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Milovan Krnjajić, Athanasios Kottas and David Draper

Department of Applied Mathematics and Statistics, Baskin School of Engineering,

University of California, 1156 High Street, MS: SOE2, Santa Cruz, CA 95064, USA

Abstract In this paper we present the results of a simulation study to explore the ability of

Bayesian parametric and nonparametric models to provide an adequate fit to count data,

of the type that would routinely be analyzed parametrically either through fixed-effects or

random-effects Poisson models. The context of the study is a randomized controlled trial

with two groups (treatment and control). Our nonparametric approach utilizes several

modeling formulations based on Dirichlet process priors. We find that the nonparametric

models are able to flexibly adapt to the data, to offer rich posterior inference, and to pro-

vide, in a variety of settings, more accurate predictive inference than parametric models.
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1 Introduction

In an experiment conducted in the 1980s (Hendriksen et al. 1984), 572 elderly people

living in a number of villages in Denmark were randomized, 287 to a control group,

who received standard health care, and 285 to a treatment group, who received standard

care plus in-home geriatric assessment (IHGA), a kind of preventive medicine in which

each person’s medical and social needs were assessed and acted upon individually. One

important outcome was the number of hospitalizations during the two-year life of the

study.

Table 1 presents the data. Because of the randomized controlled character of the study,

it is reasonable to draw the causal conclusion that IHGA lowered the mean hospitalization

rate per two years (for these elderly Danish people, at least) by (0.944 − 0.768)
.
= 0.176,

which is about a 19% reduction from the control level, a difference that is large in clinical

terms (and indeed Hendriksen et al. used this result to recommend widespread implemen-

tation of IHGA). So far this is simply description, combined with a judgment of practical
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Table 1: Distribution of number of hospitalizations in the IHGA study over a two-year

period.

Number of Hospitalizations

Group 0 1 2 3 4 5 6 7 n Mean Variance

Control 138 77 46 12 8 4 0 2 287 0.944 1.54

Treatment 147 83 37 13 3 1 1 0 285 0.768 1.02

significance. But what is the posterior distribution for the treatment effect in the entire

population of patients judged exchangeable with those in the study? This is an inferential

question, for which a statistical model is needed.

Since the outcome consists of counts of relatively rare events, Poisson modeling comes

initially to mind; in the absence of strong prior information about the underlying hos-

pitalization rates in the control and treatment groups, the first choice might well be a

fixed-effects model of the form

Ci|λ
C IID

∼ Poisson(λC), Tj |λ
T IID

∼ Poisson(λT ),

for i = 1, . . . , nC = 287 and j = 1, . . . , nT = 285, with, say, a diffuse prior for (λC , λT ).

But the last two columns of Table 1 reveal that the sample variance-to-mean ratios in

the control and treatment groups are 1.63 and 1.33, respectively, indicating substantial

Poisson over-dispersion. The second parametric modeling choice might well therefore be

a random-effects Poisson model of the form

Ci|λ
C
i

indep
∼ Poisson(λC

i ), i = 1, ..., nC

log(λC
i ) | βC

0 , σ2
C

IID
∼ N(βC

0 , σ2
C), i = 1, ..., nC ,

(1)

and similarly for the treatment group. (Again, diffuse priors could be used for (βC
0 , σ2

C).)

This model is more scientifically satisfying: each patient in the control group has his/her

own (latent) underlying rate of hospitalization λC
i , which may well differ from the under-

lying rates of the other control patients because of unmeasured differences in factors such

as health status at the beginning of the experiment.

Model (1), when extended in parallel to the treatment group, specifies Lognormal mix-

tures of Poisson distributions as the implied sampling distributions of the hospitalization

counts Ci and Tj, and is easy to fit via MCMC; the inferential question posed above

is addressed in a straightforward way by monitoring the multiplicative effect parameter

exp(βT
0 − βC

0 ). However,
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(a) nothing guarantees that the Gaussian mixing distribution in the last line of (1) is

“correct,” and moreover

(b) this model was arrived at by the usual data-analytic procedure in which we (i) enlist

the aid of the data to specify the structural form of the model and then (ii) pretend

that we knew all along that model (1) was appropriate.

As has been noted elsewhere by many observers (e.g., Draper 1995), this approach

to model-building is both incoherent and liable to mis-calibration: we are in effect using

the data twice, once to specify a prior distribution on structure space and then again

to update this data-determined prior, and the result is likely to be inappropriately nar-

row uncertainty bands. Bayesian nonparametric (BNP) modeling, in which the mixing

distribution is regarded as unknown—instead of dogmatically asserting that we somehow

know it is Gaussian—may well provide a more satisfying approach to modeling data of

this type. (See, e.g., Walker et al. 1999; Müller and Quintana 2004; Hanson, Branscum

and Johnson 2005, for reviews of BNP modeling.) In this paper we contrast paramet-

ric and nonparametric models, based on Dirichlet process (DP) priors (Ferguson 1973),

for over-dispersed count data, with the goal of exploring the practical consequences of

nonparametric modeling as an alternative to the potentially mis-calibrated data-analytic

approach to model-building.

We argue that such comparisons for generic statistical model settings are practically

important to enhance our understanding of the performance of BNP models. The im-

portance of this type of work has been recognized in the Bayesian literature, although a

limited number of general studies appears to exist; see, e.g., Paddock et al. (2006) for a

simulation study involving certain classes of hierarchical models with Gaussian first stage

distributions, and the review papers by Müller and Quintana (2004) and Hanson, Bran-

scum and Johnson (2005) for some related references to work that involves comparisons

of parametric and nonparametric (or semiparametric) Bayesian models, typically, in the

context of the analysis of specific data sets.

The plan of the paper is as follows. In Section 2 we specify the fixed- and random-

effects parametric models we study, and in Section 3 we describe two BNP models that

involve DP priors for the random-effects distributions. Section 4 presents the design and

analysis of a simulation experiment to compare parametric and nonparametric modeling

in the context of data structures like those in the IHGA case study (randomized controlled

trials with treatment and control groups and a discrete response). In Section 5 we describe

another BNP approach that involves modeling with DP priors directly on the scale of the

count data. In Section 6 we discuss results obtained by fitting four models to the IHGA
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data, and Section 7 concludes with a discussion. In an Appendix we give a brief account

of the DP and its use in mixture modeling, and we provide details of the computational

approaches to obtaining posterior distributions of various quantities of interest in our

context.

2 Parametric models

To fix notation, let Y1i be the integer-valued outcomes in the control group, with Y2i as

the corresponding values in the treatment group, and denote by Poisson(θ) the Poisson

distribution (the cumulative distribution function (CDF) or the probability mass function,

depending on the context) with mean λ = exp(θ), θ ∈ R.

As noted in Section 1, simple parametric modeling formulations for data sets like those

in Table 1 include fixed-effects Poisson models, i.e., for r = 1, 2,

Yri|θr
IID
∼ Poisson(θr), i = 1, ..., nr (2)

with independent priors Gr0 for θr; and random-effects Poisson models, i.e., for r = 1, 2,

Yri|θri
indep
∼ Poisson(θri), i = 1, ..., nr

θri
IID
∼ Gr0, i = 1, ..., nr

(3)

again, with independent random effects distributions Gr0. Under both (2) and (3), a

standard choice for Gr0 would be a Normal distribution, N(µr, σ2
r), r = 1, 2. Both models

are typically completed by adding Normal and Inverse-Gamma hyperpriors on µr and σ2
r ,

respectively. We shall refer to (2) and (3) as models M0 and M1, respectively.

Posterior predictive inference under model (3) is straightforward. Furthermore, pos-

teriors of the random effects distributions Gr0 = N(µr, σ
2
r ), r = 1, 2, are directly de-

termined by the posterior samples of µr and σ2
r . Hence, inference for various function-

als is readily available; for instance, the posterior of the mean functional, E(Y |Gr0) =
∫

exp(θ)dN(θ;µr, σ
2
r ) = exp(µr + 0.5σ2

r ), can be used to address one of the inferential

questions of interest in the control-treatment setting (Section 6 provides an illustration

with the IHGA data).

3 Bayesian nonparametric models

Here we consider two BNP extensions to the Poisson random effects model. We treat the

random effects distributions as unknown, and use the DP as a prior probability model on

the space of such distributions.
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3.1 Independent priors for the random-effects distributions

The first nonparametric extension of parametric model (3) emerges by relaxing the nor-

mality (or any other parametric distributional) assumption for the random-effects distribu-

tions and instead placing DP priors on the associated spaces of CDFs. (See the Appendix

for a brief review of the DP.) For r = 1, 2, we obtain the following DP mixture model:

Yri|θri
indep
∼ Poisson(θri), i = 1, ..., nr

θri|Gr
IID
∼ Gr, i = 1, ..., nr

Gr|(αr, µr, σ
2
r ) ∼ DP[αrGr0(µr, σ

2
r )]

(αr, µr, σ
2
r ) ∼ p(αr)p(µr)p(σ2

r ),

(4)

where the DP priors for Gr are independent, the base distributions Gr0 = N(µr, σ
2
r ), and

p(αr), p(µr), and p(σ2
r ) are the hyperpriors for the DP parameters. We shall refer to

(4) as model M2. The Pólya urn characterization of the DP (Blackwell and MacQueen

1973) yields a useful marginalized version of (4) by integrating out Gr over its DP prior.

Specifically, for r = 1, 2,

Yri|θri
indep
∼ Poisson(θri), i = 1, ..., nr

(θr1, . . . , θrnr)|(αr, µr, σ
2
r ) ∼ p(θr1, . . . , θrnr |αr, µr, σ

2
r )

(αr, µr, σ
2
r ) ∼ p(αr)p(µr)p(σ2

r ),

where the prior for the random effects, p(θr1, . . . , θrnr |αr, µr, σ
2
r ), is given by

gr0(θr1|µr, σ
2
r )

nr
∏

i=2

{

αr

αr + i − 1
gr0(θri|µr, σ

2
r ) +

1

αr + i − 1

i−1
∑

`=1

δθr`
(θri)

}

,

with gr0 denoting the density of Gr0. This expression specifies the joint prior probabil-

ity model for the latent θr1, . . . , θrnr induced by the DP prior, and indicates that both

parametric models (2) and (3) are limiting cases of the DP mixture model, arising when

(for r = 1, 2) αr → 0+ and αr → ∞, respectively. The nonparametric DP mixture model

adds flexibility with regard to posterior predictive inference, since it allows data-driven

clustering in the θri.

This clustering in the prior of the θri results from the discreteness of the random

distribution Gr under the DP prior (Ferguson 1973; Blackwell 1973). For r = 1, 2, let

n∗

r be the number of clusters (distinct elements) in the vector (θr1, . . . , θrnr) and de-

note by θ∗r = (θ∗r` : ` = 1, . . . , n∗

r) the vector of the distinct θri. The vector of con-

figuration indicators sr = (sr1, . . . , srnr), defined by sri = ` if and only if θri = θ∗r`,

i = 1, . . . , nr, determines the clusters. Let nr` be the size of cluster `, i.e., nr` =

| {i : sri = `} |, ` = 1, . . . , n∗

r . We used Markov chain Monte Carlo (MCMC) algorithm 6
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from Neal (2000) to obtain posterior samples from p((θr1, . . . , θrnr), αr, µr, σ
2
r |Y r), equiv-

alently, from p(n∗

r, sr,θ
∗

r, αr, µr, σ
2
r |Y r), where Y r = (Yr1, . . . , Yrnr).

The posterior predictive distribution for a future observable Y new
r under the control

(r = 1) or treatment (r = 2) conditions is given by

p(Y new
r |Y r) =

∫∫

Poisson(Y new
r |θnew

r )p(θnew
r |ηr)p(ηr|Y r), (5)

where, based on the Pólya urn structure for the DP,

p(θnew
r |ηr) =

αr

αr + nr

gr0(θ
new
r |µr, σ

2
r ) +

1

αr + nr

n∗r
∑

`=1

nr` δθ∗
r`

(θnew
r ), (6)

with ηr collecting the variables (n∗

r, sr,θ
∗

r, αr, µr, σ
2
r ). Expressions (5) and (6) indicate

how to sample from the posterior predictive distribution corresponding to the control and

treatment groups after posterior simulation from p(ηr|Y r), r = 1, 2, is implemented. The

Appendix provides details on how to obtain more general inference for functionals of the

random mixtures F (·;Gr) =
∫

Poisson(·|θ) dGr(θ), r = 1, 2 through sampling from the

posterior of the mixing distributions Gr.

3.2 Stochastically ordered random-effects distributions

In certain applications, it might be useful to allow the control and treatment random effects

distributions in (4) to be dependent. A special case of dependence for these distributions

is induced by stochastic ordering, i.e., a prior assumption that either G1(θ) ≥ G2(θ),

for all θ ∈ R, or G1(θ) ≤ G2(θ), for all θ ∈ R, denoted by G1 ≤st G2 or G2 ≤st G1,

respectively. (See, e.g., Shaked and Shanthikumar 1994, for background on various types

of probability orders.) Again, G1 and G2 are the random effects CDFs for the control and

treatment groups, respectively. For instance, for the data example discussed in Section 1,

the stochastic order restriction G2 ≤st G1 provides a formal way to capture the assumption

that the number of hospitalizations under the treatment cannot be larger than under the

control. More typically, G1 ≤st G2 would be the natural constraint, and, hence, our model

development in this Section, as well as the examples of the simulation study in Section 4,

are based on this assumption. A standard scenario where the G1 ≤st G2 prior restriction

might be useful involves medical applications with the Yri recording survival times (in

discrete time) for a control group (r = 1) and a treatment group (r = 2), where it is

known that treatment yields improvement (i.e., increase in mean survival time) and we

are interested in assessing its extent.

From a practical perspective, for such applications the introduction of the stochas-

tic order restriction in the prior will yield more accurate posterior predictive inference
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(e.g., narrower posterior interval estimates). In our study, a prior over the space P =

{(G1, G2) : G1 ≤st G2} yields a second nonparametric model that can usefully be com-

pared with (4).

A constructive approach to build such a prior is by considering the subspace P ′ of

P defined by P ′ = {(G1, G2) : G1 = H1, G2 = H1H2}, where H1 and H2 are CDFs on

R, and placing independent DP priors on H1 and H2. Such a specification induces a

nonparametric prior over P ′, and hence over (a subset of) P, and allows for posterior

inference based on extensions of MCMC methods for DP mixture models. This approach

was developed in Gelfand and Kottas (2001) and Kottas and Gelfand (2001) (and also

used in Kottas, Branco and Gelfand 2002). This earlier work was based on DP mixtures

of normal distributions; here, we develop a different version for count data working with

Poisson DP mixtures.

In particular, we assume Y11, . . . , Y1n1
, given H1, IID from the mixture F (·;H1) =

∫

Poisson(·; θ1) dH1(θ1), and Y21, . . . , Y2n2
, given H1 and H2, IID from F (·;H1,H2) =

∫∫

Poisson(·;max(θ1, θ2)) dH1(θ1) dH2(θ2). Specifying independent DP priors for H1 and

H2, we obtain the model

Y1i|θ1i
indep
∼ Poisson(θ1i), i = 1, . . . , n1

Y2k|(θ1,n1+k, θ2k)
indep
∼ Poisson[max(θ1,n1+k, θ2k)], k = 1, . . . , n2

θ1i|H1
IID
∼ H1, i = 1, . . . , n1 + n2

θ2k|H2
IID
∼ H2, k = 1, . . . , n2

Hr|(αr, µr, σ
2
r ) ∼ DP(αrHr0), r = 1, 2

(7)

where the DP base distributions Hr0 = N(µr, σ
2
r ), and the model is completed with hy-

perpriors for parameters αr, µr, and σ2
r , r = 1, 2. We refer to (7) as model M3.

The clustering of the latent variables (θ11, . . . , θ1,n1+n2
) is again represented by the

number of clusters n∗

1, a vector of distinct cluster values θ∗1 = (θ∗1`, ` = 1, . . . , n∗

1) and the

indicator vector s1 = (s11, . . . , s1,n1+n2
), with s1i = ` if and only if θ1i = θ∗1` and n1` =

| {i : s1i = `} |. The notation is analogous for the clustering structure of the (θ21, . . . , θ2n2
).

The predictive distribution for θnew
1 is

p(θnew
1 |η1) =

α1

α1 + n1 + n2
H10(θ

new
1 |µ1, σ

2
1) +

1

α1 + n1 + n2

n∗
1

∑

`=1

n1` δθ∗
1`

(θnew
1 ),

and similarly the predictive distribution for θnew
2 is

p(θnew
2 |η2) =

α2

α2 + n2
H20(θ

new
2 |µ2, σ

2
2) +

1

α2 + n2

n∗
2

∑

`=1

n2` δθ∗
2`

(θnew
2 ),
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where ηr = (n∗

r, sr,θ
∗

r , αr, µr, σ
2
r ), r = 1, 2. The posterior predictive distribution for a

future Y new
1 is given by

p(Y new
1 |Y 1,Y 2) =

∫∫

Poisson(Y new
1 |θnew

1 )p(θnew
1 |η1)p(η1|Y 1,Y 2),

and the posterior predictive distribution for Y new
2 is

p(Y new
2 |Y 1,Y 2) =

∫ ∫ ∫

Poisson[Y new
2 |max(θnew

1 , θnew
2 )]

p(θnew
1 |η1)p(θnew

2 |η2)p(η1,η2|Y 1,Y 2).

Details on more general types of inference, beyond the ones resulting from the posterior

predictive distributions, are given in the Appendix.

4 Simulation study

We have conducted a simulation study fitting models M1, M2, and M3 to four different

data sets, each with control (DkC) and treatment (DkT ) samples for k = 1, . . . , 4. In

each case we obtained posterior predictive distributions along with the posteriors of the

random effects CDFs. The posterior sample size was equal to 1000 in all cases.

4.1 Data sets

All data sets were of size n1 = n2 = 300 (i.e., each of the control and treatment samples had

300 observations) and consisted of values drawn from Poisson[exp(θri)], i = 1, . . . , 300,

r = 1, 2, with the random-effects θri generated as follows. For data set D1 we used

θ1i ∼ N(2.2, 0.652) and θ2i ∼ N(3.5, 0.52), i.e., with D1 the assumptions of model M1 were

satisfied. For data set D2 the θ1i were generated from a right skewed distribution (a four-

component mixture of Normals) and the θ2i were from a bimodal mixture of two Normals,

0.5N(3.3, 0.352) + 0.5N(5.8, 0.422). Data set D3 was based on θ1i values generated from

N(1.3, 0.52) and θ2i values from N(2.2, 0.52), i.e., the assumptions of M1 were again met

but additionally the distribution of the θ1i was stochastically smaller than the distribution

of the θ2i. Data set D4 had θ1i values drawn from N(1.4, 0.42) and θ2i values sampled from

a bimodal mixture of two Normals, 0.5N(1.7, 0.372) + 0.5N(3.3, 0.522); again in this case

the distribution of random effects for the control group was stochastically smaller than its

treatment counterpart. Figure 1 summarizes all of the data sets and the corresponding

random effects.
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Figure 1: Data for the simulation study. Columns (from left to right) correspond to the

four data sets (DkC , DkT ), k = 1, ..., 4. Row 1 gives histograms of the latent variables

θ1i used to generate the count data Y1i in row 2, with both of these rows applying to the

simulated control groups; rows 3 and 4 have a similar structure for the treatment groups.

The fifth row shows empirical CDFs of the latent variables (solid lines control, dashed

lines treatment).
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4.2 Prior specification

Model M2 reduces to the parametric random effects Poisson model M1 when αr → ∞,

which motivates specifying the same priors for the hyperparameters in these two models.

We used normal priors for the µr with parameters determined based on (weak) information

from the data (i.e., rough estimates for the center and range of the data). Inverse gamma

priors with shape paramater equal to 2 (implying infinite variance) were used for the σ2
r .

Sensitivity analysis showed that values of the inverse gamma prior means around 1 resulted

in stable inference and substantial learning about the σ2
r . Regarding model M3, we used

the same parametric prior forms for µr and σ2
r , specifying their parameters through a

straightforward extension of the approach described in Gelfand and Kottas (2001).

The priors for the αr in models M2 and M3 were gamma distributions. As is well

documented in the literature (e.g., Antoniak 1974; Escobar and West 1995; Liu 1996), in

DP mixture models the DP precision parameter controls the clustering in the vector of

mixing parameters. We conducted sensitivity analysis working with gamma priors that

allowed for both small and large values for the αr, and found that, with the sample sizes

in this study, posterior predictive inference was very stable; moreover, there was visible

posterior learning for the αr.

4.3 Simulation results

We present inference results using posterior predictive distributions of future data values

and posteriors for the random mixing distributions. Figure 2 gives an example of the

posterior predictive distributions for the treatment part of the fourth data set under

models M1, M2, and M3. It is clear that, while the prior predictive information is

similarly diffuse for all three models, model M1 cannot adapt to the bimodality (without

remodeling as, e.g., through a mixture of Gaussians on the latent scale), whereas the BNP

models smoothly and automatically adapt to the data-generating mechanism.

It is also revealing to see how well the models recover the unknown mixing distributions.

Figures 3 – 6 present posterior point and interval estimates for the CDFs of the mixing

distributions Gr, r = 1, 2, for all data sets; in all of these figures, the long dotted lines

track the true underlying CDF, the solid (blue) curves are the posterior mean estimates,

and the short dotted lines give pointwise 90% posterior uncertainty bands. When the

parametric model M1 is correct, as in Figure 3, it (naturally) yields narrower summaries

of uncertainty than those generated by the BNP models, because it is a special case

of BNP model M2 with stronger prior information (M1 assumes certainty about the

form of the mixing distributions, whereas M2 embodies uncertainty about this structural
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Figure 2: Simulation study. Prior (blue circles) and posterior (solid red circles) predictive

distributions under models M1, M2 and M3 (top, middle and bottom panels, respec-

tively) based on data set D4T . In each panel, the histogram plots the simulated counts.
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detail); however, when M1 is incorrect, as for example in Figures 4 and 6, it continues

to yield narrower uncertainty bands that fail to include the truth, whereas BNP model

M2 again adapts successfully to the skewed and bimodal data-generating mechanisms.

Figures 5 and 6 demonstrate that the extra assumption of stochastic order, when true,

yields narrower uncertainty bands (as it should). As a further illustration regarding the

posterior p(Gr|Y r), r = 1, 2, Figure 7 plots 30 realizations from these posteriors under

model M2 and across all four data sets.

Another way to examine the performance of parametric and BNP models in our simu-

lation study is to compare the predictive accuracy of models by contrasting the observed

data values with the posterior predictive distributions under each model. The optimal

way to carry out such a comparison (e.g., O’Hagan and Forster 2004; Draper and Krnjajić

2006) is with log scoring criteria, which reward a model based on the logarithm of the

heights of the predictive distributions at the observed data points (so that higher log score

values are preferable). With a data set y = (y1, ..., yn) consisting of n observations, and

for model M, two variants on this idea are worth examining: the cross-validation log score

(e.g., Gelfand et al. 1992)

LSCV (M|y) =
1

n

n
∑

j=1

log[p(yj |y(−j),M)]

in which y(−j) is the data vector y with observation yj set aside, and the full-sample log

score (e.g., Laud and Ibrahim 1995)

LSFS(M|y) =
1

n

n
∑

j=1

log[p(yj|y,M)]

which has both computational advantages and better small- and large-sample discrimi-

nating power (to identify good models) when compared with LSCV (Draper and Krnjajić

2006). Table 2 summarizes log score results for parametric model M1 and BNP model

M2 across the treatment and control samples in all four data sets illustrated in Figure 1.

On the predictive data scale the two models fit about equally well when the parametric

assumptions of M1 are met, but it is evident that M2 produces superior predictions when

the latent variable distributions are skewed or bimodal.

5 A Bayesian nonparametric fixed-effects model for count

data

Because the DP has (almost surely) discrete realizations, it is also possible to model

the data in Table 1 by treating the underlying CDFs Fr of the control (r = 1) and the
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Figure 3: Simulation study. Posterior estimates of the mixing distributions under models

M1 and M2 (left and right columns, respectively) and for data sets D1C and D1T (top

and bottom rows, respectively).
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Figure 4: Simulation study. Posterior estimates of the mixing distributions under models

M1 and M2 (left and right columns, respectively) and for data sets D2C and D2T (top

and bottom rows, respectively).
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Figure 5: Simulation study. Posterior estimates of the mixing distributions for data sets

D3C and D3T (left and right columns, respectively) under models M1, M2 and M3 (top,

middle and bottom rows, respectively).
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Figure 6: Simulation study. Posterior estimates of the mixing distributions for data sets

D4C and D4T (left and right columns, respectively) under models M1, M2 and M3 (top,

middle and bottom rows, respectively).
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Figure 7: Simulation study. Posterior realizations for the random effects distributions

G1 and G2 under model M2. Reading them from top to bottom, the left column panels

correspond to data sets D1C , D1T , D2C , D2T ; and the right column panels to data sets

D3C , D3T , D4C , D4T .
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Table 2: Log score comparisons between parametric model M1 and nonparametric model

M2 across the treatment and control samples in all four data sets (latent variable distri-

butions: G = Gaussian, S = skewed, B = bimodal).

LSCV

D1C D1T D2C D2T D3C D3T D4C D4T

(G) (G) (S) (B) (G) (G) (G) (B)

M1 –3.33 –4.23 –3.72 –6.22 –2.41 –3.07 –2.32 –3.99

M2 –3.35 –4.22 –3.52 –6.03 –2.42 –3.07 –2.31 –3.94

LSFS

M1 –3.32 –4.22 –3.66 –6.19 –2.40 –3.07 –2.32 –3.97

M2 –3.32 –4.19 –3.46 –5.72 –2.41 –3.06 –2.31 –3.91

treatment (r = 2) groups as unknown and placing DP priors (centered, e.g., on the Poisson

distribution) directly on the Fr. The result can be regarded as a BNP analogue of the

parametric fixed-effects model M0 in (2). Specifically, for r = 1, 2, we consider the model

(that will be referred to as model M4):

Yri|Fr
IID
∼ Fr, i = 1, ..., nr

Fr|(αr, θr) ∼ DP[αrFr0(·|θr)]

(αr, θr) ∼ p(αr)p(θr),

(8)

where the DP priors are independent, the base distribution Fr0 is taken to be Poisson[exp(θr)],

and p(αr), p(θr) denote the hyperpriors. (We work with gamma priors for the αr and with

normal priors for the θr.) In the presence of covariate information, it is possible to extend

model (8) to semiparametric settings (see, e.g., Carota and Parmigiani 2002).

To simplify notation, we drop the subscript r in the remainder of this Section. Because

independent DP priors are used for Fr, r = 1, 2, the following results apply to both the

treatment and control group data. Following Antoniak (1974, Corollary 3.2 ′), the joint

posterior of F and (α, θ) can be expressed as

p(F, α, θ|Y ) = p(F |α, θ,Y )p(α, θ|Y )

∝ p(F |α, θ,Y )p(α)p(θ)L(α, θ;Y ).
(9)

Here, Y = (Y1, . . . , Yn), and the distribution of F |α, θ,Y is a DP with precision param-

eter α + n and base CDF F ′

0(·|α, θ,Y ) = α(α + n)−1F0(·|θ) + (α + n)−1
∑n

i=1 1[Yi,∞)(·).

Moreover, based on Lemma 1 from Antoniak (1974), and given the discreteness of the

18



Table 3: Log score comparisons between two parametric models (M0, fixed-effects Poisson;

M1, random-effects Poisson) and two BNP models (M2, DP modeling on the random

effects scale; M4, DP modeling on the data scale), applied to the IHGA data of Table 1.

LSCV

M0 M1 M2 M4

Control –1.404 –1.368 –1.347 –1.338

Treatment –1.220 –1.211 –1.204 –1.206

LSFS

Control –1.398 –1.343 –1.342 –1.336

Treatment –1.215 –1.199 –1.198 –1.205

base distribution F0, the marginal likelihood for (α, θ) is given by

L(α, θ;Y ) =
αn∗

α(n)

n∗
∏

j=1

f0(Y
∗

j |θ){αf0(Y
∗

j |θ) + 1}nj−1,

where n∗ is the number of distinct values Y ∗

j in Y , nj is the size of data cluster j (j =

1, ..., n∗), a(n) = a(a + 1) · · · (a + n − 1), and f0(x|θ) = (x!)−1 exp(θx − exp(θ)).

To obtain samples from the marginal posterior p(α, θ|Y ) ∝ p(α)p(θ)L(α, θ;Y ), we

used a symmetric random-walk Metropolis algorithm on (log(α), θ). Next, based on (9),

posterior realizations of F and any of its functionals (such as the mean functional) can be

obtained by sampling from p(F |α, θ,Y ) for each posterior realization of (α, θ). This can

be implemented using either the DP definition (Ferguson 1973) or the DP stick-breaking

representation (Sethuraman 1994), both discussed in the Appendix. In particular, if we

only seek the posterior of F (y0) for some specified non-negative integer y0, expression (9)

and the DP definition yield

p(F (y0)|Y ) =

∫ ∫

p(F (y0)|α, θ,Y )p(α, θ|Y ) dαdθ,

where p(F (y0)|α, θ,Y ) is a Beta distribution with parameters (α + n)F ′

0(y0|α, θ,Y ) and

(α + n)(1 − F ′

0(y0|α, θ,Y )). In fact, this posterior suffices for the estimation of posterior

predictive probabilities, Pr(Y = y0|Y ) (again, for any specified non-negative integer y0),

since we can write Pr(Y = y0|Y ) = E{Pr(Y = y0;F )|Y }, and thus, Pr(Y = y0|Y ) =

E{F (y0)−F (y0−1)|Y }, for y0 = 1, 2, ..., and Pr(Y = 0|Y ) = E{F (1)|Y }− Pr(Y = 1|Y ).
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6 Analysis of the IHGA data

We have fitted four models (M0, M1, M2, and M4) to the IHGA data set described

in Section 1; Table 3 presents a log-score comparison of these models on the control and

treatment samples. Using either LSCV or LSFS, essentially both of the BNP models

are seen to be predictively superior to the parametric Poisson models. However, note

that the differences of the BNP models from the random-effects parametric model are

less pronounced than in their comparison with the fixed-effects parametric model (and,

indeed, model M1 yields a larger LSFS value than model M4 for the treatment data).

As noted in Section 1, the summary of the effect of the IHGA intervention of greatest

policy relevance was the percentage decline in mean rate of hospitalization. Figure 8

presents posterior distributions of the mean functionals for the control and treatment

groups (denoted by λ1 and λ2, respectively) and of the ratio η = λ2/λ1, obtained under

models M1, M2 and M4. Recall from Section 2 that, under model M1, the mean

functionals have a simple parametric form, λr = exp(µr + 0.5σ2
r ), r = 1, 2. Although

no such closed-form expressions exist for the BNP models, the posteriors of λ1 and λ2

under models M2 and M4 can be sampled as discussed in the Appendix and Section 5,

respectively.

All three models agree inferentially that the IHGA intervention has been helpful in

reducing hospitalization: point estimates of η range from 0.81 to 0.83 across the three

models (i.e., IHGA is associated with an approximate 18% reduction in mean hospital-

izations per two years in the population of patients judged exchangeable with those in

the geriatric study), with a posterior standard deviation of about 0.09, and a posterior

probability that η < 1 with values between 0.95 and 0.96 under the three models.

7 Discussion

In this paper we have contrasted two approaches to Bayesian model specification with

count data — parametric (fixed-effects and random-effects Poisson modeling) and non-

parametric (based on DP modeling, where the DP is placed either on the random effects

or directly on the scale of the observations) — and we have demonstrated that the most

natural parametric models are special cases of the BNP modeling approach we exam-

ine: in effect parametric modeling is just BNP modeling with stronger prior information

(namely, that parametric models incorporate certainty about the precise form of sam-

pling and mixing distributions, whereas BNP models treat these structural assumptions

as uncertain). Contemporary computing resources and MCMC methods for integral ap-
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panel), the mean functional λ2 for the treatment group (middle panel), and the policy-

relevant ratio η = λ2/λ1 (bottom panel). Results are presented for models M1 (dashed

lines), M2 (dot-dashed lines), and M4 (solid lines).
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proximation combine to make both parametric and BNP approaches feasible and indeed

increasingly straightforward.

In simulation studies like the one we have undertaken, when the stronger prior informa-

tion inherent in parametric models is known to be true (by construction), the parametric

models can yield narrower uncertainty bands than the BNP approach; this is simply an

instance of the general phenomenon that stronger prior information may lead to less uncer-

tainty. However, with a real data set obtained observationally rather than via simulation,

the stronger prior information inherent in parametric models is no longer known to be

true, and indeed when false parametric assumptions are made the resulting inferences

may no longer be valid (Figures 4 and 6 in Section 4 exemplify this). BNP modeling

is more validity-robust: in our simulation study, for example, DP mixture modeling was

able to successfully recover a wide variety of underlying behavior (including skewness and

bimodality in the random-effects distribution) without making strong assumptions about

that behavior. This is an instance of the general adaptive character of BNP, about which

useful results have been obtained; to informally restate a theorem of Walker, Damien and

Lenk (2004) as an example, if Yi|F
IID
∼ F , for i = 1, . . . , n, and a prior on F is used that

places non-zero probability on all Kullback-Leibler neighborhoods of all densities (e.g., DP

mixture models, typically, achieve this goal), then as n → ∞, the posterior distribution

p(F |Y1, . . . , Yn) will shrug off any incorrect details of prior specification (such as choosing

a prior centering distribution F0 that is far from F ) and will fully adapt to the actual

data-generating F . (Of course, if the conditional exchangeability judgments built into

BNP models are false, even the BNP approach may not be validity-robust.)

As noted in Section 1, one may attempt within the realm of parametric modeling to

recover inferential validity by a data-analytic process of

(1) parametric modeling,

(2) identifying defects in the model proposed in (1),

(3) parametric re-modeling,

(4) identifying defects in the model proposed in (3),

and so on, and indeed this approach is common in contemporary statistical work. But

(a) a price must be paid for identifying plausible structural assumptions in a data-driven

manner, and

(b) it is substantially less common for investigators to demonstrate that they have paid

the appropriate price for their data-driven searches through model space.
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BNP modeling, by incorporating a more realistic initial uncertainty assessment about what

is really known and unknown about the underlying structure of the “true” data-generating

mechanism, provides an attractive alternative to parametric modeling, particularly in

machine-learning settings in which the human intervention inherent in the data-analytic

parametric approach is cumbersome or infeasible.

Appendix

To facilitate the presentation of our Bayesian nonparametric approaches to modeling count

data, here we review basic definitions and results on Dirichlet processes (DPs) and DP

mixtures. We also provide some details on the computational techniques for inference un-

der the DP mixture models discussed in Section 3. The theory of DPs was established by

Ferguson (1973, 1974), Blackwell (1973), Blackwell and MacQueen (1973) and Antoniak

(1974) (building on work of Freedman 1963 and Fabius 1964). See Ghosh and Ramamoor-

thi (2003) for additional references on theoretical aspects of DP priors.

The Dirichlet process. The DP is a stochastic process with sample paths that can

be interpreted as CDFs. Let Ω be a sample space and F a σ-field of subsets of Ω.

According to the definition in Ferguson (1973), the DP is a stochastic process Q =

{Q(ω,A) : ω ∈ Ω, A ∈ F} with sample paths {Qω(A) ≡ Q(ω,A),∀A ∈ F} that are prob-

ability measures on (Ω,F), such that, for any finite measurable partition (A1, . . . , An)

of Ω, the random vector [Q(A1), . . . , Q(An)] has a Dirichlet distribution with parame-

ters [αQ0(A1), . . . , αQ0(An)]. Here, α is a positive scalar parameter and Q0 a specified

probability measure on (Ω,F). Hence, Q0(A) (a constant) and Q(A) (a random vari-

able) denote the probability of event A under Q0 and Q, respectively. Therefore, Q

can be viewed as a random probability measure on (Ω,F). It is easy to show from ba-

sic properties of the Dirichlet distribution that for any A ∈ Ω, E[Q(A)] = Q0(A) and

V [Q(A)] = Q0(A)[1 − Q0(A)]/(α + 1). Hence, Q0 is the center of the DP and α can be

interpreted as a precision parameter.

A DP is, formally, defined on the space of probability measures but we often use the

term distribution or CDF instead. For example, when Ω = R and A = (−∞, x), x ∈ R,

then Q(A) = G(x) has a Beta distribution with parameters αG0(x) and α[1−G0(x)] and,

thus, E[G(x)] = G0(x) and V [G(x)] = G0(x)[1 − G0(x)]/(α + 1), where G is a random

CDF and G0 is a specified CDF on R. For larger values of α, a realization G from the

DP is expected to be closer to the centering (or base) distribution G0. We will write G ∼

DP(αG0) to denote that a DP prior is used for the random CDF (distribution) G. In
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fact, DP-based modeling typically utilizes mixtures of DPs (Antoniak 1974), i.e., a more

flexible version of the DP prior that involves hyperpriors for α and/or the parameters ψ

of G0(·) ≡ G0(·|ψ).

An important alternative definition of the DP was given by Sethuraman (1994) (see

also Sethuraman and Tiwari 1982). This is a constructive definition that represents DP

realizations as countable mixtures of point masses. Specifically, let {zk, k = 1, 2, . . . } and

{ϑj , j = 1, 2, . . . } be independent sequences of IID random variables with zk ∼ Beta(1, α)

and ϑj ∼ G0, and define the weights through the following stick-breaking procedure:

w1 = z1, wi = zi

∏i−1
k=1(1−zk), i = 2, 3, . . . Then a realization G from DP(αG0) is (almost

surely) of the form

G(·) =

∞
∑

i=1

wi δϑi
(·), (10)

where δx(·) denotes a point mass at x. Hence, the DP generates, with probability one, dis-

crete distributions that can be represented as countable mixtures of point masses, with lo-

cations drawn independently from G0 and weights generated according to a stick-breaking

mechanism based on IID draws from a Beta(1, α) distribution. The DP constructive defi-

nition has motivated extensions of the DP in several directions, including priors with more

general structure (e.g., Hjort 2000; Ishwaran and Zarepour 2000; Ongaro and Cattaneo

2004), versions of the DP that enable full posterior inference (Muliere and Tardella 1998;

Gelfand and Kottas 2002), and prior models for dependent distributions (e.g., MacEach-

ern 2000; De Iorio et al. 2004; Gelfand, Kottas and MacEachern 2005; Griffin and Steel

2006; Teh et al. 2006).

Dirichlet process mixture models. A natural way to increase the applicability of

DP-based modeling is by using the DP as a prior for the mixing distribution in a mixture

model with a parametric kernel distribution K(·|θ), θ ∈ Θ ⊆ Rp (with corresponding

density – probability density or probability mass function – k(·|θ)). This approach yields

the class of DP mixture models, which can be generically expressed as

F (·;G) =

∫

K(·|θ) dG(θ), G|α,ψ ∼ DP(αG0(·|ψ))

with the analogous notation for the random mixture density f(·;G). The kernel can be

chosen to be a continuous distribution (thus overcoming the almost sure discreteness of

the DP) or a discrete distribution as in the DP mixtures developed in Section 3, where

K(·|θ) is Poisson with θ ≡ θ ∈ R.

Consider F (·;G) as the model for the stochastic mechanism corresponding to data

Y = (Y1, ..., Yn), e.g., assume Yi, given G, IID from F (·;G) with the DP prior structure
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for G. Working with this generic DP mixture model, typically, involves the introduction

of a vector of latent mixing parameters, θ = (θ1, ...,θn), where θi is associated with Yi,

such that the model can be expressed in hierarchical form as follows:

Yi|θi
indep
∼ K(·|θi), i = 1, ..., n

θi|G
IID
∼ G, i = 1, ..., n

G | α,ψ ∼ DP(αG0(·|ψ)).

(11)

The model can be completed with priors for α and ψ. Moreover, practically important

semiparametric versions can be developed by working with kernels K(·|θ,φ) where the φ

portion of the parameter vector is modelled parametrically, e.g., φ could be a vector of

regression coefficients incorporating a regression component in the model.

The Pólya urn DP characterization (Blackwell and MacQueen 1973) is key in the

DP mixture setting, since it results in a practically useful version of (11) where G is

marginalized over its DP prior,

Yi|θi
indep
∼ K(·|θi), i = 1, ..., n

(θ1, . . . ,θn)|(α,ψ) ∼ p(θ1, . . . ,θn|α,ψ)
(12)

where

p(θ1, . . . ,θn|α,ψ) = G0(θ1)
n

∏

i=2

{

α

α + i − 1
G0(θi) +

1

α + i − 1

i−1
∑

`=1

δθ`
(θi)

}

.

The structure of this version of the model is central to the development of most of the

simulation-based model fitting methods for DP mixtures.

The main theoretical results on inference for DP mixtures can be found in the work of

Antoniak (1974); see also, e.g., Ferguson (1983), Lo (1984), Kuo (1986), and Brunner and

Lo (1989) for early work on modeling and inference using DP mixtures. This class of BNP

models is now the most widely used, arguably, due to the availability of several posterior

simulation techniques, based, typically, on MCMC algorithms (e.g., Escobar and West

1995; Bush and MacEachern 1996; MacEachern and Müller 1998; Neal 2000; Ishwaran

and James 2001; Jain and Neal 2004); see Liu (1996), MacEachern, Clyde and Liu (1999),

and Blei and Jordan (2006) for alternative approaches.

Working with model (12), any of these posterior simulation methods can be utilized

to obtain samples from the marginal posterior p(θ, α,ψ|Y ), and these samples can be

used to estimate posterior predictive densities (as shown in, e.g., Escobar and West 1995).

Posterior predictive inference is, typically, sufficient in, say, density estimation applica-

tions or semiparametric settings where inference for G is of less importance. However, in
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fully nonparametric settings (such as the one in this paper), full posterior inference for the

mixing distribution G, and for the mixture F (·;G) and any of its functionals, is essential.

Note that, if Y new denotes a future observable (under model (11)), its posterior predictive

distribution (density) evaluated, say, at point z, is simply the posterior expectation of

the CDF (PDF) functional (at point z) of F (·;G), e.g., p(z|Y ) = E{f(z;G)|Y } for the

posterior predictive density. We describe next how to obtain general inferences for the

two DP mixture models discussed in Section 3, using the approach in Gelfand and Kottas

(2002) and Kottas (2006).

General inference for the Poisson DP mixtures. Consider first the DP mixture

model presented in Section 3.1. Because the DP priors for G1 and G2 are independent,

the approach is the same for the control group (r = 1) and treatment group (r = 2)

mixture models, F (·;Gr) =
∫

Poisson(·|θ) dGr(θ), and we thus drop the subscript r in

the following description. Based, again, on Antoniak (1974), the joint posterior for the

random effects distribution G, the vector of random effects θ = (θ1, ..., θn), and the DP

hyperparameters (α, µ, σ2) is given by

p(G,θ, α, µ, σ2|Y ) = p(G|θ, α, µ, σ2)p(θ, α, µ, σ2|Y ) (13)

where Y = (Y1, ..., Yn), and p(G|θ, α, µ, σ2) indicates a DP with precision parameter α̃ =

α + n and base CDF

G̃0(t) ≡ G̃0(t|θ, α, µ, σ2) =
α

α + n
G0(t|µ, σ2) +

1

α + n

n
∑

i=1

1[θi,∞)(t).

As discussed in Section 3.1, a posterior simulation algorithm from Neal (2000) was used to

obtain samples (θb, αb, µb, σ
2
b : b = 1, ..., B) from the marginal posterior p(θ, α, µ, σ2|Y ).

Therefore, based on (13), a sample from the entire posterior can be obtained by draw-

ing Gb from p(G|θb, αb, µb, σ
2
b ) for b = 1, ..., B. To this end, the standard approach

(discussed in Gelfand and Kottas 2002), involves a truncation approximation to the

DP stick-breaking representation in (10), and indeed this is the most general approach

for multivariate mixing distributions G. However, for our model, G is a CDF on R

and thus we can use a computationally simpler technique. Specifically, consider a grid

of points t1 < t2 < · · · < tL on the real line. Then, we can draw from the poste-

rior distribution of {G(t1), . . . , G(tL)} noting that, based on the original DP definition,

{G(t1), G(t2) − G(t1), ..., G(tL) − G(tL−1), 1 − G(tL)} has a Dirichlet distribution with

parameters

{

α̃G̃0(t1), α̃[G̃0(t2) − G̃0(t1)], . . . , α̃[G̃0(tL) − G̃0(tL−1)], α̃[1 − G̃0(tL)]
}

.
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Hence, by sampling from the ordered Dirichlet distribution above for each posterior

sample (θb, αb, µb, σ
2
b ), we obtain, up to the finite grid approximation, B posterior re-

alizations {Gb(t1), . . . , Gb(tL)} for the CDF {G(t) : t ∈ R}. These posterior samples

were used to provide, e.g., the estimates in Figures 3 – 6. Moreover, they enable gen-

eral inference for the mixture CDF F (y;G) and for any functional that emerges from

the mixture distribution F (·;G), for instance, the mean functional, λ =
∫

y dF (y;G) =
∑

∞

y=0 y{
∫

Poisson(y|θ) dG(θ)} =
∫

exp(θ) dG(θ), which was used in the illustrative anal-

ysis of the IHGA data in Section 6.

Turning to the stochastically ordered Poisson DP mixture model of Section 3.2, the

full posterior corresponding to (7) is given by

p(H1,H2,η1,η2|Y 1,Y 2) = p(H1|η1)p(H2|η2)p(η1,η2|Y 1,Y 2)

where ηr = (θr, αr, µr, σ
2
r ), r = 1, 2, with θ1 = (θ11, ..., θ1,n1+n2

) and θ2 = (θ21, ..., θ2n2
),

and p(η1,η2|Y 1,Y 2) is the marginal posterior resulting from model (7) after marginalizing

H1 and H2 over their DP priors. We used an extension of the MCMC algorithm in

Gelfand and Kottas (2001) to sample from p(η1,η2|Y 1,Y 2). Again, the samples from this

posterior, combined with sampling from two DPs, yield the full posterior of the model,

since the conditional posterior distributions p(Hr|ηr), r = 1, 2, are DPs. Here, p(H1|η1)

is a DP with precision parameter α1 + n1 + n2 and base distribution with point masses

(α1 + n1 + n2)
−1 at θ1i, i = 1, ..., n1 + n2, and continuous mass α1(α1 + n1 + n2)

−1 on

H10; the precision parameter of p(H2|η2) is given by α2 +n2 and its base distribution has

point masses (α2 +n2)
−1 at θ2k, k = 1, ..., n2, and continuous mass α2(α2 +n2)

−1 on H20.

Posterior realizations of H1 and H2 yield directly the posteriors of the mixing distributions

G1 = H1 and G2 = H1H2, including the estimates of the CDFs {G1(t) : t ∈ R} and

{G2(t) : t ∈ R} (again, up to a finite grid approximation) plotted in Figures 5 and 6.
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