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Summary

Recent developments in Bayesian modelling of DNA sequence data for de-
tecting natural selection at the amino acid level are presented. This article
summarizes and discusses empirical model-based approaches. Key features of
the modelling framework include the incorporation of biologically meaningful
information via structured priors, posterior detection of sites under selection,
and model validation via posterior predictive checks and/or estimation of gene
and species trees. In addition, model selection is handled using a minimum
posterior predictive loss criterion. The models presented here can incorpo-
rate relevant covariates such as amino acid properties, extending in this way
previous approaches. Applications include the analysis of two DNA sequence
alignments with different characteristics in terms of evolutionary divergences
among the sequences: an abalone sperm lysin alignment with a strong underly-
ing phylogenetic structure and a low divergence sequence alignment encoding
the Apical Membrane Antigen-1 (AMA-1) in the human P.falciparum malaria
parasite.

Keywords and Phrases: Bayesian Generalized Linear Models; DNA
Sequence Data; Natural Selection; Model Comparison; Structured
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1. INTRODUCTION

Determining the effect of natural selection in DNA sequence data is a key subject
in the areas of computational biology and population genetics. Several approaches
have been developed in recent years to detect positive selection at the amino acid
level. Relevant references include, among others, Goldman and Yang (1994); Muse
and Gaut (1994); Nielsen and Yang (1998); Suzuki and Gojorobi (1999); Yang
et al. (2000); Huelsenbeck and Dyer (2004); Suzuki (2004); Yang et al. (2005);
Kosakovsky Pond and Frost (2005a, 2005b). All these approaches have focused
on analyzing “phylogenetic data”, i.e., data in which each sequence in the align-
ment represents a unique species. When several sequences representing different
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individuals from one or more populations of the same species are considered, the
approaches mentioned above may produce unreasonable results due to the lack of
evolutionary divergence among the sequences. In this paper we summarize and dis-
cuss recent modelling approaches specifically designed to analyze this latter type of
data, referred to as “polymorphic data”. This model-based methodology permits
the incorporation of biologically meaningful prior information, while simultaneously
allowing maximum flexibility in modelling substitution rates at the amino acid level.
We therefore extend previous approaches presented in Prado et al. (2006) in order to
include the following features: incorporation of relevant covariates, such as amino
acid properties, and clustering functions on model parameters that can describe
population, or geography specific effects. Additionally, we show how phylogenetic
posterior estimation and posterior predictive checks can be used as model validation
tools.

Section 2 summarizes the biological terminology that will be used throughout
the paper and describes the models. Section 3 discusses different ways of identifying
positively and negatively selected amino acid sites. The definitions are based on
posterior distributions of the model parameters. In addition, a description of how
to obtain estimates of phylogenies and gene trees is included. Although the main
objective of the methodology presented here is detection of amino acid sites under
selection, estimates of phylogenies — even if such estimates may only describe crude
topological features underlying the sequence alignments — can be useful as model
checking tools. In Section 4, model comparison and model validation procedures
are discussed. Section 5 illustrates various aspects of the models and methodology
in the analyses of two data sets with different evolutionary characteristics. First,
analyses of an alignment coding a 122 residue region of the sperm lysin protein in
25 species of California abalone are presented. This data set has been extensively
studied and it is considered to be a good example of how positive selection can
act on individual amino acid sites. The alignment also displays a relatively strong
phylogenetic signal. Then, analyses of sequences encoding AMA-1, a candidate
antigen for malaria vaccine development, are presented. This data set is in some
ways orthogonal to the lysin data set, as it consists of multiple sequences encoding
AMA-1 within a single species, the human P.falciparum malaria parasite. Because
of this the sequences display relatively low evolutionary divergence. Finally, Section
5 concludes with a summary of remarks, as well as current and future directions for
research.

2. MODELS

We begin by summarizing some biological concepts that will be used throughout
the paper.

Codon. This is the term given to a three nucleotide sequence codifying one of the
20 amino acids that serve as the building blocks of proteins. The universal genetic
code has 64 possible codons of which 61 encode amino acids and the remaining 3
are stop codons, designating the end of the DNA transcription into RNA.

Synonymous and non-synonymous substitutions. Given that there are 20 amino
acids and 61 possible codons, multiple condons codify the same amino acid. Syn-
onymous substitutions are those between codons that specify the same amino acid;
e.g., a substitution of TTA for CTC is a synonymous one since both codons encode
the amino acid Leucine (L). Non-synonymous substitutions are those between codons
specifying different amino acids; e.g., a substitution of TTC, encoding Phenylalanine
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(F), for TTA (L).

Neutral, negative and positive selection. Synonymous substitutions are expected to
be neutral since they do not affect the amino acid composition of proteins. Non-
synonymous substitutions may have negative effects on the protein function and so,
they are expected to be eliminated by negative selection. In the event that such
substitutions are selectively favorable, the frequency of the gene containing the new
amino acid is increased until it becomes fixed in the population. This process is
known as positive natural selection or adaptive evolution.

Transitions and transversions. Transitions are nucleotide substitutions between
purines (Adenine (A) and Guanine (G)) or between pyrimidines (Cytosine (C) and
Thymine (T)). Transversions include all the other nucleotide substitutions.

Phylogeny and genealogy. Phylogenies are evolutionary trees that describe the pat-
tern of divergences by which a single common ancestral sequence evolved, over time,
into the descendant sequences comprising a given alignment. Phylogenies are used
to represent evolutionary relationships among species using sequence data in which
each sequence represents a species (phylogenetic data). If the sequences are from
different individuals of the same species (polymorphic data), the information is ge-
nealogical and so, genealogies or gene trees can be used to show which sequences
are most closely related.

In order to describe the general model formulation we follow the notation of
Prado et al. (2006). Specifically, let Y denote the sequence alignment consisting of
N sequences with 3 × I nucleotides (i.e., I codons). Let Z denote the substitution
count data obtained from Y as follows. Define yi,j to be the pair of homologous
codons at site i, i = 1, . . . , I, for the sequence pair indexed by j, with j = 1, . . . , J
and J =

`

N

2

´

, the total number of possible pairs of sequences. Typically, only the
polymorphic sites, i.e., only those sites i that display at least one substitution in
one pair of sequences, are included in the model. Z can be obtained in a number
of ways, depending on how many types of substitutions will be represented in the
model, and depending on whether or not phylogenetic or genealogical information
will be used. For instance, Merl et al. (2005) used phylogenies to estimate ances-
tral nucleotide sequences, and then used the reconstructed sequences to count the
total number of substitutions between two codons using a method similar to that
proposed in Kosakovsky Pond and Frost (2005b). Prado et al. (2006) averaged
the different numbers of substitutions per site over all possible one-substitution
pathways that could have been followed between any two codons without allow-
ing back-substitutions, self-canceling loops, and eliminating the pathways including
stop codons. Regardless of which methodology is used to obtain Z, zi,j is a K-
dimensional vector of counts, where each component, zk,i,j , represents the number
of substitutions of type k at site i between the two codons in the pairwise sequence
comparison indexed by j.

For each zi,j we define θi,j , a K-dimensional vector where each component,
θk,i,j , denotes the probability of substitution type k for site i and pair j. The model
is then described by

zi,j ∼ Multinomial(ni,j , θi,j), ni,j =
X

k

zk,i,j ,

θk,i,j =
exp (ηk,i,j)
P

l exp (ηl,i,j)
, (1)
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ηk,i,j = αk + βk,i + γk,h(j) + δ
′
k,ixi,j .

The K-dimensional parameter vector α = (α1, . . . , αK)′ models the baseline effects
for each substitution type. The K-dimensional vectors βi = (β1,i, . . . , βK,i)

′ cap-
ture site-specific departures from baseline substitution effects, i.e., they account for
different strengths of selective pressures expressed for each substitution type, for
each amino acid site i. The K-dimensional vectors γh(j) = (γ1,h(j), . . . , γK,h(j))

′

describe pairwise, or more generally groupwise, departures from baseline and site-
specific effects. In the particular case of h(j) = j, γh(j) models pairwise effects due
to evolutionary divergence between the two sequences indexed by j. These param-
eters would be associated with phylogenetic or gene tree effects. Other choices of
h(j) will be discussed later. Finally, the xi,j ’s are C-dimensional vectors of covari-
ates and the δk,i’s are C-dimensional parameter vectors. Covariates can include
measures of amino acid properties such as polarity and hydrophobicity, or amino
acid score matrices that measure distances between amino acids in terms of various
properties (e.g., the Grantham matrix, see Grantham, 1974). The inclusion of these
covariates may be useful in determining whether very radical substitutions are being
encouraged by natural selection.

2.1. Sub-Models

Choosing K, the number of categories. Models with K = 3, where only synony-
mous, non-synonymous and no-change categories are considered, are useful in identi-
fying amino acid sites under positive selection. Models with K = 5 in which synony-
mous transitions and transversions, non-synonymous transitions and transversions
and no-substitutions are considered, are also used to detect sites under selection in
sequences for which discriminating between transitions and transversions is key to
determine if the observed rates of substitutions may be the result of codon bias.
Codon bias is the tendency for a species to use a given set of codons more than oth-
ers to encode a particular amino acid. Prado et al. (2006) used a 5-category model
to analyze alignments of the AMA-1 antigen from the P.falciparum human malaria
parasite. Accounting for transitions and transversions in these data is important
to assess whether the increased rates of non-synonymous substitutions estimated at
some amino acid sites are the result of the A+T richness in the genome (Escalante
et al., 1998). Other model possibilities that would be useful for this purpose in-
clude, for example, K = 4, with a single category for synonymous substitutions
and two categories of non-synonymous substitutions — e.g., those between G and
C nucleotides, and all remaining substitutions — and a no-substitution category.

Pairwise and group effects. Models with h(j) = j for all j specifically include all
possible pairwise effects. These effects are often relevant in the analysis of phylo-
genetic sequences, i.e., in alignments for which the sequences were obtained from
distinct species. This approach is followed in the analyses of the sperm lysin se-
quences presented here. In cases of polymorphic data, more parsimonious choices
can be considered. For instance, the AMA-1 alignment analyzed in Prado et al.
(2006), and revisited here, consists of 23 sequences in total, with 12 isolates from
Kenya, 5 isolates from India, and 6 isolates from Thailand. In this case, it may
be reasonable to assume that we have samples from two distinct populations: an
African population represented by the 12 sequences from Kenya, and an Asian pop-
ulation represented by the 11 sequences from India and Thailand. Then, we can
write h(j) = o, for o = 1, 2, 3 defined in such a way that h(j) = 1 if j indexes a pair
of sequences from Africa, h(j) = 2 if j indexes a pair of sequences from Asia, and
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h(j) = 3 if j indexes a pair of sequences from different populations, i.e., one from
Africa and the other one from Asia. Another potentially interesting model is that in
which γh(j) = 0 for all j. This model does not include any group effect (pairwise or

other type) and it is sometimes useful in modelling sequences for which the genetic
variability is mostly explained by the site-specific effects and so, phylogenetic or
population effects are considered negligible.

Covariates. Sub-models include those with δk,i = δk for all i, models with δk,i = δi

for all k, and those with δk,i = δ for all k, i. Note that the inclusion of covariates
that carry information on amino acid properties only affects non-synonymous substi-
tutions and so, δk,i = 0 for all k indexing a synonymous or no-substitution category
in any model that includes covariates.

2.2. Prior Structure

The prior structure used here is similar to that proposed in Prado et al. (2006). We
now summarize the main features of such structure, directing reader to the previous
reference for details on the prior construction and a discussion about its biological
implications.

The prior distributions on α, β and γ are all Gaussian. This is, N(α|mα, σ2
αI),

N(βk|mβk
, σ2

βI) and N(γk|mγk
, σ2

γWγk
), where I denotes the identity matrix with

the appropriate dimension in each case. In addition, constraints on α, β and γ are
set to guarantee identifiability (see Prado et al., 2006).

In absence of prior information about site-specific effects we set mβk
= 0 for all

k. When phylogenetic/genealogical information is available, it may be incorporated
in the prior structure by first translating the phylogeny/genealogy into a matrix of

distances D, as well as a matrix of “distances between distances” D̃ (see Prado et.
al., 2006). Then, mα, mγk

and Wγk
, are expressed as functions of the elements of

D, D̃ and hyper-parameters w, χ, χ∗, ζ and ζ∗. Here w is a vector of dimension
K − 1 containing prior estimates for the relative frequencies of the first K − 1
substitution types, while χ, χ∗, ζ and ζ∗ are used to control the strength of the
phylogenetic/genealogy effects in the prior structure. These hyper-parameters can
be given fixed values a priori or estimated a posteriori. In the latter case, the
hyper-parameters are assumed independent a priori with χ and χ∗ following uniform
priors and ζ, ζ∗, as well as each element of w following exponential priors. In
addition, the parameters σ2

α, σ2
β and σ2

γ can be fixed a priori or estimated a posteriori
under inverse-gamma priors. Alternatively, if the alignment includes sequences with
relatively low evolutionary divergence, for which none or only very weak phylogenetic
information is available, mγk

= 0 and Wγk
= I are typically used.

Finally, Gaussian priors are also specified for the C-dimensional parameter vec-
tors δk,i. Specifically, N(δk,i|0, σ2

δI) are used for all the categories k that model
non-synonymous substitutions and all polymorphic sites indexed by i. As it was the
case with other variance parameters, σ2

δ can be set to some fixed value or estimated
a posteriori under an inverse-gamma prior.

3. POSTERIOR ESTIMATION

Posterior estimation is achieved via standard MCMC methods using the Poisson
formulation of the multinomial model (see Baker, 1994).
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3.1. Identifying Sites Under Selection

Once samples from the posterior distribution of the model parameters are obtained,
sites under negative or positive selection can be identified by investigating the be-
havior of specific functions of such parameters.

3.1.1. Definitions based on θ

Let I∗ be a specific set of sites in the alignment. For instance, I∗ can be the set of all
the polymorphic sites in the alignment, or the set of all the sites that display at least

one non-synonymous substitution. Let θI∗

S and θI∗

NS be the average synonymous and
non-synonymous substitution probabilities, respectively, for the sites in I∗. This is,

θI∗

S =
1

(|I∗| × J)

X

i∈I∗

X

j=1:J

X

l∈CS

θl,i,j , and θI∗

NS =
1

(|I∗| × J)

X

i∈I∗

X

j=1:J

X

l∈CNS

θl,i,j ,

where CS and CNS are the sets of indexes of all the categories that involve synony-
mous and non-synonymous substitutions, respectively. Then, we say that there is
evidence of positive selection in the gene if

P (ω∗ > ω0|Z) ≡ P

 

θI∗

NS

θI∗

S

> ω0

˛

˛

˛

˛

˛

Z

!

≥ (1 − α1), (2)

with α1 ∈ [0, 1) and typically, α1 ∈ [0, 0.05]. The value of ω0 is fixed and often set
at ω0 = 1. A non-synonymous to synonymous substitution probabilities ratio equal
to one is considered indicative of neutral selection, ratios smaller than one indicate
negative selection, while ratios greater than one are linked to positive selection (e.g.,
Yang et al., 2005). When (2) holds, we can proceed to identify sites under positive
selection. Specifically, we say that a site i is a positively selected site if

P (i+|Z) ≡ P

 

θNS,i

θI∗

S

>
θI∗

NS

θI∗

S

˛

˛

˛

˛

˛

Z

!

= P (θNS,i > θI∗

NS |Z) ≥ (1 − α2), (3)

with α2 ∈ [0, 1) and usually α2 ≤ 0.05. If (2) does not hold then we say that the
alignment is under neutral and/or negative selection.

Sites under negative selection can also be identified. Specifically, a site i is said
to be under negative selection if

P

 

θI∗

S

θI∗

NS

>
1

ω1

˛

˛

˛

˛

˛

Z

!

≥ (1 − α4), (4)

and if

P (i−|Z) ≡ P

 

θS,i

θI∗

NS

>
θI∗

S

θI∗

NS

˛

˛

˛

˛

˛

Z

!

= P
“

θS,i > θI∗

S |Z
”

≥ (1 − α3), (5)

with α3, α4 ∈ [0, 1) and typically α3, α4 ∈ [0, 0.05]. The value of ω1 is set by the
practitioner. For instance, if sites under very strong negative selection must be
identified, 1/ω1 is fixed at a value greater than 2.0.
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3.1.2. A definition of positive selection based on β and δ

Prado et al. (2006) considers another definition for detecting sites under positive
selection by writing P (i+|Z) in terms of the β parameters. In general, it has been
found that such definition is more conservative that the definition in (3). Simulation
studies suggest that a definition based on β produces less false positives but also
has less power than the definition in (3) (see Prado et al., 2006).

Here, we extend the definition of Prado et al. (2006) to account for possible
covariates added to the model. Once again, we first determine whether there is
evidence of positive selection in the alignment by looking at P (ω∗ > ω0|Z). In other
words, if (2) holds for some fixed values ω0 and α1, we then proceed to identify
which sites are under positive selection. Then, a site i is said to be under positive
selection if

P (i+|Z) ≡ P
`

β∗
NS,i + f(δ′

NS,ixi) > β∗
S,i|Z

´

≥ (1 − α2), (6)

with

β∗
k,i = βk,i −

1

|I∗|

X

i∈I∗

βk,i, and f(δ′
NS,ixi) =

1

J

J
X

j=1

δ
′
NS,ixi,j .

3.2. Phylogenetic and Gene Tree Estimation

Although the models considered here were not developed for the purpose of phyloge-
netic/genealogic inference, it is possible to obtain posterior estimates of phylogenies
or gene trees based on posterior distance matrices as follows.

Let dh(j) be an estimate of the distance between the pair of sequences indexed
by j computed as follows

dh(j) =
1

|I∗|

X

i∈I∗

X

k∈C

θk,i,h(j), (7)

with C including a particular set of substitution categories. For example, C can be the
set containing all the substitution types (e.g., synonymous and non-synonymous),
only the synonymous substitutions, or only the non-synonymous substitutions. Here,
θk,i,o, for a given o, is computed as

θk,i,o =
1

|o|

X

j;h(j)=o

θk,i,h(j),

where |o| is the number of indexes j such that h(j) = o. The distances (pseudo-
distances) in (7) can be used to build a matrix Dh whose dimension depends on
the structure defined by the function h(j). For example, if h(j) = j for all pairs
indexed by j, the matrix Dh will have dimension N ×N , with off diagonal elements
computed as g(dj), with g a particular function, such as the identity or the expo-
nential. The diagonal elements of Dh can be computed using g(0) (the distance
between a sequence and itself is zero). In the example of the malaria sequences
from two populations discussed above, h(j) = o with o = 1, 2, 3, and so, Dh would
be a 2 × 2 matrix. The off-diagonal elements would measure the average distances
between populations (or a function of such distances), while the diagonal entries
would contain average within population distances (or a function of such distances).
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The matrix Dh can then be used as an input to one of the distance-based al-
gorithms often used in practice to estimate phylogenies or gene trees such as the
neighbor joining algorithm (see for example Felsenstein, 2004 for a detailed expla-
nation of this and other related algorithms for phylogenetic estimation). Therefore,
posterior estimates/samples of genealogies based on the distances defined in (7) can
be obtained.

4. MODEL SELECTION AND MODEL VALIDATION

4.1. Model Selection

Model selection among different models, such as the various sub-models discussed
in Section 2, is performed via the minimum posterior predictive loss approach of
Gelfand and Ghosh (1998). This criterion can be computed easily using MCMC
output and it has a decision theoretical justification given that it is obtained by
minimizing a posterior predictive loss function within a particular family of models,
and then, selecting the model that minimizes such criterion.

For each model Mm from a collection of M models, M1, . . . ,MM , the following
quantity is computed,

Dκ(m) =
X

i,j

min
ai,j



E
zrep

i,j
|Zobs

,m

h

L(zrep
i,j , ai,j) + κL(zobs

i,j , ai,j)
i

ff

, κ ≥ 0, (8)

where Zobs ≡ Z are the observed count data, z
rep
i,j is a K-dimensional vector of

counts that replicates zobs
i,j , L(·, ·) is a loss function, ai,j is a “guess”, representing a

compromise between z
rep
i,j and zobs

i,j and κ is a constant that weights the discrepancy

between ai,j and zobs
i,j . In other words, when κ = 0, ai,j is chosen as a guess for z

rep
i,j

and if κ 6= 0 the closeness of ai,j to zobs
i,j is also rewarded, and so, a compromised

choice is required.
Various loss functions can be considered. Prado et al. (2006) computed (8) for

the model formulation (2) with five categories using two loss functions: a squared
error loss function and a loss function written in terms of the logarithm of a ratio
of likelihoods, i.e.,

L(zi,j , ai,j) = 2 log
f(zi,j |q(zi,j))

f(zi,j |q(ai,j))
,

for some function q. This loss function takes into account the GLM structure of
the model. Details regarding the specific form of q and the calculation of Dκ(m)
appear in Prado et al. (2006).

4.2. Model Checking

We follow a posterior predictive approach to model checking. After obtaining R
posterior samples of the K-dimensional probability vectors θi,j , for each i, j, i.e.,

θ
(r)
i,j for r = 1, . . . , R, we can obtain R replicates z

rep
i,j for each i, j. This is

z
rep,r
i,j ∼ Multinomial(ni,j , θ

(r)
i,j ). (9)

Then, we can summarize posterior distributions of relevant functions of z
rep
i,j and

compare them with functions of the actual count values zi,j . For instance, we
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could derive the distribution of the number of transitions, transversions, synonymous
and/or non-synonymous substitutions based on the replicates Zrep for all, or a few,
of the sites indexed by i, and determine whether the corresponding observed values
are plausible values under such distributions.

In order to appropriately simulate z
rep
i,j in (9), we need to take into account the

process used to obtain the count data Z from the alignment. For instance, when the
procedure described in Prado et al. (2006) is followed to obtain Z in a 5-category
model for which the categories are synonymous transitions and transversions, non-
synonymous transitions and transversions and no substitutions, the resulting z5,i,j

is a binary entry. In this case z
rep,r
i,j is simulated as follows. First z5,i,j is simulated

from a Bernoulli distribution with probability θ
(r)
5,i,j . Then, z

rep,r
1:4,i,j is simulated

from a multinomial distribution with parameters (ni,j − zrep,r
5,i,j ) and θ

∗,(r)
1:4,i,j , with

θ
∗,(r)
k,i,j = θ

(r)
k,i,j/

P4
k=1 θ

(r)
k,i,j . This will be illustrated in Section 5.

Another way of assessing model fit in phylogenetic data is by looking at the phy-
logenies obtained from the posterior estimates (or posterior samples) of the distance
matrix Dh. This can only be done if no phylogenetic structure has been included in
the prior specification. Close inspection of posterior tree estimates/samples can then
be used as a tool for model validation. We can compare such estimates to substan-
tive knowledge about the evolutionary process underlying the sequences whenever
such information is available.

5. DATA ANALYSES

5.1. Abalone Sperm Lysin Alignment

This alignment codes for a 122 residue region of the sperm lysin protein for 25 species
of California abalone. Abalone reproduction involves species specific sperm-egg
recognition in which the sperm lysin binds and dissolves a complementary vitelline
envelope (VE) surrounding the egg cell. This species-specific interaction is subjected
to positive selection of some 23 residues in the lysin protein, as it compensates for
ongoing genetic drift in the VE receptor (Galindo et al, 2003; Lee et al, 1995; Yang et.
al., 2000). These data have been extensively studied and provide a good example of
positive selection acting on individual amino acid sites. The data are included in the
PAML software distribution (Yang, 1997). The sequences are sufficiently divergent,
with a total tree length of 8.2 nucleotide substitutions per codon. Additionally,
the crystalline structure of the molecule can be used to support or refute claims of
positively selected amino acid sites (Yang et al., 2000).

Various models were fit to the count data obtained from the alignment using the
procedure described in Prado et al. (2006). We focus on the results drawn from two
3-category models: a model with a prior specification that includes the phylogenetic
structure shown in Figure 3, and another model where such structure is not incorpo-
rated. The three categories correspond, respectively, to synonymous substitutions,
non-synonymous substitutions and no substitutions. The phylogeny in Figure 3 is
that of Lee et al. (1995). For both models, the results presented here are based on
1,000 MCMC samples obtained after convergence. Also, both models incorporate
a single covariate xi,j , where xi,j corresponds to the normalized Grantham matrix
score (see Grantham, 1974) between the two amino acids indexed in the pairwise
comparison j at site i. For each amino acid substitution, the Grantham score rep-
resents a physicochemical distance between the two amino acids involved in such
substitution. The normalization of the matrix involved dividing each entry in the
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matrix by the maximum score value.
The phylogenetic prior was specified using the procedure described in Prado et

al. (2006), taking into account that we are fitting a 3-category model instead of a
5-category one, and setting σ2

α = σ2
β = σ2

γ = 10, σ2
δ = 1, mβ = mδ = 0, and the

hyperparameters needed to define mα, mγk
and Wγk

to w = (1, 1), χ = χ∗ = 1,
ζ = 1 and ζ∗ = 1. The independent prior was specified by setting mα = mβ = 0,
mγ = mδ = 0, σ2

α = σ2
β = σ2

γ = 10 and σ2
δ = 1, and all the prior variance-covariance

matrices equal to identities. Posterior results, in terms of which sites were detected
as sites under selection, were not very sensitive to changes in the prior values of
these parameters.

Table 1 shows various model selection criteria values for the two types of models
fitted to the count data. Three criteria were considered, two of which correspond
to the posterior predictive criteria of Gelfand and Ghosh (1998) under the log-
likelihood ratio and the squared error loss functions, denoted by Dκ

dev and Dκ
se,

respectively. The values displayed on the table correspond to κ = 100. Other values
of κ were considered, leading to the same conclusions. The deviance information
criteria (DIC), was also computed for both models (Spiegelhalter et al., 2002). Based
on these values, the model with structured phylogenetic priors is preferred by all
the criteria.

Table 1: Model selection criteria. Lysin alignment.

Model D100

dev
D100

se DIC

Independent 65413 37558 65142
Phylogenetic 65349 37495 64929

Even though the preferred model, according to the model selection criteria dis-
cussed above, is the one with phylogenetic priors, we now focus on the results ob-
tained from the model with independent priors in order to illustrate some modelling
features, particularly those related to model validation. Figure 1 shows the posterior
distributions of the non-synonymous to synonymous probabilities ratios for the sites
identified as positively selected by both of the GLM-based definitions described in
Section 3. The dark boxplots correspond to sites that were also identified as pos-
itively selected by at least one of the methods implemented in PAML (Yang, 1997)
or in HYPHY (Kosakovsky Pond et al, 2005). Specifically, model M8b in PAML was
fitted to the alignment. This is a model in which a discretized beta distribution is
used to describe the non-synonymous to synonymous rates ratio –denoted by ω in
the computational biology literature– between 0 and 1, and an additional category
with ω > 1. Three different methodologies were considered in HYPHY: the single
ancestor counting method (SLAC), the fixed-effects likelihood method (FEL) and
the random-effects likelihood method (REL). Details about how these models are
used to detect sites under positive selection can be found in Kosakovsky Pond and
Frost (2005a, 2005b). Figure 1 shows that there is good agreement between the pro-
posed GLM-based methodology and the existing methodologies based on stochastic
models of molecular evolution and phylogenetic-based models implemented in PAML

and HYPHY.
Figure 2 displays the lysin crystal structure for one of the abalone species in
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Figure 1: Posterior distributions of the non-synonymous to synonymous
probabilities ratios for the sites positively selected by GLM-based definitions.
Dark boxplots indicate that those sites were also identified by at least one of
the PAML or HYPHY methods.

the alignment (H. Rufenses). This is the same crystal structure shown in Yang
et al. (2000). The sites positively identified by the GLM-based methodology do
not exactly match those identified by model M8b in PAML, however, as shown in
Figure 2, there is a great deal of agreement in terms of the locations of positively
selected sites in the folded protein. Figure 2 shows that the GLM positively selected
sites cluster at the top and at the bottom of the molecule. These findings are in
agreement with the results presented in Yang et al. (2000). Most of the conserved
sites lie in the internal portions of the alpha helices of the protein. Such sites are
involved in interhelical interactions and are functionally constrained in all lysins.

Figure 4 shows an estimated phylogeny constructed using the posterior mean
estimate of a distance matrix Dh(j) = Dj , whose entries are given by

dj =
1

|I∗|

X

i∈I∗

θ1,i,j + θ2,i,j ,

where θ1,i,j and θ2,i,j are the probabilities of synonymous and non-synonymous
substitutions, respectively, for the pair of sequences indexed by j and the residue
indexed by i. The estimated phylogeny displayed in the figure is based on posterior
samples from the model with independent priors. A neighbor joining algorithm was
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Figure 2: Lysin crystal structure from the red abalone H. Rufenses. Sites
identified as positively selected are in black.

used for the tree construction. Although the phylogenies in figures 3 and 4 are not
identical, they show many topological similarities, indicating that the GLM-based
approach provides a good model fit. In particular, most of the species that appear
clustered in Figure 3 are also clustered in the phylogeny displayed in Figure 4.

5.2. AMA-1 Alignment

Prado et al. (2006) presents analyses of alignments comprising 23 sequences of the
AMA-1 antigen in the human P.falciparum malaria parasite. We consider additional
analyses of this alignment here, extending the approach of Prado et al. (2006) in
order to add covariates related to amino acid properties. In addition, a collection of
models that make various assumptions about the underlying evolutionary character-
istics of the sequences are fitted to the data, and compared via posterior predictive
model selection criteria.

Malaria is a major public health problem, with approximately 300 to 500 mil-
lion clinical cases and 1 to 3 million deaths estimated per year (Sachs and Malaney,
2002) and so, vaccine development against the parasites that produce the disease
is a priority. AMA-1 is one of the candidate antigens currently being considered
for use in vaccine development. AMA-1 has been extensively studied, and there is
convincing evidence that this antigen elicits a protective immune response against
malaria (Polley et al., 2004). In addition, some residues have been associated with



Detecting selection in DNA sequences 13

 10 H. fulgens

  4 H. kamtschatkana

  1 H. rufescens

  2 H. sorenseni

  3 H. walallensis

  5 H. sieboldii

  6 H. discus hannai

  7 H. gigantea

  8 H. corrugata

  9 H. cracherodii

 25 H. iris

 17 H. pustulata

 24 H. t.coccinea

 23 H. t.tuberculata

 22 H. australis

 18 H. midae

 11 H. roei

 12 H. scalaris

 13 H. laevigata

 14 H. cyclobates

 15 H. rubra

 16 H. conicopora

 19 H. ovina

 21 H. varia

 20 H. diversicolor

Figure 3: Abalone sperm lysin phylogeny from Lee et al., 1995.

various clinical manifestations of the disease (Cortes et al., 2003). Genetic evolu-
tionary studies have also shown that there is evidence that the gene is under positive
selection (Escalante et al., 2001; Polley et. al., 2003).

The alignment considered here consists of 23 sequences, each encoding a total
number of 620 residues. From these 23 sequences, 12 sequences were taken from
subjects in Kenya, 5 from subjects in India and 6 from subjects in Thailand. The
sequences display 84 polymorphic sites and are available in GenBank. Prado et
al. (2006) analyzed this alignment using 5-category models with synonymous tran-
sitions and transversions, non-synonymous transitions and transversions and no-
substitutions. Here, we consider 3-category models accounting for synonymous sub-
stitutions, non-synonymous substitutions and no-substitutions. In addition, three
types of models were chosen by considering three different choices of the function
h(j) that defines the groupwise effects among the sequences. First, we consider
models with h(j) = j for all j, i.e., models in which the γ parameters describe
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Figure 4: Posterior estimation of an abalone sperm lysin phylogeny
obtained from GLM approach.

evolutionary distances among pairs of sequences. We refer to these models as “full”
models. Prado et al. (2006) only fitted these types of models. Second, we consider
models in which h(j) = 1 for all the pairs j in which both sequences were from
Africa, h(j) = 2 for all the pairs j in which both sequences were from Asia and
h(j) = 3 for all the pairs j in which one sequence was from Africa and the other one
was from Asia. We refer to these models as “continent” models. Finally, we also
fit models in which h(j) = 1 for all the pairs j in which both sequences are from
Kenya, h(j) = 2 for all the pairs in which both sequences are from India, h(j) = 3
for all the pairs in which both sequences are from Thailand. Additionally, h(j) = o,
with o = 4, 5, 6, for all the pairs j in which the sequences are from different coun-
tries (Kenya and India, Kenya and Thailand and India and Thailand, respectively).
We refer to these models as the “country” models. For each of the three types
of models described above we fit all possible combinations of covariate-specific and
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site-specific effects, namely: models with and without a covariate that represents
amino acid substitutions scores (δ) – again, the normalized Grantham matrix was
used as a covariate – and models with and without the site-specific effects β. Finally,
models that do not include any group effects γ are also considered.

Table 2 shows various model selection criteria values for the all the model types
described above, denoted by (α), (α+β), (α+γ), (α+δ), (α+β+γ), (α+β+δ),
(α+γ+δ) and (α+β+γ+δ). Notice that four of these models, (α), (α+β), (α+δ)
and (α + β + δ), are equivalent under any choice of h(·), since they do not involve
a group-specific γ term. For purposes of model selection, we compare minimum
posterior predictive deviance (Dκ

dev), minimum posterior predictive squared-error
loss (Dκ

se), and the deviance information criterion (DIC). For Dκ
dev and Dκ

se, various
values of κ were used, yielding virtually identical results. Values reported here
were obtained using κ = 100. Superior model fit is indicated by smaller values of
each model selection criterion. The value corresponding to the best-fitting model
under each criterion is shown in bold. All model selection criteria indicate that the
full model provides the best fit to the data. Adding the site-specific effects β to
a given model produces the largest decrease in the model selection criteria values.
For instance, compare the decrease in D100

dev , D100
se and DIC values for the models

(α + β) and (α + δ) with respect to (α), and the decrease in the criteria values
of models (α + β + γ) and (α + γ + δ) with respect to (α + γ) in the country,
continent and full models. Adding the group-specific effects γ to a given model
produces the smallest decrease in the model selection criteria values. In fact, the
model selection criteria values for the continent and country models are virtually
equivalent. These findings are important since they imply that the variables that
have the largest effects in the subsitution probabilities are the site-specific effects,
while those related to various assumptions on the evolutionary distances among the
sequences have the least impact. This indicates that, if clustering of the sequences
in terms of their evolutionary distances is feasible, such clustering would not be
related to geographical location.

We now discuss some posterior results obtained from the full model with the
Grantham scores covariate. Figure 5 displays the posterior predictive distributions
of the number of synonymous substitutions z34,1, the number non-synonymous sub-
stitutions z34,2, and the number of no-substitutions z34,3, adding over all the pairwise
sequences for site 34. The dots in the histograms correspond to actual count values
in Z. These types of graphs are helpful for determining which features of the data
are not well captured by the model. We looked at several of these graphs, focus-
ing in particular on sites that displayed above average numbers of non-synonymous
substitutions, as those are important for assessing the effect of positive selection in
these antigen sequences. In all cases the graphs did not suggest major discrepancies
between the posterior predictive distributions and the observed values.

Table 3 lists the positively selected sites detected by the two methods described
in Section 3. Method 1 uses a definition of positive selection based on the θ param-
eters, while Method 2 uses a definition based on β and δ. Most of the sites listed
here were previously identified as positively selected using a 5-category model with-
out covariates (see results in Prado et al., 2006), except for those sites marked with
(*). The full 3-category model that includes the amino acid scores detects the same
sites previously detected by the 5-category model with no covariate when Method
2 is used. Four additional sites are identified at the level α2 = 0.05 when Method
1 is used. Further analyses need to be performed in order to assess whether these
additional sites appear due to the reduction in the number of categories, or due to
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Table 2: Model selection criteria. AMA-1 alignment

Model D100

dev
D100

se
DIC

(α) 42961 19039 30063
(α + β) 38156 16713 25433
(α + δ) 40601 17921 27675
(α + β + δ) 36161 15817 23675
continent (α + γ) 42966 19033 30065
continent (α + β + γ) 38118 16700 25439
continent (α + γ + δ) 40574 17915 27682
continent (α + β + γ + δ) 36124 15803 23681
country (α + γ) 42950 19030 30063
country (α + β + γ) 38108 16703 25441
country (α + γ + δ) 40579 17915 27679
country (α + β + γ + δ) 36123 15802 23681
full (α + γ) 41722 18528 29857
full (α + β + γ) 37027 16258 25249
full (α + γ + δ) 39377 17436 27540
full (α + β + γ + δ) 35158 15439 23631

the incorporation of the amino acid scores.
Sites in bold correspond to residues located in previously reported epitopes (Es-

calante et al., 2001). Epitopes are antigenic portions to which antibodies bind, and
are therefore immunologically relevant. Further analyses that include several more
sequences of AMA-1 in P.falciparum are needed to determine if the increased non-
synonymous substitutions for the residues listed in Table 3 – particularly for those
residues located in epitopes – are associated with specific clinical manifestations of
the disease or with specific immune responses.

Figures 6, 7 and 8 depict site-specific effects related to particular amino acid
substitutions. Sites displaying large δi effects that are also associated with relatively
high normalized scores are of particular interest. Radical substitutions between two
amino acids may be associated with the effects of positive selection. Each figure
shows two sets of boxplots. The light boxplots summarize the posterior distributions
of the δi effects for the polymorphic sites in the AMA-1 alignment, while the dark
boxplots summarize the posterior of δix̄

∗
i , with x̄∗

i the average normalized Grantham
score over all the non-synonymous substitutions for a particular site i. Some of
the sites display relatively large δi effects, however, they are associated with low
Grantham scores, indicating that the observed substitutions in such sites are between
largely similar amino acids, and are less likely to produce changes to the protein
morphology that would be targeted by positive selection. This is the case of site 187,
for example. Other sites, such as 175, 225, 302, 263 and 302, display moderately
large δi effects associated with large or moderately large Grantham scores, indicating
that the observed substitutions in these sites were between relatively different amino



Detecting selection in DNA sequences 17

Z34,1

D
en

si
ty

0 1 2 3 4

0.
0

1.
0

Z34,2
D

en
si

ty

110 130 150

0.
00

0.
03

Z34,3

D
en

si
ty

100 120 140

0.
00

0.
02

0.
04

Figure 5: Posterior predictive distributions for site 34. Dots indicate
observed values.
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Figure 6: Effects of the covariate in the AMA-1 antigen sequences. Sites 18 to 197.

acids in terms of a distance based on their physicochemical properties.

6. CURRENT RESEARCH AND FUTURE DIRECTIONS

The class of GLMs for substitutions count data derived from a given alignment
constitutes a novel approach to modelling and describing genetic variability at the
molecular level in DNA sequence data with relatively low evolutionary divergence.
These models provide an empirical framework for detecting molecular adaptation at
the amino acid level by expressing the observed genetic variability in a DNA sequence
alignment in terms of species/population effects, residue-specific effects and possible
covariates. The methods and models of Prado et al. (2006) are extended here to
incorporate covariates and population and/or geographic-specific effects, as well as
model validation tools that are based on comparing posterior results to substantial
biological information. The GLM-based methodology also provides a way to include
structured prior information on the underlying evolutionary processes that describe
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Table 3: Positively selected sites.

Method Sites identified

Method 1 (p > 0.99, α2 = 0.01) 34 39 52 162 167 172 187 190
197 200 201 204 225∗ 230 242 243
267 282 283 285 296 300 308 393
404 405 435 439 485 493 496 503
512 544 581 584 589

Method 1 (p > 0.95, α2 = 0.05) + 36∗ 175∗ 196∗ 245∗

Method 2 (p > 0.99, α2 = 0.01) 187 200 243 405
Method 2 (p > 0.95, α2 = 0.05) + 34 39 52 167 172 190 204 230

242 267 282 285 296 308 393 404
435 485 493 496 503 512 581 584

the substitution patterns in the sequences, whenever such information is available.
Future research will involve incorporating the Z’s as latent variables in the mod-

els. The analyses of Prado et al. (2006), as well as some simulation studies included
in Merl et al. (2005), suggest that the posterior results, at least in terms of which
sites are identified as positively selected a posteriori, are not sensitive to the various
methods used to obtain Z from the sequence alignments in the data analyzed here.
However, a fully Bayesian approach that can quantify the uncertainty related to
these underlying evolutionary processes should be considered. Simulation studies
have also been performed to compare simpler versions of the GLM model in (1)
to currently available methods for detecting positive selection such as those imple-
mented in PAML, HYPHY and MrBayes (Huelsenbeck and Dyer, 2004). Such studies
(see Merl et al., 2005) suggest that the GLM-based methodology has higher power
than other methods to detect sites under selection in sequences with relatively low
evolutionary divergences. Further simulation studies will be performed in the future
to assess the effect of covariates in detecting positive selection.

The models presented here allow us to determine, from a statistical viewpoint,
which sites are more likely to be under positive selection in malaria antigens. Many
more sequences of AMA-1 for human P.falciparum and P.vivax are available, as
well as alignments of two more candidate antigens for both species of the parasite.
We expect to carry out extensive GLM-based analyses for these data. The pre-
liminary results presented here, as well as future results from GLM-based analyses,
will assist immunologists in the identification of specific residues that may be rel-
evant to determining if, in fact, the candidate antigens are appropriate for vaccine
development.

Other future research directions relate to developing a variable selection ap-
proach to detecting which amino acid properties are significant. Recently, Tree

SAAP (Woolley et al., 2003), a software that measures selective influences on 31
structural and biochemical amino acid properties during phylogenesis, was devel-
oped. Many additional amino acid properties can be included. We expect to extend
the approach presented here to appropriately tackle the problem of selecting relevant
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Figure 7: Effects of the covariate in the AMA-1 antigen sequences. Sites 200 to 331.
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Figure 8: Effects of the covariate in the AMA-1 antigen sequences. Sites 332 to 607.

covariates from a large pool of covariates that describe amino acid properties.
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