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Abstract

This paper considers formation initialization for a class of autonomousespa
craft operating in deep space with arbitrary initial positions and velocities: F
mation initialization is the task of getting a group of autonomous agents to obtain
the relative and/or global dynamic state information necessary to begirafimn
control. We associate a “worst-case total angle traversed” optimality nefitbn
the execution of any formation initialization algorithm, and present perdoce
bounds valid for any correct algorithm. We design tia8AL SPACECRAFT LG
CALIZATION ALGORITHM, HALF TWIST ALGORITHM and the VAIT AND CHECK
ALGORITHM, analyze their correctness properties and characterize their perfor-
mance in terms of worst-case optimality and execution time.
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1 Introduction

Motivation and problem statement

Deploying large structures in space requires multiple speaft to coordinate their ac-
tivities, due, in part, to the limited payload capabilit@daunch vehicles. Key aspects
of spacecraft coordination which are likely to be used in@abrvariety of contexts in-
clude: (i) formation initialization, i.e., the establisknt and maintenance of relative
dynamic state information and/or on-board inter-spadec@mmunication; (ii) for-
mation acquisition, i.e., making the group of spacecraétiaa desired geometry; and
(i) formation regulation and tracking, i.e., maintaigiriixed inter-spacecraft range,
bearing, and inertial attitudes with high accuracy alorgekecution of a desired tra-
jectory.

In this paper, we focus our attention on the formation itizétion problem. This
problem is especially important for spacecraft operatmdéep space, where conven-
tional Earth-based GPS does not provide sufficiently a¢eypasition information.
Here, we consider a spacecraft model motivated, in partheylesign possibilities of
NASA's “Terrestrial Planet Finder” mission. Our spacetrabdel is similar to the one
proposed in [1]. The spacecraft have laser-based diregdtiehative position sensors,
like the kind described in [2], which require two sensorsaic on to each other before
getting a position measurement. The spacecraft are asstanbedin deep space, far
from the effects of gravitational curvature.

Literature review

A fairly extensive bibliography of missions which plan tceuspacecraft formation fly-
ing can be found in [3]. These include Terrestrial PlanetEin{4], EO-1 [5], TechSat-
21 [6] and Orion-Emerald [7]. A driving motivation behindrfoation flying research
is that of large aperture adaptive optics in space, e.g. ] [8]. A good overview on
current research on formation flying for optical missionsastained in [2]. Most of
the work on control algorithm design has focused on fornmasioquisition and track-
ing. A survey of algorithms is given in [9]. Leader-follovgrapproaches, e.g. [10, 11],
and virtual structures approaches, e.g. [12], prescrikeotrerall group behavior by



specifying the behavior of a single leading agent, eithal oe virtual. Motion plan-
ning and optimal control problems are analyzed in [13]. Thi avork known to us
that has dealt in detail with formation initialization is|[1

Statement of contributions

The contributions of this paper are twofold. On the one hawel,provide optimal-
ity bounds on the performance of any correct formation afization algorithm. Our
analysis consists of a systematic study of optimality obathms, both in two and
three dimensions, with regard to worst-case total anglgtedtby any member of the
group of spacecraft. As a byproduct of our analysis, we gl®yustification for the
Opposing Sensor Constraintin [1] by showing that optimal algorithms exist which
invoke it. Our optimality bounds give rise to necessary dtoids valid for any correct
algorithm, that we use to show that the rotation phases dltf@ithm presented in [1]
fail to achieve formation initialization.

On the other hand, we present three original algorithms. Jb&TIAL SPACE-
CRAFT LOCALIZATION ALGORITHM achieves formation initialization through a sim-
ple sequence of rotational maneuvers, each of which sweeggi@ of a particular
partition of space. The YT AND CHECK ALGORITHM validates our lower bound on
total angle by sacrificing time efficiency for better angléaééncy, while the HALF
TWIST ALGORITHM achieves a total angle between that BARSIAL SPACECRAFT LO
CALIZATION ALGORITHM and WAIT AND CHECK ALGORITHM without additional
wait times. For these algorithms, we assess their corrsstrand formally character-
ize their performance with regards to the optimality measumentioned above.

Organization

This tech report is primarily intended as a companion to anference paper [15]
(in which the proofs of various theorems were omitted). BecR presents a set of
definitions which will be used throughout the paper. In SBt8 we give necessary
conditions for the correctness of any candidate solutiothi® problem, from which

we derive lower bounds for the optimality of any working sba. Section 4 presents
provable formation initialization algorithms, includiregsimple algorithm for 3-D in

Section 4.2 a slightly more optimal version in Section 4.3ckhwas not mentioned
in [15] for space reasons and a nearly-optimal algorithmcWtachieves angle effi-
ciency at the expense of long wait times in Section 4.4.

2 Preliminaries

Each spacecraft consists of a rigid body containing insémision one side, which need
to be shielded from the sun (see Fig. 1). To serve this purgase shields mounted

to the spacecraft body on the side opposite the instrumértis.sun shield normal
vector, fisyn(S), indicates the direction of the sun shield of space@afie make the
approximation that the vector to the siigyy, is the same for each feasible spacecraft
position. In order to operate without damaging the instrotagon, each spacecraft
must maintain the constraifigyn(S) - Vsun > cogOsyn) for some pre-specifie®syn



Figure 1: Configuration of spacecraft geometry, and bodyé&aefinition.

at all times. Relative position and velocity measuremestsvben two spacecraft are
made through thenetrology sensorsf the two craft. The metrology sensor of space-
craft Ssenses within a conical regio@d) with a half angle 0fs,, (assumed here to be
greater therfj unless otherwise stated) about #emsor cone centerlineAccurate ori-
entation information is available for all spacecraft thyghuneasurements of reference
stars. The spacecraft are placed such that the curvaturatbfegravitational field
has a negligible effect (for instance a Lagrange point). kiéeefore assume that if no
spacecraft undergo translational acceleration, thengheecraft move with constant
(initially unknown) velocity in straight lines relative &ach other.

Definition 2.1. Theglobal frame of referencis an arbitrary orthonormal frame, GE
{Xg,Yg, Zg}, where X = Vsyn. For a spacecraft S,fdenotes the position of the center
of mass of S in the frame GF. Thenter of mass framef S, CMKS), corresponds to
translating the global frame GF tosP Thebody frameof S, BRS) = {Xs, Y5, Zs} is
defined byXs = Asun(S), Zs = Vser(S) andYs = Zs x Xs. In this frame,{0,0,0} is at
the center of mass of S.

The state of each spacecr&ft {S;,---, S} can be described biPs, Ms) € R3 x
SQ(3).MstransformsBF(S) ontoCMF(S) andPs defines the translation betwe€MF(S)
andGF. The spacecraft are fully actuated.

The sensor conBs : R3 x SO(3) — 2&° of Sis

[0,0,1]"Mg(X — Ps)

Cs(Ps,Ms) = {X e R :
{ Y

< coYGxoy)}- 1)

When it is clear from the context, we will use the simpler niotaCs. In order to get a
relative position reading between two spaceci@ftandS;, Ps, € Cs, andPs, € Cg;
must hold. This condition is callesknsor lock

The algorithms we present all require thepacecraft performing the algorithm to
be split into two disjoint groups3; andG; such thalG; UG, = {S, ..., S }. This can
either be done a priori before launch or (preferably) withistrbuted algorithm prior
to running formation initialization (see [16]).



Two spacecraftS; andS,, are said to be maintaining tl@pposing Sensor Con-
straint if Vsen(S1) = —Vser(S2).While this constraint is not strictly necessary for a cor-
rect solution to the formation initialization problem, wellvehow in Section 3 that
it is a convenient constraint to work with. Note that this sloet fully constrain the
relative orientation of5; with respect toS,. When specifying an algorithm requiring
the Opposing Sensor Constraintwe will often specify the more restrictive constraint

Mg"Ms, = Mopp = diag(1, —1,—1).

We call this constraint th®©pposing Frame Constraint In addition to maintaining
the Opposing Sensor Constraint the Opposing Frame Constraintalso guarantees
that if spacecraf§, verifies the sun-angle constraint, th&nalso verifies it.

2.1 Algorithm definition

In this section we formally define what we mean by an “algonithIn what follows,
Dmsgdenotes the set of possible messages a spacecraft can caataah any instant,
andDsensor= (Z2 x R3 x ]1%3)n the set of possible sensor cone readings for a spacecraft.

Definition 2.2 (Algorithm notion) An algorithm is a tuple A= (St, Fs, Gs, Otstep),
where S € Ds;, the initial internal state of S, contains no informationcaib the
location of the other spacecraft and Is a map of the form
Fs: R x SQ3) x Dg; — R®
(t7 M37 StS) — Ws,
and Gsis a map of the form
Gs: R x SO(3) x Dst x Djfsg x Dsensor— Dst X Dimsg
(t,Ms, St5,MSGgjn, SENSOR) — (Sts, MSGgout)-

Definition 2.3. (Execution of an algorithm)An execution by a spacecraft S of an algo-
rithm As = (Sk, Fs, Gs, tstep) during the time intervalto,t¢] is given by te [to,tf] —
(Ps(t),Ms(t)) € R3 x SQ(3) and Sk : [to, tf] — Dst defined as follows:

e Ps(t) = Vs, for some constantd& R3;

o Ms(t) = Fs(t, Sk(t))Ms(t), t € [to,t;], whered is the matrix operator for the
cross product withw € R3;

e Sfsis the piecewise constant function defined by

Sk(ti+1) =
Gs((ti , Ms(ti ), Sts(ti ), MSG&in (ti ) , SENSOB) (ti)),

fori=0,...,m—1, withto,t1,...,tm € [to, ;] & finite increasing sequence, where
ti = kdtstepfor some ke N or t; corresponds to the time instant when a change
occurs in the value of the sensor cone readings. The iniahlesof Sg(tp) is

Stko.



The lack of concrete specification Binsg and Dg; reflects our intent to provide
lower bounds on algorithmic performance for spacecrathaitvide range of computa-
tional and communication capabilities. In practice, thekirgy algorithms we present
in Section 4 require basic computational capabilities @part of each spacecraft.

2.2 Total angle traversed and solid angle covered

Here, we present the notions of total angle traversed aidi &adjle covered during the
execution of an algorithm.

2.2.1 Total angle traversed during algorithm execution

In 3-D, recall thatMs = [my, m,,m] is an orthonormal basis matrix representing the
orientation of spacecrafs. From Equation 8.6.5 of [17], we haw® = MsMg?t. |
where® is the matrix operator for “cross product with.”

The total angle traversed during the execution of an algariin 3-D is therefore

s — — —
/to \/ @F o+ @F 5+ G5 5dt.

One can think of the 2-D problem as the 3-D problem with rotagiconfined to
the{Y,Z} plane. Under this constraint, the previous expressionaesito

18 R
/ |G/l
to

2.2.2 Solid angle traversed during algorithm execution

It will be useful to compute the total solid angle covered bg sensor con€s of a
spacecraft performing a formation initialization algbri in 3-D. If a spacecraftS,
with sensor cone field of view®;,, rotates by an angle afr about an axid where

| -Vser(S) = cog @), O > By, the new solid angle covered in this sweepcan be found
by tracing a band about the unit sphere and calculating @&a.aBee Figure 2 for an
illustration.

Figure 2: Method to compute rate of change of solid angle swep

Recall that the solid angle of a cap of half anglés [§ 2msin(t)dt. The area of
this band can be found by subtracting caps of half an@les®s,, and m— © — Oy



from the unit sphere and dividing by 2. , giving a result of

4m—2m(1— cogm— © — Bfyy)) — 21(1 — c0 O — Bxoy))
2

Dividing by rTgives a rate of change of coverage of solid angle for thisatpmsr , when
performed at angular velocits, as 2|w|| sin(©) sin(Gy). A similar argument gives
the expression for whe® < Oxqy as||w||(1+ sin(®) sin(Ofey) — cO0O) cOK Oxoy))

The total solid angle covered by a spacec&idixecuting an algorithms, between
timestgy andt is then

Faa(t) = /tt faa(e(1))dr,

wherefgg(w) : R® — Ris defined byfgq(w) = 2||@ x Vser(S) Sin(Oyoy ) || for arccogw-
VserS)/ | 1)) > Otov, andfsig(e) = || x Vser( S) SIN(Ofov ) || + [ ]| — |00+ Vser S)| oth-
erwise. For us, the total solid angle coveredSguring the course of the algorithm to
be Fg4(tf) + ao wheret; is the earliest time at which formation initialization isagt
anteed to be complete ag = 211(1 — cogOxoy) is the solid angle contained @x(to)

at timetp.

Remark 2.4. Note that0 < fgq(w) < 2||w|| Sin(Groy). °

Analogously, the total angle covered by a space@agierforming an algorithnA
in 2-D between timet, andt is

't
Fangidt) = /t |ldt.
J 0

2.3 Formation initialization problem

Formation initialization solutions entail establishirgnemunication and/or relative po-
sition information. Here we restrict ourselves to the elisaiment of relative position
and velocity information between each pair of spacecrafe asume that this in-
formation can come from any combination of direct sensodiregs, odometry and
communication with other spacecraft.

Definition 2.5. Let [ts,tf] be the duration of time during which a formation initializa-
tion algorithm runs. Define &) to be therelative position connectivity network at
time t, defined by @) = (V,E) where {(S) € V correspond to the spacecraft, &nd
the edggv(S),v(S;)) is in E if and only if spacecraftj%®nd § are in a state of sensor
lock. A solution to the formation initialization problemase that guarantees that the
graphUiep 1,/ G(t) is connected.

3 Correctness and optimality of formation initialization
algorithms

We start this section by providing a necessary conditiontlier correctness of any
formation initialization algorithm. Then, we proceed teeuhis condition as the basis



for a series of optimality bounds. We also present optimaéisults which justify the
Opposing Sensor Constraineind allow us to more easily reason aboutrilspacecraft
case (whera > 2).

Theorem 3.1. Let S be executing a correct formation initialization alglm in d
dimensions, with & {2,3}. For every ve RY, let t, be the first time such that&
Cs(ty) = Cs(Ps(ty), Ms(ty)). Then, there must exist t- ty such that—v € Cg(t*).

Proof. For simplicity, let vergu) = u/||u||, for u € RY. Consider two spacecraf§
and$S. S travels in the plane defined by it's velocity), and pe(St,S), where
pei(S1, S) is the point of closest approach betwegrandS, in CMF(S;). At timet

S, makes an angle withg (S, ) of arctad%t +1p) for somety. S’s initial

conditions can be chosen to match any arbitkagy pei (S, S) andtp. Because of this,
given ane and timest; andt,, vergPs,) can be made to stay within an anglesobf
—vergVs,) until timets, and move to within an angle afof vergVs,) by to. Lett; be
the first time at which the minimum angle between any ra@4it:) and ver$—Vs, ) is
less then or equal te andt, be the first time at whicks, (t2) includes ver§-Vs,). In
order to ensur&, finds S, Cg, (t*) must include ver@/s,) at some timg* > t1. Since
€ was picked arbitrarily and the sensor cone is always cloSgdf*) must include
vergVs,) at some time* > to. O

Name: Formation Initialization Algorithm
Assumes: Spacecraft model in Section 2.

. if § € Gy then
Rotate to aligrMg with I3
else
Rotate to aligrMg with Mopp
end if
- Wait for common start timeé
. Rotate by 3raboutXs.
: Rotate—Oy;; (in this case 25 degrees) abodt
: Rotate By aboutYs.
: Rotate byrr aboutXs.
: Rotate By aboutYs.
{This is the end of the rotational component of the algorithm
12: Rotate—Oyjr aboutYs.
13: Wait for some timéear fielg> O
14: if § € Gy then
15:  Begin translating alongg with speetvmax, Wherevmayis the maximum rela
tive velocity between any two cratft.
16: end if

e
= O

Table 1: Formation Initialization algorithm proposed if.[1
Theorem 3.2. The algorithm stages described in Steps 1-12 of Table 1 arehyo

themselves, sufficient to solve the formation initialmaroblem.



Proof. Let Se Gy perform this algorithm. By Theorem 3.1, for any vectorCs(t)
must contain-v at least once before the last tirffg(t) containsv. But eachv € Ryown
is last inCs(t) during Step 9, and noc {u€ CMF(S) : —u € Ryown} is inCs(t) before
Step 10. ThuRgown(S) does not satisfy this condition. O

For our purposes, we will consider the algorithm which miizies the maximum
worst-case total angle traversed of any space&aft be the optimal algorithm. Other
reasonable options would include the algorithm which mirnés the worst-case sum
over all spacecraff of the total angle traversed.

Let is now justify thatOpposing Sensor Constraints optimal.

Theorem 3.3. (Justification of thé@pposing Sensor Constraint): Let S and $ be two
spacecraft. The most optimal algorithm to guarantee thadr®l $ attain sensor lock
is one which uses th@pposing Sensor Constraint.

Proof. Imagine there is some algorith&which achieves sensor lock betwegnand
S intimetock. Create a new algorithd* in which §; implementsA, butS, maintains
the Opposing Sensor Constraintwith §;. If S had been followingA, the apex of
Cs, (tiock) Would be inCs, (tiock) at timetjoek. SinceS; is following A in algorithmA*,
the apex ofCs, (tiock) is in Cs; (tiock) When both craft followA*. By symmetry prop-
erties of theOpposing Sensor Constraintthe apex ofCs (tiock) is in Cs, (tiock), thus
guaranteeing sensor lock at or before titigg,. This means that for any algorithra,
which guarantees sensor lock, a modified algoriti#t) (vhich maintains th&ppos-
ing Sensor Constraintcan be constructed such th&t guarantees sensor lock in at
most as much worst-case rotationfas O

The next result shows an equivalence between worst-caselbdar 2 spacecraft
and worst-case bounds for any number 2 of spacecraft.

Theorem 3.4 (Extending worst-cases to Spacecraft) Given a spacecraft Swith
sensor cone half-angl®;,,, and anye > 0, the worst-case total angle traversed by
S, while performing a correct algorithm with-a 1 other spacecraft is identical to the
worst-case total angle traversed by a spacecraft with secgpe half-angleésq, + €
performing a correct algorithm with one other spacecraft.

Proof. Let tworst be the worst-case time for 2 spacecraft to find each othemgive
maximum angular velocity afomax Clearly the worst-case time forcraft is no worse
then this. Pick the initial conditions of the firat— 1 spacecraft arbitrarily. Le€
be the set of communications the first- 1 craft would send if they start from these
conditions and fail to achieve sensor lock wghby timet,,orst. Let T be the trajectory
S, would take given communicatioi@s Let A; be the algorithm for two spacecra8
and$, under which eacl$; blindly follows T andS, maintains the opposing sensor
constraint with respect t8;. Let Ryorst andviorst be the initial position and velocity of
S with respect td5, that achieves the worst-case total angle traverse8;fanderA;.

In the n spacecraft case, pick some spacectafiSet the initial position and velocity
of S, with respect td5 to beA Ryorst andA viyorst for A such that mi&[o,tworst](||Pworst+
Viworst || )A > S'm‘zfgg SinceSy, - - -, S,_1 never get more then,orstapart, these spacecraft
are contained within a ball of radiug,st centered af. By construction ofA, these




craft stay within an angular ball af from S;’s point of view, and thus none of these
craft achieve sensor lock with, before timetyorst. O

Theorem 3.4 allows the result from Theorem 3.3 to be gerrs@lio any number of
spacecraft. In addition, we will use Theorem 3.4 throughbetemainder of the paper
to allow us to analyze worst-case total angle bounds by derisig the 2 spacecraft
case.

Next, we provide gives a lower bound of the total angle cadéoethe 2-D problem

Theorem 3.5(2-D lower bounds on angle traversed@pr any algorithm A which solves
the 2-D formation initialization problem, an®, < 7, the worst-case total angle
covered by Sperforming A is37t.

Proof. For©x,y, < 7, by Theorem 3.1, every vector, on the 2-sphere must be scanned
at least once before the final scan-6f. This meansS; must scan at least half the
directions on the unit 2-sphere twice for a total angle cegef 3. O

From Theorem 3.5 we can deduce that the worst-case minimtahangle tra-
versed by any correct formation initialization algorithma-D ismin(3rm— 204y, 411—
4@f0v)-

The next result gives a lower bound on the solid angle covbyedny algorithm
solving the 3-D problem.

Theorem 3.6(3-D lower bounds on solid angle coveredjor any algorithm A which
solves the 3-D formation initialization problem, a@o, < g the worst-case total
solid angle covered by;$erforming A is6rr.

Proof. The total solid angle of a sphere ist4For O,y < 7, by Theorem 3.1, every
vector, v, on the 3-sphere must be scanned at least once before thedarabf—v.
This meansS; must scan at least half the directions on the unit 3-spheieetior a
total solid angle covered ofrb O

The bound in this result induces a lower bound on angle ts&¢kin 3-D.

Corollary 3.7 (3-D lower bounds on total angle}or any algorithm A which solves
the 3-D formation initialization problem, an@®,, < g the worst-case total angle

traversed by Sperforming A is at Ieasf’%‘f%{lz whereag = 211(1— cogBxoy))-

Proof. Recall from Remark 2.4 th#FSm(t) = faa(w) < 2||wsin(Orey)||. Since 61—

0o < [ fag(e(t))dt < [2||ewsin(BOxoy)||dt = 2SiN(Broy) [ ||w||dt and the total angle
rotated is defined af||w]||dt, we can say that the total angle rotated by any spacecraft

S; performingA is %- -

4 Provably correct formation initialization algorithms

Having given lower bounds on what is necessary for a cor@ahdtion initialization
solution, in this section we set out to answer whether thélpro as we pose it has
a solution. Section 4.1 describes an algorithm from theditee for a 2-D variant of



this problem. Section 4.2 presents a purely rotationalrétlym for formation initial-
ization in 3-D and Theorem 4.5 gives a proof of its correcsn&ection 4.4 provides an
algorithm which comes closer to the optimality bounds pnésein Section 3 at the ex-
pense of other practical considerations. This algorithprésented as a demonstration
of the tightness of the optimality bounds.

4.1 Formation initialization in two dimensions

To prove the correctness of the algorithm in 3-D, we will n@esimpler algorithm for
the 2-D case, which we term “in-plane search”. This algaonitldescribed in Table 2,
solves the formation initialization problem for a group pésecraft residing in a plane,
see [1]

Name: PLANAR SPACECRAFT LOCALIZATION ALGORITHM
Goal: Solve the Formation Initialization problem in 2-D
Assumes: Spacecraft model in Section 2

if § € Gy then
Turn to common reference orientati@aart
else
Turn to Oggart+ 1T
end if
. At synchronized start timi, begin rotating with constant angular velocity> 0.
Continue this rotation for 8 radians.

o0 R NR

Table 2: The PANAR SPACECRAFT LOCALIZATION ALGORITHM.

Proposition 4.1 ([1]). With the spacecraft model in Section 2, fAEANAR SPACE-
CRAFT LOCALIZATION ALGORITHM achieves formation initialization.

Note that the PANAR SPACECRAFT LOCALIZATION ALGORITHM achieves the
lower bound from Theorem 3.5.

4.2 SPATIAL SPACECRAFT LOCALIZATION ALGORITHM

Both the description of the full 3-D algorithm and its prodfoorrectness require some
additional specific definitions, that we briefly expose next.

For the purpose of this algorithm, we will defit@; = min{Osun, G0y} and as-
sumeBroy > 7.

Definition 4.2. Let S be a spacecraft. Define
e Ri(S)={UcCMF(S : U-Xs<O0};
e Ry(S) =CMF(S)\Ry(S).



Remark 4.3. Let O be an angle such thag — Orov < Biit < Ory- R1(S) is chosen
S0 as to be included within the region swept out by space&fafsensor cone while it
is tilted by an angléy; towards the sun axis and performinga rotation about the
sun axis. R(S) is chosen so as to be included within the region swept out dgespaft
S’s sensor cone while it is tilteg — Oy < Byiir < BOgoy away from the sun axis and
performing a3t rotation about the sun axis. Also, note that in the frame GB)F
Ri(S)UR(S) = RS, °

The full 3-D algorithm will invoke the subroutine describedTable 3.

Name: 3-D REGION SWEEP ALGORITHM
Goal: Scan a region for use as a subroutine IBABAL SPACECRAFT

LOCALIZATION ALGORITHM
Inputs: (i) A spacecraftS

(i) An integer,n € {1, 2}, indicating the region to be swept

Assumes: (i) Spacecraft model in Section 2.
(i) Oroy > % andOyoy + Osun > ’;T

Require: At the start of this subroutine, there exist matriddg M, € SQ(3) such
that for all § € G1, Mg = My, for all §j € Gz, Ms; = Mg, M1[1,0,0]" =
Mo[1,0,0]" andM4[0,0,1]" = —M[0,0,1]" .

Require: At the start of this subrouting,0,1]M;[0,1,0]" = 0.

1: SetOror = [0,0,1]Ms[0,0,1]T (—1") - Oy

2: Rotate byOrot aboutYs

3: Begin rotating aboukg by a constant angular velocity. Continue this rotation
for 3mrradians and then stop.

4: Rotate byOrot aboutYs

Table 3: The 3-DREGION SWEEP ALGORITHM

At the end of the execution of the 3-REGION SWEEP ALGORITHMIf § is in Gy,
thenR,(S) has been swept, otherwiSehas maintained an orientation such that for all
Sj in Gy Mg[0,0,1]" = —Mg[0,0,1]". With these ingredients, we can now define the
SPATIAL SPACECRAFT LOCALIZATION ALGORITHM in Table 4.

Let us discuss the correctness of theABAL SPACECRAFT LOCALIZATION AL-
GORITHM. As in Section 4.1, we reduce the problem to that of two spadefinding
each other. Call these spacecrgfte G; and$; € Gp. Recall thatSy’s motion in
CMF(S,) is along a straight line with constant velocity. Considearthhe two half-
spaces defined by thgy,Z} plane inCMF(S;). BecauseS; moves with constant
velocity with respect t@, it can cross from one half-space to the other at most once.
The paths it can take are as follov&.can begin iR (S;) and cross td(S;) at most
once. LikewiseS; can begin inRx(S;) and cross intdRy (S;) at most once.

Because we make no assumptions about the speed at whichspieesraft take
these paths, or at which part of the path they start, handliage cases will automati-
cally handle the cases for paths that fail to cross{the } plane.



Name: SPATIAL SPACECRAFT LOCALIZATION ALGORITHM
Goal: Solve the Formation Initialization problem in 3-D
Assumes: (i) Spacecraft model in Section 2.

(i) Oroy > % and©roy + Osun> g

. if § € Gy then
Rotate to aligrMg with I3
else
Rotate to aligrMs with Mgpp
end if
: Wait for common start timé
Call 3-D REGION SWEEP ALGORITHM onS§ andRy(S)
: Call 3-D REGION SWEEP ALGORITHM 0nS andRx(S)
: Call 3-D REGION SWEEP ALGORITHM 0nS andRy(S)

@O N REONR

Table 4: The BATIAL SPACECRAFT LOCALIZATION ALGORITHM.

Lemma 4.4 (Partial reduction to in-plane search)oing a 31t sweep (turning about
the sun line) through RS), n€ {1,2}, Se Gy, finds all spacecraft in &that stay in
Rn(S) during the entire duration of th&rt rotation.

Proof. Projecting the centerline of the cone and the spacecrdlft pato the{Y,Z}
plane iINCMF(S) reduces this to the 2-D algorithm. In the cases whR(&) contains
points which project directly ont@0,0) there can be a collision in the 2-D projection
which does not correspond to a collision of the craft in 34DtHese cases, the sensor
cone ofS; always contains all such points, and any colliding craftfated. O

Finally, we are in a position to establish the correctnesb@full 3-D algorithm.

Theorem 4.5. With the spacecraft model in Section 2, S@ATIAL SPACECRAFT LO-
CALIZATION ALGORITHM solves the formation initialization problem.

Proof. Consider two spacecraf; and S. Let S start in Ryegin(S1) and end in
Rend(S1). If Roegin(S1) = Rend(S1) we are done. Otherwis®; must scarRend(St)

at least once after the first scanRyegin(S1). If the scan oRyegin(S1) did not findS,,

thenS, must be inReng(S1)

If S never crosses thgr,Z} plane, either the scan 8% (S;) or the scan oRx(S))
must find it. OtherwiseS, starts in one region and ends in the other. The sequence
of region sweeps performed I8 guarantee tha®, will scan the regiors, starts in
at least once before scanning the reg®rends in. IfS; is not found whers, first
performs a sweep of the region in whi€h begins (call thisRpegin(S1)), thenS,; must
be in the remaining regiorRen¢(S1)) by the end of the sweep. Since this was the first
sweep 0fRpegin(S1), St Must scan aRend(S1) at least once after this point and find

. O

Remark 4.6. TheSPATIAL SPACECRAFT LOCALIZATION ALGORITHM sweeps a total

solid angle of9rr+ s?r%f':w and performs rotations totalin@m+ 50y, where®y; =

min(g*efow Osun)- °




4.3 HALF TWIST ALGORITHM

We have discovered a set of alternative algorithms for tlse eghere the sensor cone
half-angle @roy) is wider than. These algorithms are in the same flavor as those
presented above, and have a common relation to the problé®hoftest Common
Supersequence” in computer science. We call them “HalsTwigorithms” due to
their use of 180 degree sweeps of the sensor cone.

4.3.1 Preliminaries

For the duration of this paper the symbal” will refer to the operator “bitwise exclu-
sive or”.

Definition 4.7. The “bitwise exclusive or” of two numbers (denoted here laym) is
defined by taking the binary representations of m and n andngdelach successive
digit modulo 2. In other words the ith digit ofdam is defined byn® m); = (n; +m
mod 2.

For the HALF TWIST ALGORITHM, the following region definitions will be used.

Definition 4.8. Let S be a spacecraft. Fora{0,1,2,3}, define

Ruwistn(S) ={ve CMF(S) : (v-Ys)(1-2(n mod2) <0
and(v-Xs)(1—2(|n/2] mod 2) < 0}.

Remark 4.9. If two regions, Ruisti(S) and Rwist j(S), abut at the{Y,Z} plane, then
j@i=2. Likewise, if Ryisti (S) and Ruist, j (S) abut at the{X,Z} plane, then jpi = 1.

Rgmark 4.10. Inthe frame CMKS), Ruist0(S) URuwist, 1(S) U Ruwist,2(S) U Ruwist 3(S) =
R

A diagram of the regions can be found in Figure 3. This diagigfrom a view-
point looking directly down th& axis inCMF(S) whereSis the spacecraft shown in
the diagram. Note that any two regiofuisti (S) andRuwist, j (S), which share a border
along theY Zplane have the property thiab j = 2, and any two region&yuist(S) and
Ruwist1 (S), sharing a border along theZ lane have the property th&tp | = 1. This
property of the labeling will be used in the path enumeratifgorithm presented in
Table 5.

4.3.2 2dLemmas

Lemma 4.11. Let there be two spacecraft; &nd S, traveling in straight lines ifR?2
with constant velocity, maintaining the constraiigé{S1) - VsenS2) = —1. Let the ray
defined byise(S1) perform an angular sweep of less them and let this ray b&hegin

at the beginning of the sweep anglq at the end of the sweep. L@tbe the area swept
out by the ray defined b¥en(S1). If S is initially in Q, then at the end of the sweep
either $ has been found, or,$has crossedeng.



R{wisLO(S) Rtwist,l(s)

s T Y
—

Rtwist,Z(S) RIWiSt.3(S)
X

Figure 3: Cross section of regions for alternative algonith

Proof. Let V2 := Ps, — Ps; in CMF(S;). ConsiderZ(Vq2,VsenS1)). Without loss of
generality, this quantity must be positive at the beginrohthe sweep. Likewise, at
the beginning of the sweep,(V12, Thegin) > 0 andZ(Vi2,Tend) < 0. So long a§; andS,

do not collide,Z(V12,Vser(S1)) varies continuously with respect to time. At the end of
the sweep/ (Vse(S1), Fend) = 0. Since/ (Vsen(S1),Tend) @lso varies continuously, either
Z(V12,Tend) OF Z(V12,Vser(S1)) must have reached 0 by the end of the sweep. O

As a side note, i sweeps out a region of anglerZhenS, can cros$enq without
leaving the region.

Lemma 4.12. Given the scenario in Lemma 4.11, let the sensor ray sweegpregion
of less thantradians, and let that region contai@. At the end of the sweep, either S
has been found, or it has exit€l

Proof. LetTyeginandrengbe defined asin Lemma4.11. Fgrto have evaded detection,
it must have crossei,q from the direction of the swept cone. Since the sweep angle
is less thanr, it cannot have re-enterel. O

4.3.3 Regions in 3d space and partial reduction to 2d lemmas

Lemma 4.13. Let there be two spacecraft, &ind $, maintaining the constraint
M;llm& = Mopp- Let [0,0,1]Mg,[0,0,1]T = +1 and [1,0,0]" = Mg,[1,0,0]". Let
there be an integer & {0,n1,2, 3} indicating a region to be swept. Let $ilt by
[0,0,1]Mg,[0,0,1]T (—1)**12) @y, about Y, then rotate b, 0, 1]Ms, [0,0,1] (—1)"1t
about X and finally tilt by0,0,1]Ms; [0,0,1]T (—1)**L2) @y, about Y. Let $main-
tain MgllMS2 = Mopp during the course of this maneuver. 8 in Ruwistn(St) during
this maneuver, then at the end of the maneuver, eitha$s been found, or,$as left

Rtwisnn(sl)-

Proof. Consider the projection of the sensor cone centerline ¢ Z plane at some
moment in time. Any point withifRwistn(S1) that projects onto this line is in the region
of the sensor cone at this moment in time. Siggeroceeds in a straight path with



Name: Path enumerator
Goal: Enumerate the set of traversal sequences resulting from a
spacecraft traveling in a straight line through the regidas

fined in Section 4.3.3 )
Assumes: (i) Craft travel in straight lines and can thus cross eacingla

exactly once
(ii) Labelslyz andlyz have been given to each plane such that
each label is a distinct power of 2 as in Remark 4.9.

=

. Initialize lesyir to be an empty list{lesyit Will hold the list of traversal se-
quence$
. for all RegionskRdo
Insert the sequend® R® Ixz, R® Ixz ® lyz) Into lresuit
Insert the sequend® R® lyz,R® lyz® 1x7) into lresuit
end for
: Returnlesyt (the list of possible traversal sequences)

o9k wN

Table 5: Path enumeration algorithm.

constant velocity, its projection down onto tNe plane is also a straight path with
constant velocity. 15, crosses th& Z plane then it has automatically 1€wistn(S1),
otherwise this reduces to Lemma 4.12. O

4.3.4 Use of “Shortest Common Supersequence” algorithm

Note that the 4 regions defined in the previous section (sp& &) are divided by the
XZ andY Zplanes. Any path taken by a craft traveling in a straight iaa cross each
of these planes at most once. We will consider paths thas ¢roth of these planes, as
region traversal sequences corresponding to paths theg ore or fewer plane can be
thought of as subsequences of region traversal sequengesmanding to paths that
cross two planes.

Constructing the set of such traversal sequences is quste aad an algorithm to
do so is described in Table 5.

Lemma 4.14. Construction of a sequence of regions to sweep that conésials pos-
sible traversal sequence as a (non-contiguous) subsegqugaltls an algorithm that
provably finds Sregardless of the path thap $akes.

Proof. Consider an arbitrary path and its traversal sequeneg = (Sp1,Sp2; ---;Spn)-
Let Ssweep= (Ssweept, Ssweep2,* * - » Ssweepm) D€ the sequence of regions swept ouhy
during the course of the algorithm. L&}, = (Ssuh1, Ssub2, ---» Ssunn) D€ @ subsequence
of the sequence akweepthat is exactly equal tg, (by construction, this must exist).
After S, sweepsspy, spacecraft B must either have been found or be further atoitg
path thars,;. Using an inductive hypothesis stating that aghas swepspi, S must
be further along in its path thesp;, we can easily prove that whe3a begins its sweep
of spi11), B is either in the segment of its path correspondingyta 1) or further along



Name: Shortest common supersequence
Goal: Find the shortest common supersequence(s)sefiquences.
Assumes: (i) Input is of the form(s,sp, ..., Sn)
(ii) Eachs is comprised ofs 1,S 2, .S jengths))
(i) An integer npax is provided as an additional input, to specify
the max length of candidate solutions.
(iv) Sequence items range over the alphabet

: Setthe listgguit:= 0
: SetNminlength:= Nmax
. Let I be the set of sequences of lengthyx of symbols from>
. for all Sequencegy € N do
if px contains eacly as a subsequence and lengi(< Nminiengththen
if length(x) < Nminiengththen
SetNminiength:= lengthy)
Setlresut =0
end if
Setlresuit := appendgesuit, P)
end if
: end for
: returnlyesylt

N A~E®NRE

e

Table 6: Shortest common supersequence algorithm.

its path. IfS; is further along its path at the beginning of the sweep, thegmains so
at the end. Otherwise eith& finds S, or S, has progressed further in its path. Since
the sequence of regior®s travels through is finite, at the end of this operatinhas
been found. O

What remains is to come up with a way to find such a sequence @n®go
sweep. The problem of finding a sequesgven a set of sequencéS;, S, etc} such
that S contains eacl$ as a subsequence is known as the “shortest common superse-
quence” problem in computer science. It is closely relatethe “shortest common
subsequence” problem. While this can be solved in polynotime for a set of two
sequences, in general it should be noted that “shortest consopersequence” is NP-
complete [18]. This is actually not a problem for spacedrafialization, as the input
size is small, and the solution can be computed offline, legtoe robots are sent into
space. It should be clarified here that “shortest commonesjuence” is not part of
the formation initialization algorithm we intend to pres@mthis section, but rather a
method of arriving at a particular formation initializati@lgorithm. One method of
solving the “shortest common supersequence problem igpted in Table 6.

The algorithm we use for “shortest common supersequencedti®ptimized for
speed. For cases where more regions of space need to bearedsia fast approxima-
tion to “shortest common supersequence” might need to betitutied.



4.3.5 HALF TWIST ALGORITHM

Running “shortest-common-supersequence” on the possalieences for this problem
yields a solution of
(0,1,2,3,0,1,2,0)

This particular sequence is convenient, as many of the phiegion sweeps can be
composed into single 360 degree rotations (for examplg @,,3) can be composed
in this way. Note that the algorithm described in Sectioneb@tains 9 rotations of
180 degrees, while this algorithm needs 8 such rotationsueder, each algorithm has
different patterns of tilting up and down. In Section 4.3.& will demonstrate that the
differences between these patterns amount to fewer thaddd@@es of rotation.

Name: HALF TWIST SWEEP
Goal: Scan a region for use as a subroutine byLH TWIST ALGORITHM
Inputs: (i) A spacecraftS
(i) An integer, n, indicating the region to be initially swept (e.g.
3 meanR;(S))
(iii) An integer nregions Which is set to 2 if we are to continue and
sweepRuwistne1(S) and set to 1 otherwise

Assumes: (i) Spacecraft model in Section 2
(ii) Ofov > g

Require: Atthe beginning of the algorithnvS € Gy, [0,0,1]Msg [0,0,1]" = +1 and
[17 0, O]T = Msl[lv 0, O]T
Require: V§ € G1,5j € Gy, § andS; maintainMglMsj = Mopp-
1: if Se G1 then
Rotate by[0,0,1]Mg[0,0,1]T (—1):+13) @y, abouty.
Rotate by[0,0,1]Ms, [0,0,1]" (—1)"r aboutX.
nu

N

3:

;. Rotate by(0,0,1]Ms,[0,0,1]T (1) **L2) @y, abouty.
5: else

6: Rotate by[0,0,1]Mg]0,0,1]T (—1)2) @y, abouty.

7. Rotate by[0,0,1]Mg, [0,0,1]T (—1)"r aboutX.

8 Rotate by0,0,1]Ms [0,0,1]T (~1)2)@y; aboutY.

9: end if

Table 7: HALF TWIST SWEER

Theorem 4.15. TheHALF TWIST ALGORITHM described in Table 8 completes forma-
tion initialization.

Proof. Reduction to the two-spacecraft sky-search can be done @gwous proofs
(see Section 4.2). By Lemma 4.12 each 180 degree sweep fisgse¢craft that begin
the sweep in a particular region and stay in the region. Siheesequence of region



Name: HALF TWIST ALGORITHM
Goal: Solve the formation initialization problem using less totaation

then algorithm in Section 4.
Assumes: (i) Spacecraft model in Section 2

(i) Oroy > LZT
1: if § € Gy then
2:  Rotate to aligrMg with I3
3: else
4:  Rotate to aligriMg with Mopp
5. end if
6: Wait for common start timé
7: Call HALF TWIST SWEEPON S, N = 0, Nregions = 2
8: Call HALF TWIST SWEEPON S, N = 2, Nregions = 2
9: Call HALF TWIST SWEEPON S, N = 0, Nregions = 2
10: Call HALF TWIST SWEEPON S, N = 2, Nregions= 1
11: Call HALF TWIST SWEEPON §, N = 0, Nregions= 1

Table 8: HALF TWIST ALGORITHM.

sweeps has been chosen to match a shortest common supearsefpreall possible
region traversal sequences of the other spacecraft, albspaft have been found (see
Lemma 4.14). O

Angular distance efficiency of 3d algorithm

The algorithm described in the previous section makes 3ioots of 37 radians
each, and the equivalent of 5 tilts &%;. The algorithm described in this section
makes the equivalent of 8 rotationsmfadians each and 9 tilts &y; -

The difference between the total angle traveled in thesesda®91+ 50y — (8m+
90yt ) leading to a difference aff — 40y, radians. 1fQy; < 7 then the new algorithm
requires less total angular rotation. Sir@g, must be greater than or equal fofor
this algorithm to work in the first place, ai@}j; can be anything greater th@r Ofov,
Oyt can be chosen to yield a shorter total angular path theaTIBL SPACECRAFT
LOCALIZATION ALGORITHM.

4.4 \WAIT AND CHECK ALGORITHM

As pointed out in Remark 4.6, the provably correeRBIAL SPACECRAFT LOCALIZA-
TION ALGORITHM is far from optimal both in terms of total angle traversed antid
angle covered. In what follows, we introduce the@ M/AND CHECK ALGORITHM (cf.
Table 9). This algorithm has a much better performance vatfards to solid angle
covered, at the expense of a longer execution time. Aftabéishing its correctness in
Theorem 4.17, we show how to modify it to achieve an optimtltatation given its
solid angle covered (cf. Remark 4.18).



Name: WAIT AND CHECK ALGORITHM
Goal: Solve the formation initialization problem using neariopl

solid angle coverage.

Assumes: (i) Spacecraft model in Section 2.

(") efov > 774-[.

10:
11:
12:
13:
14:
15:

© O N a kDN R

: Def|neeg = Ofov - 7?4-[
- if § € Gy then

Rotate to aligrMg with I3
else

Rotate to aligrMg with Mgpp
end if

: Wait for common start timé
: Rotate byZ aboutYs {Call the time at the end of this steg

Rotate abouKg by 2 with angular velocityw{Call this timet,}

Wait 222 (t, — t;){Call this timets}

Rotate abou¥s by ="{Call this timets}
Rotate abouKg by 3mrwith angular velocityw{Call this timets}

Rotate abou¥s by ="{Call this timets}
Wait 222 (t5 —t;) {Call this timet,}

Rotate abouKs by 2 with angular velocityw{Call this timet}

Table 9: The VWIT AND CHECK ALGORITHM.




The next lemma will be used in establishing the correctnéshe WAIT AND
CHECK ALGORITHM.

Lemma 4.16. Consider a spacecraft,Sraveling in a path with respect to, Svith ve-
locity Vs, and point of closest approach,pS;, ). Letl 5 be the plane in CMES,)
spanned by the vectorg (5, S) and \&,. Define a parameterization of vectorslin »
by the functior®scan(P) = arctan(pe(S1,S) - P, —Vs, - P). For any angled € [0, ]
ande € [0,0], if S first verifies thatOscan(Ps,) < © — € at time § and then verifies

that Oscar(Ps,) > © -+ € at time b, then by time4-+ tan( g £ (t,—t1), S will be within
¢ of its final angle.

tan

Proof. SinceOscan(Ps, (t12)) —OscanPs, (t1)) > 2¢, ”pH(SzH |satleas§2—5 OscarPs, (tz—

t2))) > arctar(tan(© + ¢) + 2 ta"(f tp—t1) > m—e. m

&

Next, we characterize the correctness of thel WAND CHECK ALGORITHM.

Theorem 4.17. The WAIT AND CHECK ALGORITHM correctly solves the formation
initialization problem.

Proof. Consider a spacecraffy. Any other spacecraft whose position is less than
zero at timet; must either be found, cross th¥,Z} plane, or cross théX,Z} plane
beforet,. If S, crossed thedX,Z} plane betweety andt, and was not found, then it
must have been moving with sufficient velocity to have mowedithin ©; of its final
angle by timets. By this logic, byts, any craft with a final angle corresponding to a
positive X component of position must have been found by tigmer be on the+X
side of the{Y,Z} plane by timet;. Betweent, andts all such craft are found, along
with any craft that started on theX side of the{Y,Z} plane and have not left it by
(by Lemma 4.16). Any craft which have left theX side of the{Y,Z} plane byts but
were not found during the sweep of theX half of the{Y,Z} plane must have been
moving with sufficient angular velocity as to be with@y of their final angles (on the
—X half of the{Y, Z} plane) byts (cf. Lemma 4.16). For this reason, the final sweep
of the —X side of the{Y,Z} plane need only be ar?sweep. O

Remark 4.18 (Angle-optimal region sweeps)fhe WAIT AND CHECK ALGORITHM

covers a solid angle ofrt+ Slg?"" 7 Clearly, the ratio of total angle traversed to solid

angle covered in th&AIT AND CHECK ALGORITHM is not at the optlmalzlw
V

The algorithm can be modified to traverse a total angl@m$in(Oy; ) + 50y, where
Oiit = Min(77/2 — BOroy, Osun, Orov), at the expense of not respecting the sun-angle con-
straint. We describe how next. The optimal ratio of totallaritgaversed to solid angle
covered is achievable for any rotational trajectoryWgéS) over time. While a rota-
tional velocity, w, specifies the instantaneous rotation of the entire bodynéraf S,
the instantaneous motion @ S) only fixes two degrees of freedom of this rotation.
By choosingw to lie alongVsen(S) x %Vsen(S), we can always achieve the maximum
instantaneoussfy(w) /|| w|.

Let us suppose thateqS) is within an angle off — a of the sun line, and we wish

for Vser(S) to sweep out the arc defined by € {vV e ]R3 |IV]| = LAarccogV- Vsyn) =




2 —a}. Atany instant during whiclse(S) € Cq, the optimal axis of rotationg,
is both perpendicular td/seS) and guaranteedse(S) remains in G. One such
w always lies on a cone which we will define agpe= {Ve R3 : [[V]| = 1A
arccogV-Vsyn) = 0}, see Figure 4. Note that the body frame, (BFdoes not move

WCMF(S)

)
i

Con

Figure 4: Performing a sweep ofiavith less then 2Zr rotation

with respect to CMFES) at any point along the axiso. When the sweeps about the
sun line of theVAIT AND CHECK ALGORITHM are executed as we just described, the
algorithm requires a total angular rotation % + 56t . °

5 Conclusions and future work

We have considered the formation initialization problemdayroup of spacecraft en-
dowed with limited field-of-view relative position sens@sd omnidirectional com-
munication. We have obtained optimality bounds for the grenince of any correct
algorithm in terms of worst-case solid angle covered anal sogle traversed. In 2-D,
the angle traversed bound is hard and in 3-D, the angle saddoound is no worse
than the solid angle bound. Our analysis of optimality fiesiseveral decisions made
in both our own algorithm designs and those of previous wadnduding the RANAR
SPACECRAFT LOCALIZATION ALGORITHM and theOpposing Sensor Constraint
We have also synthesized three provably correct formatdralization algorithms.
In particular, the BATIAL SPACECRAFT LOCALIZATION ALGORITHM is simple and
easily provable, while the YA'T AND CHECK ALGORITHM is nearly optimal accord-
ing to the optimality bounds obtained. In additionalHF TWIST ALGORITHM gives a
tighter angle bound thenPATIAL SPACECRAFT LOCALIZATION ALGORITHM without
the wait times of VWIT AND CHECK ALGORITHM at the expense of requiring a more
complicated search procedure.



Areas of future work will include (i) the determination ofgtloptimality ofOppos-
ing Sensor Constraintwhen the spacecraft start in random orientations (thiss#yea
seen for the case of two spacecraft). If this is true in gdntran it will be of interest
to determine the optimal way to move the spacecraft to gattief Opposing Sensor
Constraint; (ii) the investigation of other notions of optimality, uas minimum time
to complete formation initialization on a fixed fuel budgéi) the determination of
whether the @ solid angle bound in 3-D is a hard bound. F&, = ’—2T this bound
gives a total angle rotated bound af,3vhich matches the intuitive result from reduc-
ing this special subproblem to 2-D.
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