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Abstract

A computer simulator for atmospheric concetrations of chemical species, or chemical trans-
port model, is used to simulate global ozone concentrations. Two different wind forcings are
considered, one a combination of a numerical weather prediction model and observational data,
the other results from a climate model. The goal is to study the impact of meteorological
variability on ozone. The statistical approach that we consider consists on learning the spatial
structure of ozone concentrations by using process convolutions. Then we use several Bayesian
model comparison methods to determine if the two simulations can be considered as realizations
of the same random field. The methods provide a quantification of the differences for each of
the computer model grid cells.

Keywords: computer simulator, general circulation model, process convolutions, dimension re-
duction, predictive approach

1 Introduction

Ozone can be produced photochemically from nitrogen oxide and reactive organic compounds in
the lower atmosphere, troposphere and stratosphere. Chemically produced ozone is a notable
greenhouse gas, contributing to the extra warming of the earth. It is also a hazardous pollutant to
human health, which can cause eye irritation, respiratory problems, and lung and heart diseases.
The scientists at the National Center for Atmospheric Research (NCAR) use the off-line Model
for OZone And Related chemical Tracers, version2/Model of Atmospheric Transport and Chemistry
(MOZART-2/MATCH) to study ozone global concentrations and transport. MOZART-2/MATCH
is a global chemical transport model developed at NCAR, the Geophysical Fluid Dynamics Lab-
oratory at Princeton University, and the Max Planck Institute of Meteorology to simulate the
distribution of tropospheric ozone, its precursors and other chemical tracers. MOZART’s output
is driven by wind fields obtained from general circulation models (GCM) or reanalysis data sets.
A general circulation model uses the equations of motion to numerically simulate changes in the
global phenomena of the atmosphere, variabilities in temperature, water vapor, photolysis rate,
etc. (Kasagara and Washington, 1967). Reanalysis data correspond to a combination of climate
model output and observations. The National Center for Environmental Prediction (NCEP) pro-
vides a reanalysis data set (Kalnay et al., 1996) widely used by climatologists. The simulations
considered in this paper were performed by Dr P. Hess, J.F. Lamarque and Dr N. Mahowald,

*Department of Applied Mathematics and Statistics, University of California, 1156 High Street, Mail Stop SOE2,
Santa Cruz, CA-95064, USA.



atmospheric scientists at NCAR, using both forcings. The goal is to examine if the variability
observed in ozone concentrations obtained from CAM forcings is comparable to the one produced
by reanalysis winds.

While reanalysis winds represent our best understanding of the state of the atmosphere, general
circulation models must be used to predict atmospheric state in past climates or future climates.
These models are also used to predict the chemical state of the atmosphere in other climates. Thus
here our goal is to determine whether the meteorological variability forcing the MOZART model
produces similar variability in chemical constitutent distributions in the current climate whether
we use our reanalysis datasets or general circulaiton model output. If so, we can use our general
circulation model for future predictions of ozone (for example) with more confidence in the results.

From a statistical perspective the problem is to decide whether two sets of MOZART output
correspond to realizations of the same stochastic process. Inference is complicated by the large
dimensionality of the problem. In fact the output from MOZART consists of a profile for each
point in a grid of 64 latitudes and 128 longitudes. That is 8,192 locations for each of 19 altitudes.
A Gaussian random field, defined by a mean and a covariance matrix, can be used to model the
spatial structure of the simulated ozone. However the huge amount of data and very large spatial
scales raise challenging statistical analysis problems. It is impractical to perform computations or
even store a gigantic covariance matrix for 8,192 locations. This would require around 8 Gb of
storage.

Instead of more traditional spatial modeling methods based on the second order properties
of the process, we use process convolutions (see, Higdon, 2002) to model a Gaussian process for
both CAM-based and NCEP-based simulation data sets. We proceed by using a Bayesian method.
This provides a whole distribution for the estimated parameters and the predicted values, fully
accounting for the uncertainty in parameter estimation. We fit the model for each of the datasets
separately, obtaining two sets of posterior and posterior predictive distributions. We compute the
amount of overlapping of predictive intervals and Bhattacharyya distances to explore the proximity
of the models. The idea is that, if the two data sets did in fact arise from the same model, then the
predictive distributions should be very close. We also adopt a model comparison approach based on
considering two models: one where one set of parameters describe the likelihood of all observations
and one where two sets of parameters are used. The model comparison criteria include posterior
predictive loss and Deviance Information Criterion (DIC).

The paper is organized as follows: the next section provides an introduction to our statistical
model. Section 4 describes the model comparison methods. In the last section we present some
comments and discussion.

2 Process convolutions

The process convolution approach was first brought up as a spatial moving average process (Thiébaux
and Pedder, 1987; Barry and Ver Hoef, 1996). It provides a flexible representation of Gaussian pro-
cesses by convolving a white noise process with an appropriate kernel. A process convolution, as
defined in Higdon (2002), is given by

o(s) = /S Fy(u — 5)dW (1) 1)

for s € S, S a subset of an Euclidean space, W a Wiener process and ky(-) a kernel, possibly
depending on a low dimensional parameter ¢). The covariance of the process z(s) defined in Equation



(1) is given by the convolution of the kernel with itself, so

c(s,") = cov(a(5), 2) = [ ol = d)kyu)d

where d = s — s'. If ky(-) depends only on the magnitude of d, then so does the covariance function
c(-), implying that z(s) is isotropic. If the kernel is square-integrable, for a given c(-), ky(-) can be
obtained as the inverse Fourier transform of the square root of the spectral density of ¢ (Thiébaux
and Pedder, 1987). An example of a flexible family of isotropic kernels is obtained from the Matérn
class of isotropic correlations (Matérn, 1986), which is known to correspond to processes with
widely different degrees of smoothness. The spectral density of the correlation function in the R?
Matern class, with range A > 0 and smoothness v > 0, is given by f(w) o< 1/(A2 + w?)**1. The
corresponding kernel is the inverse Fourier transform of 1/(A\2 4 w?)? /241/2 which is proportional
to

As)P2K, 1 jp(Ns), A > 0,0 > 1, (2)

where K, is the modified Bessel function of the second kind of order v (see Abramowitz and Stegun,
1965).
In practice Equation (1) is discretized over a regular grid. So we obtain the approximation

z(s) = Z ky (s — u)vy. (3)

Since the grid that indexes the variables v, is usually of much smaller size than the data set,
discrete process convolutions can be used to fit large dimensional problems practically. In fact
computational demands are simplified by greatly reducing the parameter dimensions (Lee et al.,
2002). Flexible choices of smoothing kernels can be considered for Gaussian processes (Barry and
Ver Hoef, 1996; Kern, 2000; Hoef et al., 2004), they can be also extended easily to non-Gaussian
cases by simply convolving non-Gaussian variables.

3 Statistical models for MOZART output

We base our representation of the stochastic process that corresponds to MOZART output on
Equation (3). As discussed in the introduction, MOZART produces output for lattices of 64 x 128 for
each one of 19 altitudes. In this application we focus on just the height that corresponds to 300mb.
Furthermore, we are interested in the in the annual MOZART simulated spring ozone averages
(March, April, May). Let y;s be the log-transformed spring ozone average for year ¢t = 1,...T
and location s = (s, sy), where s, denotes longitude and s, denotes latitude. Let N denote the
number of such locations. We assume that there is no annual trend and no correlation between the
spring averages of different years. Thus, for each cell, we have T independent replicates of average
spring ozone.

To obtain a model based on Equation (3) we define a regular lattice (u1,...,uy). The definition
of the lattice affects the spatial resolution of the model. Lattices with high number of points will
have higher resolution and better ability to capture small spatial variability than coarser lattices.
This comes at the cost of a larger number of parameters. The application at hand is mostly about
global comparisons, so high resolution is not a pressing issue. Also, given the size of the dataset a
large U will make the model computationally infeasible. We use a grid of 10 x 20, so that U = 200.
Each grid cell in the lattice corresponds to about 41 MOZART output cells.



We assume that v, are normally distributed exchangeable latent variables, taking values on the
lattice. Then, for each location s and time ¢,

Yt,s = Hs + Z kq/),u(s - U)Uu + €15, €Ets ™~ N(07 7—52)7 Uy ~ N(07 772)- (4)

u

We notice that there is a location and a variance parameter, us and 72, for each MOZART grid
cell. This mimics the exploratory data analysis based on a graphical comparison of maps of grid
cell means and variances. The kernel in Equation (4) can be chosen so that the latitudinal and
longitudinal ranges are different. We denote the ranges as (¢5,v,) and let ¢, = w?i, and ¢, =
w2¢y, where w is the distance between two nearest lattice points. We use a distance that accounts
for the curvature and the spherical shape of the earth. We consider three kernel functions, Gaussian,
rational quadratic and Matérn kernels.

The Gaussian kernel is,

1 eXp{_HSCU_uﬂCHQ _ ”33/ _“y||2}
27T\/ ¢x¢y 2¢$ 2¢y

The rational quadratic kernel is,

_y _
¢a: ¢y
The Matérn kernel is,

1V Wllse — uollllsy — wll (mnsx—uxn) 2/7|sy — |
K, (Y12 =l g, | Y v 0.
(F<v>2<”1>> ( Vosty Vs Ve )M

Here

|50 — usz|| = 3,963.34 x 6, and ||sy —uy|| =3,963.34 X |5, — uy|

where 6, — { |sz — ugl %f |sy — ug| € [0,7]
21 — |8y — ug| if sy — ug| € (7, 27]
where miles have been used as the unit for distance.

When compared to the Gaussian kernel, the rational quadratic can have much longer tails, for
small values of v. This provides the ability to capture dependencies at fairly large ranges. For
the Matérn kernel, v is responsible for the smoothness of the process. In Figure 1 the upper row
shows the shapes of all three comparable kernels with similar interquartile ranges. For the Gaussian
kernel, 02 = 05 = 0.051. For the rational quadratic kernel, 02 = 02 = 0.01 and v = 0.75. For the
Matérn kernel, o7 = o7 = 0.27 and v = 0.75. The bottom row of Figure 1 shows the resulting
processes by convolving a white noise process with all three kernel functions under consideration.
The process convolution convolving with a Gaussian kernel produces a much smoother random field
than that convolving with either a rational quadratic kernel or a Matérn kernel, for small values of
v.

To complete the model in Equation (4) we specify vague priors for 72 and 72 in the form of
inverse gamma distributions with shape and scale parameters equal to 1. Priors for the kernel
parameters are specified as ¢, 1, ~ Unif(0, 2), v ~ Unif(0, 8).

To perform the comparison of the two sets of MOZART output we proceed by fitting the model
separately to each data set. This produces two sets of posterior distributions. Denote © the
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(a) Gaussian kernel (b) Rational quadratic kernel (c) A Matérn kernel

Figure 1: Shapes of the three considered kernels: Gaussian, rational quadratic, and Matérn (top panels),
and simulations obtained by convolving a white noise process with those kernels (bottom panels).

collection of all model parameters. Denote Yo the MOZART output obtained from CAM forcings
and Yy the one obtained from NCEP forcings. Then the predictive posterior distribution of a new
set of output Y conditional on output Y; is

p(Y[¥7) = /@ p(Y|Y;, ©)p(O]Y:), i=C,N.

If both Y and Yy produce similar predictions, then we can assume that they are equivalent. This
can be decided on the basis of the similarities between p(Y|Y¢) and p(Y|Yy).

An alternative assessment of the MOZART output is done using a model choice framework. We
consider two models. Model 1, denoted as M1, corresponds to a likelihood given by a common set of
parameters for all observations, say, p(Y¢, Yy |©). Model 2, denoted as Mo, corresponds to a like-
lihood specified by two different sets of parameters, say p(Yc, YN |Oc,On) = p(Yco|Oc)p(YN|OnN).-
The decision of whether the two MOZART output are equivalent corresponds to Mj being the
preferred model.

3.1 Model fitting

We fit the model by running a customized Markov chain Monte Carlo (MCMC) (see, for example
Gamerman and Lopes, 2006) that produces samples of the joint posterior distribution of all pa-
rameters. In order to obtain faster convergence, better mixing and maintain the simplicity of our
Monte Carlo methods, the MCMC is based on grouping the parameters in blocks.

The first block consists of s and 72 for each location site. For these two parameters, we write
the full conditional distribution as p(us, 72|...) = p(72|us,...)p(us| - ..), where ... is a short hand
for all other parameters and observations. We sample from such a distribution using Metropolis-
Hastings steps (Gamerman and Lopes, 2006). At the i-th iteration of the MCMC, we obtain a



proposed value for pg, say u;, as ps = ugi_l) +(, ¢~ N(O,gﬁ). Here ugi_l) is the current value of

ts- s will be either accepted or rejected based on the Metropolis-Hasting ratio

- (Z+a7)
min< 1 <Zt (yt’s _ /'L‘(s Y- Zu k¢,ll(3 B U>Uu)2 + 2/67') :
Zt (yt,s -y — Zu kqﬁﬂj(S — u)vu)z + 28,

If the proposed u? is accepted, generate a corresponding 72" from

2
(915 = 13 = S K ls = wn )
2

T
Inv.Gam 3 —i—aT,Z + -

t

Otherwise leave both p, and 72 unchanged.

Once po and 7'32 have been updated, for all s, we consider the parameters v, ¥y, v and vy,
for all u. Let V = (vi,...vy)". Then we write the joint full conditional as p(vs, %y, v, V]...) =
P(V|a, Yy, vy - )p(Ya, by, v| .. .). We obtain candidate values, 93, ¥y, and v* for ¥, 9, and v
respectively, using a random walk, in a manner analogous to what was done for us. Let

3 -1 - -1 > yt,S/T—MS
V = (Hy My Hy) " (H Mg ' Wy), Wy = ( T ow )

where >, y; /T — s denotes the vector of dimension equal to the number of MOZART output
grid cells and components ), y /T — ps. Oy denotes the vector of U components equal to 0.

k¢,u(81 - ul) e k’l/),l/(sl — uU)
F — k’lﬂ,l/(ss o ul) T kw;l/(ss - uU) O 7—2-[,5' 0
HV - 1 . 0 , and MV = 0 nQIU ,
0 1

where I, denotes the a X a identity matrix. ¢y, ¥y, and v* will be accepted based on the Metropolis-
Hasting ratio

_ _ - _ ~x\2
min{l,exp (_ 1 (612 _@g1)2>> X exp ( B %Z (Yt,s — Hs — Dou k;p (s —u)ok) ) y

t,s s

X exp (% Z (yt’s “Hs— Zu kqp(ifl),,j(iq) (s — u)i}z(jl))2> }

2
Ts

t,s

If the proposed vy, ¥y, and v* are accepted, V is updated by sampling from a U-variate normal
with mean V and covariance matrix (H(A/M‘;le/)*l. Since we can tune the proposal distribution
of 1,1y and v to obtain an acceptance rate between 40% and 60%, the computations involving
large matrices required to update V are performed on a fraction of the total number of iterations.
This is an additional important advantage of the blocking scheme that we use.
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Figure 2: Results of posterior predictive loss and DIC values when convolving with all three kernels for M,
and M. (g stands for Gaussian, rq stands for rational quadratic, m stands for Matérn).

4 Results

Conceptually, one of the most appealing ways of performing Bayesian model comparisons is to
use Bayes factors (Kass and Raftery, 1995). Unfortunately in this application we have little prior
knowledge on some of the parameters, we resort to using vague priors. Thus Bayes factors are not
appropriate for our application. Additionally, the model is already very computationally demanding
and the calculation of the marginal distributions needed for the Bayes factors increases the amount
of computations substantially. Thus we focus on criteria for model comparison problems that can
be directly calculated from the MCMC output and have little sensitivity to the prior used. The
methods used for the comparison of models M; and My are: posterior predictive loss (Gelfand
and Ghosh, 1998) and Deviance Information Criterion (Spiegelhalter et al., 2002). The details
of the criteria used for comparison are given in the following sections. To study the similarities
between p(f’|Yc) and p(f’|YN) we calculate the percentage of overlapping of the posterior intervals
corresponding to each grid cell and Bhattacharyya distance (Bhattacharyya, 1943).

We start our analysis by considering the problem of choosing one of the three proposed kernel
families. The results presented in this paper are based on 1,000 iterations after a burn-in of 14,000.
We fit models M; and M3 using each one of the kernels and compared the six resulting models
using DIC and posterior predictive loss. The results are shown in Figure 2. We observe that models
based in the rational quadratic kernel minimize the criteria. So for the rest of the paper we focus
on that kernel.

Figure 3 shows the posterior predictive means of g, for NCEP and CAM. This graphical com-
parison shows only subtle differences, mainly in the areas that correspond to the poles. For a
better understanding of the differences between the two outputs we need to compare features of the
posterior predictive distributions other than the mean. For a comparison of the kernel parameter
values we have in Figure 4 the posterior distributions of vy, 1, and v. We notice that there
are some latitudinal-longitudinal differences for the scaling parameters ¢. However the smoothing
parameter v has a similar posterior distribution for NCEP and CAM. To assess the goodness of
fit, we calculated the errors based on the posterior predictive means. Figure 5 shows the maps of
such errors as well as the corresponding histograms. We observe that there is no clustering and no
patches and the histograms are symmetric and short tailed.
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Figure 6: Model selection based on minimizing posterior predictive loss. (gray color stands for My, white
color stands for My).

4.1 Posterior Predictive Loss

The posterior predictive loss criterion was originally proposed in Gelfand and Ghosh (1998). The
criterion chooses the model that minimizes the loss incurred in estimating the observations using
the posterior predictive distribution. We use a quadratic loss which results in

T

Ly (Mk) = Z Eyrep|yobs (ys,t,rep - ys,obs)2

t=1
T

= Z{vs(yreph/obs) + (Hs(@/rep'@/obs) - ys,t,obs)Z}a
t=1

where,

M M

Vs (yrep|yobs) = % Z(TSQ(Z) + K’;(Z)ng)UQ(Z))a ,us(yrep|yobs) = % Z ng)a
i=1 i=1

where the super index (i) denotes the i-th iteration of the MCMC, obtained under My and M

is the total number of available samples. Notice that we calculate one value of the criterion per

grid cell. This permits the identification of the sites where the model output differs for different

forcings. The overall criterion is given by the sum of all L.

Subfigure 6(a) shows a global map of selected models (gray color stands M, white color stands
for My) which minimize the posterior predictive losses. My is the model that minimizes the
posterior predictive loss at most locations. Subfigure 6(b) provides an idea of the proportion of
grid cells where the criteria is minimized by each model.

4.2 Deviance Information Criterion

Two popular criteria for model comparison are the Akaike Information Criterion (AIC) (Akaike,
1973, 1974) and the Bayesian Information Criterion (BIC)) (Schwarz, 1978). They both require the
specification of the number of parameters in the model as well as the calculation of the maximum
of the posterior distribution. In our case, it is not clear how to count the effective number of
parameters for process convolutions, e.g., for the latent process, the count is probably somewhere
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Figure 7: Results for the rational quadratic kernel: minimizing DIC values. (gray color stands for M; and
white color stands for M)

between 1 and U because of spatial dependence among those U parameters. Deviance Information
Criterion (DIC) is defined in Spiegelhalter et al. (2002) as an attempt to produce a criterion that
incorporates an implicit definition of the effective number of parameters. The popularity of DIC is
also due to the fact that it can be directly calculated from MCMC output with very few additional
calculations. For insight on the pros and cons of the DIC we refer the reader to the discussion in
Spiegelhalter et al. (2002). One of the strongest criticism being that of using the data twice.

DIC considers both the goodness of fit and the model complexity. For our application we have

DICy(My,) =2D4(0),, — Ds(0)g, k=1,2

where, dropping the dependence on the model index k for clarity,

T

o _ 2
Dy(6) = Tlog(27r782) + 2 Z (v, = ps %2_“2]{:(8 u)vu) .
t=1 E

So, in analogy to the posterior predictive loss criterion, we have a comparison for each grid cell.
The overall criterion is given as the sum of all grid cell values. Also, as for the previous criterion,
the preferred model is the one that minimizes the DIC.

Subfigure 7(b) shows results that are in strong contradiction to those in Subfigure 6(b). It
indicates that M is preferred to Moy at a large number of locations. We prefer the posterior
predictive loss approach since DIC fails for latent variable models (Celeux et al., 2006). Moreover,
since we obtain some negative values for the effective number of parameters, the DIC approach is
not trustworthy. We observe that the images obtained from both the posterior loss approach and
the DIC approach are very patchy that is because of the qualitative property of both approaches.

4.3 Overlapping of probability intervals

The Bayesian approach provides uncertainty measurements on parameter estimates in the form of
distribution. This is also true for the posterior predictive distributions, p(ys|Y%),k = C, N, for
each grid cell. From MCMC runs, we can obtain the 95% credible intervals that correspond to
the quantiles 0.025 and 0.975 of the distribution of 7,, conditional on either Yo or Yy. We can

11
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Figure 8: Percentage of overlaps between 95% posterior predictive probability intervals obtained condi-
tioning on either Yo or Yy.(a) Percentages for each cell. (b) Histogram of the percentages calculated in

(a).

quantify the agreement between these two distributions by calculating the percentage of overlap
of such intervals. We repeat the calculation for each s to obtain a map of the overlaps. This is
shown in Figure 8. We observe that the overlap is high between the tropics, with the exception of
Brazil. It somewhat low in the Northern Pacific and Atlantic and it is fairly low in the poles. An
overall measure of overlap is given by the histogram in right panel of Figure 8. This indicates that
for most of the cells there is at least an overlap of 60% in the 95% posterior predictive probability
intervals.

4.4 Bhattacharyya Distance

An alternative way of quantifying the agreement between the two predictive distributions available
at each grid cell is to consider some measure of discrepancy between distributions. Some possibilities
are given by Bhattacharyya distance (Bhattacharyya, 1943), Hellinger distance (Matusita, 1955;
Rao, 1963; Beran, 1977) and Kullback-Leibler distance (Cover and Thomas, 1991). We consider all
of these and found that the first one is the most numerically stable of the three.

The Bhattacharyya distance is defined by,

B(f1|f2)=/ fi(z) fo(z)dx.

It has a one to one relationship with the Hellinger distance, which is defined as

H(filf2) = / (V@) — V() 2de =2 — 2 / V@ B@)dz = 2(1 - B(f1]f2).

Thus the larger the Bhattacharyya distance is, the more similar the two distributions are.
From the definition of Bhattacharyya distance we observe that

Bl = [\ 20
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Figure 9: B(p(§s|Yc)|p(§s|Yn)). (a) Estimated values for each cell. (b) Histogram of the percentages
calculated in (a).

so B(f1|f2) can be effectively calculated using a Monte Carlo approach. Analogous calculations can
be done for the Hellinger and the Kullback-Leibler distances, but they will not result in expectations
of positive quantities. Thus, the positiveness of the estimation is not guaranteed. We encountered
this problem in our application.

To assess the similarity of NCEP and CAM based simulations we calculated the Bhattacharyya
distance for the posterior predictive densities p(7s|Yc) and p(7s|Yn), using MCMC output. In
Equation 5 we can exchange f; with fs. In theory this produces the same value, but in practice
we obtain two different approximations to B(f1|f2). To avoid this problem we average the two
estimates. The results are presented in Figure 9. We observe that the overall features agree with
those in Figure 8 but that the field measuring the agreement between the predictives is smoother
in this case.

5 Conclusions

We have presented a method for the comparison of large data sets obtained from computer simu-
lators different sets of inputs. The use of process convolutions facilitates the study of the random
fields by reducing the dimensionality of the problem. The use of a Bayesian approach allows for a
quantification of the uncertainties in terms of probability distributions. These provides a precise
assessment of the similarities between predictions that incorporates all the parameter estimation
variabilities.

Considering the problem from a model comparison setting is of little use in this application. By
applying a 0-1 rule we obtain very patchy results that do not correspond with the evidence provided
by the model predictions. A more useful analysis is obtained by considering some measures of
discrepancy between predictive distributions. We proposed a measure that is based on the overlap
of predictive intervals. We believe that this is an intuitive measure of discrepancy that has the
advantage of corresponding to percentages. Similar comparisons could have been calculated for
the posterior distributions of us or 72, or their joint posterior distribution. Since the predictive
posterior indicates how well the model is able to reproduce the data that were actually observed,
we believe that it provides a better summary of the fit.

The present application was developed focusing on a specific altitude. A comprehensive assess-

13



ment of MOZART output requires consideration of whole profiles for each grid cell. Additionally,
we have considered only one season and assumed independence between observations correspond-
ing to different years. A full spatio-temporal model that considered the sequential structure of the
simulations would also be a desirable extension of the present model.
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