2, vers(PS2) can be made to stay within an angle ofε of
−vers(VS2) until time t1, and move to within an angle ofε of vers(VS2) by t2. Let t1 be
the first time at which the minimum angle between any ray inCS1(t1) and vers(−VS2) is
less then or equal toε andt2 be the first time at whichCS1(t2) includes vers(−VS2). In
order to ensureS1 findsS2, CS1(t

∗) must include vers(VS2) at some timet∗ > t1. Since
ε was picked arbitrarily and the sensor cone is always closed,CS1(t

∗) must include
vers(VS2) at some timet∗ > t2.

Name: Formation Initialization Algorithm
Assumes: Spacecraft model in Section 2.

1: if Si ∈ G1 then
2: Rotate to alignMSi with I3
3: else
4: Rotate to alignMSi with Mopp

5: end if
6: Wait for common start timets
7: Rotate by 3π aboutXSi .
8: Rotate−Θtilt (in this case 25 degrees) aboutYSi .
9: Rotate 2Θtilt aboutYSi .

10: Rotate byπ aboutXSi .
11: Rotate 2Θtilt aboutYSi .

{This is the end of the rotational component of the algorithm}
12: Rotate−Θtilt aboutYSi .
13: Wait for some timetnear field> 0
14: if Si ∈ G1 then
15: Begin translating alongZSi with speedvmax, wherevmax is the maximum rela-

tive velocity between any two craft.
16: end if

Table 1: Formation Initialization algorithm proposed in [1].
Theorem 3.2. The algorithm stages described in Steps 1-12 of Table 1 are not, by
themselves, sufficient to solve the formation initialization problem.



Proof. Let S∈ G1 perform this algorithm. By Theorem 3.1, for any vectorv, CS(t)
must contain−v at least once before the last timeCS(t) containsv. But eachv∈ Rdown

is last inCS(t) during Step 9, and nov∈ {u∈CMF(S) : −u∈Rdown} is inCS(t) before
Step 10. ThusRdown(S) does not satisfy this condition.

For our purposes, we will consider the algorithm which minimizes the maximum
worst-case total angle traversed of any spacecraftSi to be the optimal algorithm. Other
reasonable options would include the algorithm which minimizes the worst-case sum
over all spacecraftSi of the total angle traversed.

Let is now justify thatOpposing Sensor Constraintis optimal.

Theorem 3.3. (Justification of theOpposing Sensor Constraint): Let S1 and S2 be two
spacecraft. The most optimal algorithm to guarantee that S1 and S2 attain sensor lock
is one which uses theOpposing Sensor Constraint.

Proof. Imagine there is some algorithmA which achieves sensor lock betweenS1 and
S2 in time tlock. Create a new algorithmA∗ in whichS1 implementsA, butS2 maintains
the Opposing Sensor Constraintwith S1. If S2 had been followingA, the apex of
CS2(tlock) would be inCS1(tlock) at timetlock. SinceS1 is following A in algorithmA∗,
the apex ofCS2(tlock) is in CS1(tlock) when both craft followA∗. By symmetry prop-
erties of theOpposing Sensor Constraint, the apex ofCS1(tlock) is in CS2(tlock), thus
guaranteeing sensor lock at or before timetlock. This means that for any algorithm,A,
which guarantees sensor lock, a modified algorithm (A∗) which maintains theOppos-
ing Sensor Constraintcan be constructed such thatA∗ guarantees sensor lock in at
most as much worst-case rotation asA.

The next result shows an equivalence between worst-case bounds for 2 spacecraft
and worst-case bounds for any numbern > 2 of spacecraft.

Theorem 3.4 (Extending worst-cases ton Spacecraft). Given a spacecraft Sn with
sensor cone half-angleΘfov, and anyε > 0, the worst-case total angle traversed by
Sn while performing a correct algorithm with n−1 other spacecraft is identical to the
worst-case total angle traversed by a spacecraft with sensor cone half-angleΘfov+ ε
performing a correct algorithm with one other spacecraft.

Proof. Let tworst be the worst-case time for 2 spacecraft to find each other given a
maximum angular velocity ofωmax. Clearly the worst-case time forn craft is no worse
then this. Pick the initial conditions of the firstn− 1 spacecraft arbitrarily. LetC
be the set of communications the firstn−1 craft would send if they start from these
conditions and fail to achieve sensor lock withSn by timetworst. Let T be the trajectory
Sn would take given communicationsC. Let At be the algorithm for two spacecraft,S1

andS2, under which eachS1 blindly follows T andS2 maintains the opposing sensor
constraint with respect toS1. Let Pworst andvworst be the initial position and velocity of
S1 with respect toS2 that achieves the worst-case total angle traversed forS1 underAt .
In then spacecraft case, pick some spacecraftSi . Set the initial position and velocity
of Sn with respect toSi to beλPworst andλvworst for λ such that mint∈[0,tworst](‖Pworst+
vworstt‖)λ > rworst

sin(ε) . SinceS1, · · · ,Sn−1 never get more thenrworst apart, these spacecraft
are contained within a ball of radiusrworst centered atSi . By construction ofλ , these



craft stay within an angular ball ofε from Sn’s point of view, and thus none of these
craft achieve sensor lock withSn before timetworst.

Theorem 3.4 allows the result from Theorem 3.3 to be generalized to any number of
spacecraft. In addition, we will use Theorem 3.4 throughoutthe remainder of the paper
to allow us to analyze worst-case total angle bounds by considering the 2 spacecraft
case.

Next, we provide gives a lower bound of the total angle covered for the 2-D problem

Theorem 3.5(2-D lower bounds on angle traversed). For any algorithm A which solves
the 2-D formation initialization problem, andΘfov < π

2 , the worst-case total angle
covered by S1 performing A is3π.

Proof. ForΘfov < π
2 , by Theorem 3.1, every vector,v, on the 2-sphere must be scanned

at least once before the final scan of−v. This meansS1 must scan at least half the
directions on the unit 2-sphere twice for a total angle covered of 3π.

From Theorem 3.5 we can deduce that the worst-case minimum total angle tra-
versed by any correct formation initialization algorithm in 2-D ismin(3π−2Θfov,4π−
4Θfov).

The next result gives a lower bound on the solid angle coveredby any algorithm
solving the 3-D problem.

Theorem 3.6(3-D lower bounds on solid angle covered). For any algorithm A which
solves the 3-D formation initialization problem, andΘfov < π

2 , the worst-case total
solid angle covered by S1 performing A is6π.

Proof. The total solid angle of a sphere is 4π. For Θfov < π
2 , by Theorem 3.1, every

vector,v, on the 3-sphere must be scanned at least once before the finalscan of−v.
This meansS1 must scan at least half the directions on the unit 3-sphere twice for a
total solid angle covered of 6π.

The bound in this result induces a lower bound on angle traversed in 3-D.

Corollary 3.7 (3-D lower bounds on total angle). For any algorithm A which solves
the 3-D formation initialization problem, andΘfov < π

2 , the worst-case total angle

traversed by S1 performing A is at least3π−α0/2
sinΘfov

whereα0 = 2π(1−cos(Θfov)).

Proof. Recall from Remark 2.4 thatddt Fsld(t) = fsld(ω) ≤ 2‖ω sin(Θfov)‖. Since 6π −
α0 ≤ ∫

fsld(ω(t))dt ≤ ∫
2‖ω sin(Θfov)‖dt = 2sin(Θfov)

∫ ‖ω‖dt and the total angle
rotated is defined as

∫ ‖ω‖dt, we can say that the total angle rotated by any spacecraft
S1 performingA is 6π−α0

2sin(Θfov)
.

4 Provably correct formation initialization algorithms

Having given lower bounds on what is necessary for a correct formation initialization
solution, in this section we set out to answer whether the problem as we pose it has
a solution. Section 4.1 describes an algorithm from the literature for a 2-D variant of



this problem. Section 4.2 presents a purely rotational algorithm for formation initial-
ization in 3-D and Theorem 4.5 gives a proof of its correctness. Section 4.4 provides an
algorithm which comes closer to the optimality bounds presented in Section 3 at the ex-
pense of other practical considerations. This algorithm ispresented as a demonstration
of the tightness of the optimality bounds.

4.1 Formation initialization in two dimensions

To prove the correctness of the algorithm in 3-D, we will needa simpler algorithm for
the 2-D case, which we term “in-plane search”. This algorithm, described in Table 2,
solves the formation initialization problem for a group of spacecraft residing in a plane,
see [1]

Name: PLANAR SPACECRAFT LOCALIZATION ALGORITHM

Goal: Solve the Formation Initialization problem in 2-D
Assumes: Spacecraft model in Section 2

1: if Si ∈ G1 then
2: Turn to common reference orientationΘstart

3: else
4: Turn toΘstart+π
5: end if
6: At synchronized start timets, begin rotating with constant angular velocityω > 0.

Continue this rotation for 3π radians.

Table 2: The PLANAR SPACECRAFT LOCALIZATION ALGORITHM.

Proposition 4.1 ([1]). With the spacecraft model in Section 2, thePLANAR SPACE-
CRAFT LOCALIZATION ALGORITHM achieves formation initialization.

Note that the PLANAR SPACECRAFT LOCALIZATION ALGORITHM achieves the
lower bound from Theorem 3.5.

4.2 SPATIAL SPACECRAFT LOCALIZATION ALGORITHM

Both the description of the full 3-D algorithm and its proof of correctness require some
additional specific definitions, that we briefly expose next.

For the purpose of this algorithm, we will defineΘtilt = min{Θsun,Θfov} and as-
sumeΘfov ≥ π

4 .

Definition 4.2. Let S be a spacecraft. Define

• R1(S) = {~u∈CMF(S) : ~u·XS≤ 0};

• R2(S) = CMF(S)\R1(S).



Remark 4.3. Let Θtilt be an angle such thatπ2 −Θfov < Θtilt < Θfov. R1(S) is chosen
so as to be included within the region swept out by spacecraftS’s sensor cone while it
is tilted by an angleΘtilt towards the sun axis and performing a3π rotation about the
sun axis. R2(S) is chosen so as to be included within the region swept out by spacecraft
S’s sensor cone while it is tiltedπ2 −Θfov < Θtilt < Θfov away from the sun axis and
performing a3π rotation about the sun axis. Also, note that in the frame CMF(S),
R1(S)∪R2(S) = R

3. •

The full 3-D algorithm will invoke the subroutine describedin Table 3.

Name: 3-D REGION SWEEP ALGORITHM

Goal: Scan a region for use as a subroutine by SPATIAL SPACECRAFT

LOCALIZATION ALGORITHM
Inputs: (i) A spacecraft,Si

(ii) An integer,n∈ {1,2}, indicating the region to be swept

Assumes: (i) Spacecraft model in Section 2.
(ii) Θfov ≥ π

4 andΘfov +Θsun≥ π
2 .

Require: At the start of this subroutine, there exist matricesM1,M2 ∈ SO(3) such
that for all Si ∈ G1, MSi = M1, for all Sj ∈ G2, MSj = M2, M1[1,0,0]T =

M2[1,0,0]T andM1[0,0,1]T = −M2[0,0,1]T .
Require: At the start of this subroutine,[0,0,1]M1[0,1,0]T = 0.

1: SetΘROT = [0,0,1]MS[0,0,1]T(−1n) ·Θtilt
2: Rotate byΘROT aboutYSi

3: Begin rotating aboutXSi by a constant angular velocityω. Continue this rotation
for 3π radians and then stop.

4: Rotate byΘROT aboutYSi

Table 3: The 3-DREGION SWEEP ALGORITHM.
At the end of the execution of the 3-DREGION SWEEP ALGORITHM, if Si is in G1,

thenRn(Si) has been swept, otherwiseSi has maintained an orientation such that for all
Sj in G1 MSi [0,0,1]T = −MSj [0,0,1]T . With these ingredients, we can now define the
SPATIAL SPACECRAFT LOCALIZATION ALGORITHM in Table 4.

Let us discuss the correctness of the SPATIAL SPACECRAFT LOCALIZATION AL-
GORITHM. As in Section 4.1, we reduce the problem to that of two spacecraft finding
each other. Call these spacecraftS1 ∈ G1 and S2 ∈ G2. Recall thatS2’s motion in
CMF(S1) is along a straight line with constant velocity. Consider then the two half-
spaces defined by the{Y,Z} plane inCMF(S1). BecauseS2 moves with constant
velocity with respect toS1, it can cross from one half-space to the other at most once.
The paths it can take are as follows.S2 can begin inR1(S1) and cross toR2(S1) at most
once. LikewiseS2 can begin inR2(S1) and cross intoR1(S1) at most once.

Because we make no assumptions about the speed at which thesespacecraft take
these paths, or at which part of the path they start, handlingthese cases will automati-
cally handle the cases for paths that fail to cross the{Y,Z} plane.



Name: SPATIAL SPACECRAFT LOCALIZATION ALGORITHM

Goal: Solve the Formation Initialization problem in 3-D
Assumes: (i) Spacecraft model in Section 2.

(ii) Θfov ≥ π
4 andΘfov +Θsun≥ π

2 .

1: if Si ∈ G1 then
2: Rotate to alignMSi with I3
3: else
4: Rotate to alignMSi with Mopp

5: end if
6: Wait for common start timets
7: Call 3-D REGION SWEEP ALGORITHM onSi andR1(Si)
8: Call 3-D REGION SWEEP ALGORITHM onSi andR2(Si)
9: Call 3-D REGION SWEEP ALGORITHM onSi andR1(Si)

Table 4: The SPATIAL SPACECRAFT LOCALIZATION ALGORITHM.

Lemma 4.4 (Partial reduction to in-plane search). Doing a 3π sweep (turning about
the sun line) through Rn(S), n∈ {1,2}, S∈ G1, finds all spacecraft in G2 that stay in
Rn(S) during the entire duration of the3π rotation.

Proof. Projecting the centerline of the cone and the spacecraft path onto the{Y,Z}
plane inCMF(S) reduces this to the 2-D algorithm. In the cases whereRn(S) contains
points which project directly onto(0,0) there can be a collision in the 2-D projection
which does not correspond to a collision of the craft in 3-D. In these cases, the sensor
cone ofS1 always contains all such points, and any colliding craft arefound.

Finally, we are in a position to establish the correctness ofthe full 3-D algorithm.

Theorem 4.5. With the spacecraft model in Section 2, theSPATIAL SPACECRAFT LO-
CALIZATION ALGORITHM solves the formation initialization problem.

Proof. Consider two spacecraft,S1 and S2. Let S2 start in Rbegin(S1) and end in
Rend(S1). If Rbegin(S1) = Rend(S1) we are done. OtherwiseS1 must scanRend(S1)
at least once after the first scan ofRbegin(S1). If the scan ofRbegin(S1) did not findS2,
thenS2 must be inRend(S1)

If S2 never crosses the{Y,Z} plane, either the scan ofR1(S1) or the scan ofR2(S1)
must find it. Otherwise,S2 starts in one region and ends in the other. The sequence
of region sweeps performed byS1 guarantee thatS1 will scan the regionS2 starts in
at least once before scanning the regionS2 ends in. IfS2 is not found whenS1 first
performs a sweep of the region in whichS2 begins (call thisRbegin(S1)), thenS2 must
be in the remaining region (Rend(S1)) by the end of the sweep. Since this was the first
sweep ofRbegin(S1), S1 must scan atRend(S1) at least once after this point and find
S2.

Remark 4.6. TheSPATIAL SPACECRAFT LOCALIZATION ALGORITHM sweeps a total
solid angle of9π + 5Θtilt

sinΘfov
and performs rotations totaling9π + 5Θtilt , whereΘtilt =

min(π
2 −Θfov,Θsun). •



4.3 HALF TWIST ALGORITHM

We have discovered a set of alternative algorithms for the case where the sensor cone
half-angle (Θfov) is wider thanπ

4 . These algorithms are in the same flavor as those
presented above, and have a common relation to the problem of“Shortest Common
Supersequence” in computer science. We call them “Half-Twist Algorithms” due to
their use of 180 degree sweeps of the sensor cone.

4.3.1 Preliminaries

For the duration of this paper the symbol”⊕” will refer to the operator “bitwise exclu-
sive or”.

Definition 4.7. The “bitwise exclusive or” of two numbers (denoted here by n⊕m) is
defined by taking the binary representations of m and n and adding each successive
digit modulo 2. In other words the ith digit of n⊕m is defined by(n⊕m)i = (ni +mi

mod 2).

For the HALF TWIST ALGORITHM, the following region definitions will be used.

Definition 4.8. Let S be a spacecraft. For n∈ {0,1,2,3}, define

Rtwist,n(S) = {v∈CMF(S) : (v·YS)(1−2(n mod 2)) ≤ 0

and(v·XS)(1−2(⌊n/2⌋ mod 2)) ≤ 0}.

Remark 4.9. If two regions, Rtwist,i(S) and Rtwist, j(S), abut at the{Y,Z} plane, then
j ⊕ i = 2. Likewise, if Rtwist,i(S) and Rtwist, j(S) abut at the{X,Z} plane, then j⊕ i = 1.

Remark 4.10. In the frame CMF(S), Rtwist,0(S)∪Rtwist,1(S)∪Rtwist,2(S)∪Rtwist,3(S)=
R

3

A diagram of the regions can be found in Figure 3. This diagramis from a view-
point looking directly down theZ axis inCMF(S) whereS is the spacecraft shown in
the diagram. Note that any two regions,Rtwist,i(S) andRtwist, j(S), which share a border
along theYZplane have the property thati⊕ j = 2, and any two regions ,Rtwist,k(S) and
Rtwist,l (S), sharing a border along theXZ lane have the property thatk⊕ l = 1. This
property of the labeling will be used in the path enumerationalgorithm presented in
Table 5.

4.3.2 2d Lemmas

Lemma 4.11. Let there be two spacecraft, S1 and S2, traveling in straight lines inR2

with constant velocity, maintaining the constraint~vsen(S1) ·~vsen(S2) = −1. Let the ray
defined by~vsen(S1) perform an angular sweep of less then2π and let this ray be~rbegin

at the beginning of the sweep and~rend at the end of the sweep. LetΩ be the area swept
out by the ray defined by~vsen(S1). If S2 is initially in Ω, then at the end of the sweep
either S2 has been found, or S2 has crossed~rend.



Y

X

Rtwist,1(S)

Rtwist,3(S)Rtwist,2(S)

Rtwist,0(S)

S

Figure 3: Cross section of regions for alternative algorithm.

Proof. Let~v12 := PS2 −PS1 in CMF(S1). Consider∠(~v12,~vsen(S1)). Without loss of
generality, this quantity must be positive at the beginningof the sweep. Likewise, at
the beginning of the sweep,∠(~v12,~rbegin) > 0 and∠(~v12,~rend) < 0. So long asS1 andS2

do not collide,∠(~v12,~vsen(S1)) varies continuously with respect to time. At the end of
the sweep∠(~vsen(S1),~rend) = 0. Since∠(~vsen(S1),~rend) also varies continuously, either
∠(~v12,~rend) or ∠(~v12,~vsen(S1)) must have reached 0 by the end of the sweep.

As a side note, ifS1 sweeps out a region of angle 2π, thenS2 can cross~rend without
leaving the region.

Lemma 4.12. Given the scenario in Lemma 4.11, let the sensor ray sweep outa region
of less thanπ radians, and let that region containΩ. At the end of the sweep, either S2

has been found, or it has exitedΩ

Proof. Let~rbeginand~rendbe defined as in Lemma 4.11. ForS2 to have evaded detection,
it must have crossed~rend from the direction of the swept cone. Since the sweep angle
is less thanπ, it cannot have re-enteredΩ.

4.3.3 Regions in 3d space and partial reduction to 2d lemmas

Lemma 4.13. Let there be two spacecraft, S1 and S2, maintaining the constraint
M−1

S1
MS2 = Mopp. Let [0,0,1]MS1[0,0,1]T = ±1 and [1,0,0]T = MS1[1,0,0]T . Let

there be an integer n∈ {0,1,2,3} indicating a region to be swept. Let S1 tilt by
[0,0,1]MS1[0,0,1]T(−1)(1+⌊ n

2⌋)Θtilt about Y , then rotate by[0,0,1]MS1[0,0,1]T(−1)nπ
about X and finally tilt by[0,0,1]MS1[0,0,1]T(−1)(1+⌊ n

2⌋)Θtilt about Y . Let S1 main-
tain M−1

S1
MS2 = Mopp during the course of this maneuver. If S2 is in Rtwist,n(S1) during

this maneuver, then at the end of the maneuver, either S2 has been found, or S2 has left
Rtwist,n(S1).

Proof. Consider the projection of the sensor cone centerline onto theYZplane at some
moment in time. Any point withinRtwist,n(S1) that projects onto this line is in the region
of the sensor cone at this moment in time. SinceS2 proceeds in a straight path with



Name: Path enumerator
Goal: Enumerate the set of traversal sequences resulting from a

spacecraft traveling in a straight line through the regionsde-
fined in Section 4.3.3

Assumes: (i) Craft travel in straight lines and can thus cross each plane
exactly once
(ii) Labels lXZ andlYZ have been given to each plane such that
each label is a distinct power of 2 as in Remark 4.9.

1: Initialize lresult to be an empty list.{lresult will hold the list of traversal se-
quences}

2: for all RegionsRdo
3: Insert the sequence(R,R⊕ lXZ,R⊕ lXZ⊕ lYZ) into lresult

4: Insert the sequence(R,R⊕ lYZ,R⊕ lYZ⊕ lXZ) into lresult

5: end for
6: Returnlresult (the list of possible traversal sequences)

Table 5: Path enumeration algorithm.

constant velocity, its projection down onto theYZ plane is also a straight path with
constant velocity. IfS2 crosses theYZ plane then it has automatically leftRtwist,n(S1),
otherwise this reduces to Lemma 4.12.

4.3.4 Use of “Shortest Common Supersequence” algorithm

Note that the 4 regions defined in the previous section (see Figure 3) are divided by the
XZ andYZplanes. Any path taken by a craft traveling in a straight linecan cross each
of these planes at most once. We will consider paths that cross both of these planes, as
region traversal sequences corresponding to paths that cross one or fewer plane can be
thought of as subsequences of region traversal sequences corresponding to paths that
cross two planes.

Constructing the set of such traversal sequences is quite easy, and an algorithm to
do so is described in Table 5.

Lemma 4.14. Construction of a sequence of regions to sweep that containseach pos-
sible traversal sequence as a (non-contiguous) subsequence yields an algorithm that
provably finds S2 regardless of the path that S2 takes.

Proof. Consider an arbitrary pathp and its traversal sequencesp = (sp1,sp2, ...,spn).
Let ssweep= (ssweep,1,ssweep,2, · · · ,ssweep,m) be the sequence of regions swept out byS1

during the course of the algorithm. Letssub= (ssub,1,ssub,2, ...,ssub,n) be a subsequence
of the sequence ofssweepthat is exactly equal tosp (by construction, this must exist).
After S1 sweepssp1, spacecraft B must either have been found or be further alongin its
path thansp1. Using an inductive hypothesis stating that afterS1 has sweptspi, S2 must
be further along in its path thanspi, we can easily prove that whenS1 begins its sweep
of sp(i+1), B is either in the segment of its path corresponding tosp(i+1) or further along



Name: Shortest common supersequence
Goal: Find the shortest common supersequence(s) ofn sequences.
Assumes: (i) Input is of the form(s1,s2, ...,sn)

(ii) Eachsi is comprised of(si,1,si,2, ...si,length(si))
(iii) An integer nmax is provided as an additional input, to specify
the max length of candidate solutions.
(iv) Sequence items range over the alphabetΣ

1: Set the listlresult := /0
2: Setnminlength:= nmax

3: Let Π be the set of sequences of lengthnmax of symbols fromΣ
4: for all Sequences,pk ∈ Π do
5: if pk contains eachsi as a subsequence and length(pk) ≤ nminlengththen
6: if length(pk) < nminlengththen
7: Setnminlength:= length(pk)
8: Setlresult := /0
9: end if

10: Setlresult := append(lresult, pk)
11: end if
12: end for
13: returnlresult

Table 6: Shortest common supersequence algorithm.

its path. IfS2 is further along its path at the beginning of the sweep, then it remains so
at the end. Otherwise eitherS1 findsS2, or S2 has progressed further in its path. Since
the sequence of regionsS2 travels through is finite, at the end of this operation,S2 has
been found.

What remains is to come up with a way to find such a sequence of regions to
sweep. The problem of finding a sequenceSgiven a set of sequences{S1,S2,etc} such
that S contains eachSi as a subsequence is known as the “shortest common superse-
quence” problem in computer science. It is closely related to the “shortest common
subsequence” problem. While this can be solved in polynomialtime for a set of two
sequences, in general it should be noted that “shortest common supersequence” is NP-
complete [18]. This is actually not a problem for spacecraftinitialization, as the input
size is small, and the solution can be computed offline, before the robots are sent into
space. It should be clarified here that “shortest common subsequence” is not part of
the formation initialization algorithm we intend to present in this section, but rather a
method of arriving at a particular formation initialization algorithm. One method of
solving the “shortest common supersequence problem is presented in Table 6.

The algorithm we use for “shortest common supersequence” isnot optimized for
speed. For cases where more regions of space need to be considered, a fast approxima-
tion to “shortest common supersequence” might need to be substituted.



4.3.5 HALF TWIST ALGORITHM

Running “shortest-common-supersequence” on the possiblesequences for this problem
yields a solution of

(0,1,2,3,0,1,2,0)

This particular sequence is convenient, as many of the pairsof region sweeps can be
composed into single 360 degree rotations (for example (0,1) or (2,3) can be composed
in this way. Note that the algorithm described in Section 4.2contains 9 rotations of
180 degrees, while this algorithm needs 8 such rotations. However, each algorithm has
different patterns of tilting up and down. In Section 4.3.5 we will demonstrate that the
differences between these patterns amount to fewer than 180degrees of rotation.

Name: HALF TWIST SWEEP

Goal: Scan a region for use as a subroutine by HALF TWIST ALGORITHM

Inputs: (i) A spacecraft,Si

(ii) An integer,n, indicating the region to be initially swept (e.g.
3 meansR3(Si))
(iii) An integer nregionswhich is set to 2 if we are to continue and
sweepRtwist,n⊕1(Si) and set to 1 otherwise

Assumes: (i) Spacecraft model in Section 2
(ii) Θfov ≥ π

2 .

Require: At the beginning of the algorithm,∀Si ∈ G1, [0,0,1]MS1[0,0,1]T =±1 and
[1,0,0]T = MS1[1,0,0]T

Require: ∀Si ∈ G1,Sj ∈ G2, Si andSj maintainM−1
Si

MSj = Mopp.
1: if S∈ G1 then
2: Rotate by[0,0,1]MS[0,0,1]T(−1)(1+⌊ n

2⌋)Θtilt aboutY.
3: Rotate by[0,0,1]MS1[0,0,1]T(−1)nπ aboutX.
4: Rotate by[0,0,1]MS1[0,0,1]T(−1)(1+⌊ n

2⌋)Θtilt aboutY.
5: else
6: Rotate by[0,0,1]MS[0,0,1]T(−1)⌊

n
2⌋Θtilt aboutY.

7: Rotate by[0,0,1]MS1[0,0,1]T(−1)nπ aboutX.
8: Rotate by[0,0,1]MS1[0,0,1]T(−1)⌊

n
2⌋Θtilt aboutY.

9: end if

Table 7: HALF TWIST SWEEP.

Theorem 4.15.TheHALF TWIST ALGORITHM described in Table 8 completes forma-
tion initialization.

Proof. Reduction to the two-spacecraft sky-search can be done as inprevious proofs
(see Section 4.2). By Lemma 4.12 each 180 degree sweep finds all spacecraft that begin
the sweep in a particular region and stay in the region. Sincethe sequence of region



Name: HALF TWIST ALGORITHM

Goal: Solve the formation initialization problem using less total rotation
then algorithm in Section 4.

Assumes: (i) Spacecraft model in Section 2
(ii) Θfov ≥ π

2 .

1: if Si ∈ G1 then
2: Rotate to alignMSi with I3
3: else
4: Rotate to alignMSi with Mopp

5: end if
6: Wait for common start timets
7: Call HALF TWIST SWEEPonSi , n = 0, nregions= 2

8: Call HALF TWIST SWEEPonSi , n = 2, nregions= 2

9: Call HALF TWIST SWEEPonSi , n = 0, nregions= 2

10: Call HALF TWIST SWEEPonSi , n = 2, nregions= 1

11: Call HALF TWIST SWEEPonSi , n = 0, nregions= 1

Table 8: HALF TWIST ALGORITHM.

sweeps has been chosen to match a shortest common supersequence for all possible
region traversal sequences of the other spacecraft, all spacecraft have been found (see
Lemma 4.14).

Angular distance efficiency of 3d algorithm
The algorithm described in the previous section makes 3 rotations of 3π radians

each, and the equivalent of 5 tilts ofΘtilt . The algorithm described in this section
makes the equivalent of 8 rotations ofπ radians each and 9 tilts ofΘtilt .

The difference between the total angle traveled in these cases is 9π +5Θtilt −(8π +
9Θtilt ) leading to a difference ofπ −4Θtilt radians. IfΘtilt < π

4 then the new algorithm
requires less total angular rotation. SinceΘfov must be greater than or equal toπ

4 for
this algorithm to work in the first place, andΘtilt can be anything greater thanπ

2 −Θfov,
Θtilt can be chosen to yield a shorter total angular path than SPATIAL SPACECRAFT

LOCALIZATION ALGORITHM .

4.4 WAIT AND CHECK ALGORITHM

As pointed out in Remark 4.6, the provably correct SPATIAL SPACECRAFT LOCALIZA-
TION ALGORITHM is far from optimal both in terms of total angle traversed andsolid
angle covered. In what follows, we introduce the WAIT AND CHECK ALGORITHM (cf.
Table 9). This algorithm has a much better performance with regards to solid angle
covered, at the expense of a longer execution time. After establishing its correctness in
Theorem 4.17, we show how to modify it to achieve an optimal total rotation given its
solid angle covered (cf. Remark 4.18).



Name: WAIT AND CHECK ALGORITHM

Goal: Solve the formation initialization problem using near-optimal
solid angle coverage.

Assumes: (i) Spacecraft model in Section 2.
(ii) Θfov > π

4 .

1: DefineΘε = Θfov − π
4

2: if Si ∈ G1 then
3: Rotate to alignMSi with I3
4: else
5: Rotate to alignMSi with Mopp

6: end if
7: Wait for common start timets
8: Rotate byπ

4 aboutYSi{Call the time at the end of this stept1}
9: Rotate aboutXSi by 2π with angular velocityω{Call this timet2}

10: Wait
tan( π

2−Θε )
Θε

(t2− t1){Call this timet3}
11: Rotate aboutYSi by −π

2 {Call this timet4}
12: Rotate aboutXSi by 3π with angular velocityω{Call this timet5}
13: Rotate aboutYSi by −π

2 {Call this timet6}
14: Wait

tan( π
2−Θε )
Θε

(t5− t1){Call this timet1}
15: Rotate aboutXSi by 2π with angular velocityω{Call this timet7}

Table 9: The WAIT AND CHECK ALGORITHM.



The next lemma will be used in establishing the correctness of the WAIT AND

CHECK ALGORITHM.

Lemma 4.16. Consider a spacecraft S2 traveling in a path with respect to S1 with ve-
locity VS2 and point of closest approach pcl(S1,S2). LetΠ1,2 be the plane in CMF(S1)
spanned by the vectors pcl(S1,S2) and VS2. Define a parameterization of vectors inΠ1,2

by the functionΘscan(P) = arctan(pcl(S1,S2) ·P,−VS2 ·P). For any anglesΘ ∈ [0,π]
and ε ∈ [0,Θ], if S1 first verifies thatΘscan(PS2) < Θ− ε at time t1 and then verifies

that Θscan(PS2) > Θ+ ε at time t2, then by time t2 +
tan( π

2−ε)
ε (t2− t1), S2 will be within

ε of its final angle.

Proof. SinceΘscan(PS2(t2))−Θscan(PS2(t1))> 2ε,
‖VS2

‖
‖pcl(S1,S2)‖ is at least 2ε

t2−t1
. Θscan(PS2(

tan( π
2−ε)
ε (t2−

t1))) ≥ arctan(tan(Θ+ ε)+ 2ε
t2−t1

tan( π
2−ε)
ε (t2− t1)) ≥ π − ε.

Next, we characterize the correctness of the WAIT AND CHECK ALGORITHM.

Theorem 4.17. TheWAIT AND CHECK ALGORITHM correctly solves the formation
initialization problem.

Proof. Consider a spacecraft,S1. Any other spacecraft whoseX position is less than
zero at timet1 must either be found, cross the{Y,Z} plane, or cross the{X,Z} plane
beforet2. If S2 crossed the{X,Z} plane betweent1 andt2 and was not found, then it
must have been moving with sufficient velocity to have moved to within Θε of its final
angle by timet3. By this logic, byt3, any craft with a final angle corresponding to a
positiveX component of position must have been found by timet2, or be on the+X
side of the{Y,Z} plane by timet3. Betweent4 andt5 all such craft are found, along
with any craft that started on the+X side of the{Y,Z} plane and have not left it byt5
(by Lemma 4.16). Any craft which have left the+X side of the{Y,Z} plane byt5 but
were not found during the sweep of the−X half of the{Y,Z} plane must have been
moving with sufficient angular velocity as to be withinΘε of their final angles (on the
−X half of the{Y,Z} plane) byt6 (cf. Lemma 4.16). For this reason, the final sweep
of the−X side of the{Y,Z} plane need only be a 2π sweep.

Remark 4.18 (Angle-optimal region sweeps). TheWAIT AND CHECK ALGORITHM

covers a solid angle of7π + 5Θtilt
sin(Θtilt )

. Clearly, the ratio of total angle traversed to solid

angle covered in theWAIT AND CHECK ALGORITHM is not at the optimal 1
2sin(Θfov)

.

The algorithm can be modified to traverse a total angle of7π sin(Θtilt )+5Θtilt , where
Θtilt = min(π/2−Θfov,Θsun,Θfov), at the expense of not respecting the sun-angle con-
straint. We describe how next. The optimal ratio of total angle traversed to solid angle
covered is achievable for any rotational trajectory of~vsen(S) over time. While a rota-
tional velocity,ω, specifies the instantaneous rotation of the entire body frame of S,
the instantaneous motion of~vsen(S) only fixes two degrees of freedom of this rotation.
By choosingω to lie along~vsen(S)× d

dt~vsen(S), we can always achieve the maximum
instantaneous fsld(ω)/‖ω‖.

Let us suppose that~vsen(S) is within an angle ofπ2 −α of the sun line, and we wish
for~vsen(S) to sweep out the arc defined by Cα = {~v∈R

3 : ‖~v‖= 1∧arccos(~v·~vSUN) =



π
2 −α}. At any instant during which~vsen(S) ∈ Cα , the optimal axis of rotation,ω,
is both perpendicular to~vsen(S) and guarantees~vsen(S) remains in Cα . One such
ω always lies on a cone which we will define as Ctumble = {~v ∈ R

3 : ‖~v‖ = 1∧
arccos(~v·~vSUN) = α}, see Figure 4. Note that the body frame, BF(S) does not move

ω

~vsen(S)

ωCMF(S)

ωBF(S)

Ctumble

Figure 4: Performing a sweep of 2π with less then 2π rotation

with respect to CMF(S) at any point along the axisω. When the sweeps about the
sun line of theWAIT AND CHECK ALGORITHM are executed as we just described, the
algorithm requires a total angular rotation of7π√

2
+5Θtilt . •

5 Conclusions and future work

We have considered the formation initialization problem for a group of spacecraft en-
dowed with limited field-of-view relative position sensorsand omnidirectional com-
munication. We have obtained optimality bounds for the performance of any correct
algorithm in terms of worst-case solid angle covered and total angle traversed. In 2-D,
the angle traversed bound is hard and in 3-D, the angle traversed bound is no worse
than the solid angle bound. Our analysis of optimality justifies several decisions made
in both our own algorithm designs and those of previous works, including the PLANAR

SPACECRAFT LOCALIZATION ALGORITHM and theOpposing Sensor Constraint.
We have also synthesized three provably correct formation initialization algorithms.
In particular, the SPATIAL SPACECRAFT LOCALIZATION ALGORITHM is simple and
easily provable, while the WAIT AND CHECK ALGORITHM is nearly optimal accord-
ing to the optimality bounds obtained. In addition, HALF TWIST ALGORITHM gives a
tighter angle bound then SPATIAL SPACECRAFT LOCALIZATION ALGORITHM without
the wait times of WAIT AND CHECK ALGORITHM at the expense of requiring a more
complicated search procedure.



Areas of future work will include (i) the determination of the optimality ofOppos-
ing Sensor Constraintwhen the spacecraft start in random orientations (this is easily
seen for the case of two spacecraft). If this is true in general, then it will be of interest
to determine the optimal way to move the spacecraft to satisfy theOpposing Sensor
Constraint; (ii) the investigation of other notions of optimality, such as minimum time
to complete formation initialization on a fixed fuel budget;(iii) the determination of
whether the 6π solid angle bound in 3-D is a hard bound. ForΘfov = π

2 , this bound
gives a total angle rotated bound of 3π, which matches the intuitive result from reduc-
ing this special subproblem to 2-D.

Acknowledgments

The authors wish to thank Prof. Roy Smith for pointing our attention to the algorithms
described in [1]. This research was supported in part by NASAUniversity Aligned
Research Program Award TO.030.MM.D.

References

[1] D. P. Scharf, S. R. Ploen, F. Y. Hadaegh, J. A. Keim, and L. H. Phan, “Guaranteed
initialization of distributed spacecraft formations,” inAIAA Guidance, Navigation
and Control Conference, Austin, TX, 2003.

[2] H. Hemmati, W. Farr, B. Liu, J. Kovalik, M. Wright, and J. Neal,
“Formation metrology,” Nov. 2003, high-level descriptionof sensors
developed at JPL for precision gormation control. [Online]. Available:
http://dst.jpl.nasa.gov/metrology/index.htm

[3] M. Tillerson, G. Inalhan, and J. How, “Coordination and control of distributed
spacecraft systems using convex optimization techniques,” International Journal
on Robust and Nonlinear Control, vol. 12, pp. 207–242, 2002.

[4] P. R. Lawson, S. C. Unwin, and C. A. Beichman, “Precursor science for the
terrestrial planet finder,” Jet Propulsion Laboratory Publication 04-14, Oct. 2004.
[Online]. Available: http://planetquest.jpl.nasa.gov/documents/RdMp273.pdf

[5] F. Bauer, J. Bristow, D. Folta, K. Hartman, D. Quinn, and J. How, “Satellite for-
mation flying using an innovative autonomous control system(autocon) environ-
ment,” in AIAA Conf. on Guidance, Navigation and Control, Reston, VA, 1997,
pp. 657–666.

[6] A. Das and R. Cobb, “Techsat 21 - space missions using collaborating constella-
tions of satellites,” inAIAA Conf. on Small Satellites, Logan, UT, 1998.

[7] J. How, R. Twiggs, D. Weidow, K. Hartman, and F. Bauer, “Orion - a low cost
demonstration of formation flying in space using GPS,” inAIAA/AAS Astrody-
namics Specialist Conf. and Exhibit, Reston, VA, 1998, pp. 276–286.



[8] J. A. Dooley and P. R. Lawson, “Technology plan for the terrestrial planet finder
coronagraph,” Jet Propulsion Laboratory Publication 05-8, Mar. 2005. [Online].
Available: http://planetquest.jpl.nasa.gov/TPF/TPF-CTechPlan.pdf

[9] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of spacecraft formation
flying guidance and control (part ii): control,” inAmerican Control Conference,
Boston, MA, June 2004, pp. 2976–2985.

[10] V. Kapila, A. G. Sparks, J. M. Buffington, and Q. Yan, “Spacecraft formation fly-
ing: dynamics and control,”AIAA Journal of Guidance, Control, and Dynamics,
vol. 23, pp. 561–564, 2000.

[11] M. Mesbahi and F. Y. Hadaegh, “Formation flying control of multiple spacecraft
via graphs, matrix inequalities, and switching,”AIAA Journal of Guidance, Con-
trol, and Dynamics, vol. 24, no. 2, pp. 369–377, 2001.

[12] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A coordination architecture for
spacecraft formation control,”IEEE Transactions on Control Systems Technol-
ogy, vol. 9, no. 6, pp. 777–790, 2001.

[13] I. I. Hussein, “Motion planning for multi-spacecraft interferometric imaging sys-
tems,” Ph.D. dissertation, University of Michigan, 2005.

[14] M. Schuresko and J. Cortés, “Correctness analysis and optimality bounds of
multi-spacecraft formation initialization algorithms,”in IEEE Conf. on Decision
and Control, San Diego, CA, Dec. 2006, pp. 5974–5979.

[15] N. A. Lynch,Distributed Algorithms. San Mateo, CA: Morgan Kaufmann Pub-
lishers, 1997.

[16] J. E. Marsden and T. S. Ratiu,Introduction to Mechanics and Symmetry, 2nd ed.
New York: Springer Verlag, 1999.

[17] K. Räihä and E. Ukkonen, “The shortest common supersequence problem over
the binary alphabet is NP-complete,”Theoretical Computer Science, vol. 16,
no. 2, pp. 187–198, 1981.


