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Abstract

Computer experiments are often performed to allow modeling of a response surface of a physical experi-

ment that can be too costly or difficult to run except using a simulator. Running the experiment over a

dense grid can be prohibitively expensive, yet running over a sparse design chosen in advance can result

in obtaining insufficient information in parts of the space, particularly when the surface is nonstation-

ary. We propose an approach which automatically explores the space while simultaneously fitting the

response surface, using predictive uncertainty to guide subsequent experimental runs. The newly devel-

oped Bayesian treed Gaussian process is used as the surrogate model, and a fully Bayesian approach

allows explicit nonstationary measures of uncertainty. Our adaptive sequential design framework has

been developed to cope with an asynchronous, random, agent-based supercomputing environment. We

take a hybrid approach which melds optimal strategies from the statistics literature with flexible strate-

gies from the active learning literature. The merits of this approach are borne out in several examples,

including the motivating example of a computational fluid dynamics simulation of rocket booster.

Key words: nonstationary spatial model, treed partitioning, sequential design, active learning

1 Introduction

Many complex phenomena are difficult to investigate directly through controlled experiments. Instead,

computer simulation is becoming a commonplace alternative to provide insight into such phenomena (Sacks

et al., 1989; Santner et al., 2003). However, the drive towards higher fidelity simulation continues to tax the

fastest computers, even in highly distributed computing environments. Computational fluid dynamics (CFD)

simulations in which fluid flow phenomena are modeled are an excellent example—fluid flows over complex

surfaces may be modeled accurately but only at the cost of supercomputer resources. In this paper we

explore the problem of fitting a response surface for a computer model when the experiment can be designed
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adaptively, i.e., online—a task to which the Bayesian approach is particularly well-suited. To do so, we will

combine elements from treed modeling (Chipman et al., 2002) with modern Bayesian surrogate modeling

methods (Kennedy and O’Hagan, 2001), and elements of the sequential design of computer experiments

(Santner et al., 2003) with active learning (MacKay, 1992; Cohn, 1996). The result is a new class of surrogate

models and a fast and flexible design interface for the sequential design of supercomputer experiments.

Consider a simulation model which defines a mapping, perhaps non-deterministic, from parameters de-

scribing the inputs to one or more output responses. Without an analytic representation of the mapping

between inputs and outputs, simulations must be run for many different input configurations in order to

build up an understanding of its possible outcomes. High fidelity supercomputer experiments are usually

run on clusters of independent computing agents, or processors. Agents can process one input configuration

at a time. Multiple agents allow several input configurations to be run in parallel, starting and finishing

at different, possibly random, times. The cluster is usually managed by master controller (emcee) program

that gathers responses from finished simulations, and keeps free agents busy with new inputs.

Even in extremely parallel computing environments, computational expense of the simulation and/or

high dimensional inputs often prohibit the näıve approach of running the experiment over a dense grid of

input configurations. More sophisticated design strategies, such as Latin Hypercube (LH) and maximin

designs, orthogonal arrays, and D/A–optimal designs can offer an improvement over gridding. Sequential

versions of these are better still. However, such traditional approaches are “stationary” (or global, or

uniform) in the sense they are based on a metric (e.g., distance) which is measured identically throughout

the input space. The resulting designs are sometimes called “sparse”, or “space-filling”. D/A–optimal

designs are literally stationary when based on stationary models (e.g., linear or Gaussian Process models).

Such sparse, or stationary, design strategies are a mismatch when the responses are nonstationary—common

in experiments modeling physical processes, e.g., fluid dynamics—as they cannot learn about, and thus

concentrate exploration in, more interesting or complicated regions of the input space.

For example, NASA is developing a new re-usable rocket booster called the Langley Glide-Back Booster

(LGBB). Much of its development is being done with computer models. In particular, NASA is interested in

learning about the response in flight characteristics (lift, drag, pitch, side-force, yaw, and roll) of the LGBB

as a function of three inputs (Mach number, angle of attack, and side slip angle) when the vehicle is re-

entering the atmosphere. For each input configuration triplet, CFD simulations yield six response outputs.

Figure 1 shows the lift response plotted as a function of speed (Mach) and angle of attack (alpha) with

the side-slip angle (beta) fixed at zero. The figure shows how the characteristics of subsonic flows can be
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Figure 1: Lift plotted as a function of Mach (speed) and alpha (angle of attack) with beta (side-slip angle)
fixed to zero. The ridge at Mach 1 separates subsonic from supersonic cases.

quite different from supersonic flows, as indicated by the ridge in the response surface at Mach 1. Moreover,

the transition between subsonic and supersonic is distinctly non-linear and may even be non-differentiable

or non-continuous. The CFD simulations in this experiment involve the integration of the inviscid Euler

equations over a mesh of 1.4 million cells. Each run of the Euler solver for a given set of parameters takes

on the order of 5–20 hours on a high end workstation (Rogers et al., 2003). Since simulation is expensive,

there is interest in being able to automatically and adaptively design the experiment to learn about where

response is most interesting, e.g., where uncertainty is largest or the structure is richest, and spend relatively

more effort sampling in these areas. However, before a clever sequential design strategy can be devised, a

model is needed which can capture the nonstationary behavior between subsonic and supersonic physical

regimes. If such a model could efficiently produce region-specific estimates of distance, and/or variance, it

could be used as the basis of an adaptive nonstationary sequential design.

The surrogate model commonly used to approximate outputs to computer experiments is the Gaussian

process (GP) (Santner et al., 2003). The GP is conceptually straightforward, easily accommodates prior

knowledge in the form of covariance functions, and returns estimates of predictive confidence. In spite of its

simplicity, there are three important disadvantages to the standard GP in this setting. Firstly, inference on

the GP scales poorly with the number of data points, typically requiring computing time that grows with the

cube of the sample size. Secondly, GP models are usually stationary in that the same covariance structure

is used throughout the entire input space. In the application of high-velocity computational fluid dynamics,

where subsonic flow is quite different than supersonic flow, this limitation is unacceptable. Thirdly, the error
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(standard deviation) associated with a predicted response under a GP model does not locally depend on

any of the previously observed output responses, which is related to its stationarity. The Bayesian treed GP

model (Gramacy and Lee, 2006) was designed to overcome these limitations.

Ideally, we would like to be able to combine the treed GP model with classic model-based optimal

design algorithms. However, classic design algorithms are ill-suited to partition models and Bayesian Monte

Carlo–based inference, are inherently serial, and thus tacitly assume a controlled and isolated computing

environment. The modern supercomputer has thousands of computing nodes, or agents, designed serve a

multitude of diverse users. If the design strategy is not prepared to engage an agent as soon as it becomes

available, then that resource is either wasted or devoted to another process. If design is to be sequential

(which it must, in order to learn about the responses online, and adapt the model), then the interface

must be asynchronous, and any computation must execute in parallel. There is no time to re-fit the model

and compute the next optimal design. So the final ingredients in our flexible design framework are active

learning strategies from the Machine Learning literature. Such strategies have been used as fast, Monte

Carlo–friendly, approximate alternatives to optimal sequential design (Seo et al., 2000). The treed GP model,

classic sequential design, and active learning, taken all together, result in a highly efficient nonstationary

modeling and hybrid design strategy that balances optimality and flexibility in order to adaptively design a

supercomputer experiment.

The remainder of this paper is organized as follows. Section 2 reviews the main ingredients: from

conventional optimal designs and active learning strategies with the canonical stationary GP model, to

the nonstationary treed GP model with Bayesian model averaging and hybrid sequential design. Section 3

details our approach to sequential design of supercomputer experiments with the treed GP surrogate model.

Illustrative examples are given on synthetic data in Section 4. The motivating example of a supercomputer

experiment involving computational fluid dynamics code for designing a re-usable launch vehicle (LGBB) is

described in Section 5. Finally, Section 6 offers some discussion, and avenues for further research.

2 Review

Our approach to adaptive design of supercomputer experiments combines classic design strategies and active

learning with a modern approach to nonstationary spatial modeling. These topics are reviewed here.

2.1 Surrogate Modeling

In a computer experiment, the simulation output z(x), is typically modeled as z(x) = β>x + w(x) for a

particular (multivariate) input configuration value x, where β are linear trend coefficients, and w(x) is a
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zero mean random process with covariance C(x,x′) = σ2K(x,x′). The stationary Gaussian process (GP) is

a popular example of a model that fits this description, and consequently is the canonical surrogate model

used in designing computer experiments (Sacks et al., 1989; Santner et al., 2003).

Let D be the set of mX dimensional input configurations (x), and outputs (z) from a computer code:

D = {xi, zi}
N
i=1. The collection of inputs is indicated as the N ×mX matrix X whose ith row is x>

i , and the

outputs are collected in an N–vector called Z. Given a set of observations D, under a GP model the density

over outputs at a new point x has a Normal distribution with (assuming, for now, that β = 0)

mean ẑ(x) = k>(x)K−1Z, and

variance σ̂2(x) = σ2[K(x,x) − k>(x)K−1k(x)] (1)

where k>(x) is the N -vector whose ith component is K(x,xi), K is the N × N matrix with i, j element

K(xi,xj), and Z is the N -vector of observations with ith component zi. It is important to note that the

uncertainty, σ̂2(x), associated with the prediction has no direct dependence on the nearby observed simulation

outputs Z; because of the assumption of stationarity, all response points contribute to the estimation of the

local error through their influence to inference on the correlation function K(·, ·), and the induced correlation

matrix Ki,j = K(xi,xj). We follow Gramacy and Lee (2006) in specifying that K(·, ·) have the form

K(xj ,xk|g) = K∗(xj ,xk) + gδj,k. (2)

where δ·,· is the Kronecker delta function, and K∗ is a true correlation function. The g term, referred to

as the nugget, is positive (g > 0) and provides a mechanism for introducing measurement error into the

stochastic process. It arises when considering a model of the form Z(x) = β>x + w(x) + η(x) where η(·)

is independent Gaussian noise. Valid correlation functions K∗(·, ·) are usually generated as a member of a

parametric family. Examples include the isotropic or separable power or Matérn families. A nice general

reference for families of correlation functions K∗ is provided by Abrahamsen (1997). Hereafter we use the

separable power family, a standard choice in computer experiments (Santner et al., 2003).

While many authors (e.g., Santner et al., 2003; Sacks et al., 1989) deliberately omit the nugget parameter

on grounds that computer experiments are deterministic, we have found it more helpful to include a nugget.

Most importantly, we found that the LGBB simulator was only theoretically deterministic, but not necessarily

so in practice. Researchers at NASA explained to us that their numerical CFD solvers are typically started

with random initial conditions, and involve forced random restarts when diagnostics indicate that convergence
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is poor. Furthermore, due to the sometimes chaotic behavior of the systems, input configurations arbitrarily

close to one another can fail to achieve the same estimated convergence, even after satisfying the same

stopping criterion. Thus a conventional GP model without a small-distance noise process (nugget) can be a

mismatch to such potentially non-smooth data. As a secondary concern, numerical stability in decomposing

covariance matrices can be improved by using a small nugget term (Neal, 1997).

2.2 Sequential design of experiments

In the statistics community, the traditional approach to sequential data solicitation is called (Sequential)

Design of Experiments (DOE) or Sequential Design and Analysis of Computer Experiments (SDACE) when

applied to computer simulation applications (Sacks et al., 1989; Santner et al., 2003; Currin et al., 1991;

Welch et al., 1992). Depending on whether the goal of the experiment is inference or prediction, as described

by a choice of utility, different algorithms for obtaining optimal designs can be derived. For example, one can

choose the Kullback-Leibler distance between the posterior and prior distributions as a utility. For Gaussian

process models with correlation matrix K, this is equivalent to maximizing det(K). Subsequently chosen

input configurations are called D−optimal designs. Choosing quadratic loss leads to A−optimal designs. An

excellent review of Bayesian approaches to DOE is provided by Chaloner and Verdinelli (1995).

Finding optimal designs can be computationally intensive, especially for stationary GP surrogate models,

because the algorithms usually involve repeated decompositions of large covariance matrices. Determinant–

space, for example, can have many local maxima which can be sought-after via stochastic search, simulated

annealing, tabu-search (Glover and Laguna, 1997), genetic algorithms (Hamada et al., 2001), etc. (Welch

et al., 1992; Currin et al., 1991; Mitchell, 1974). A parametric family is assumed, either with fixed parameter

values, or a preliminary analysis is used to find maximum likelihood estimates for its parameters, which

are then treated as “known”. In a sequential design, parameters estimated from previous designs can be

used, whereas a Bayesian design theoretic approach may “choose” a parameterization and optimal design

jointly (Müller et al., 2004). In all of these approaches, it is important to note that optimality is only with

respect to the assumed parametric form. Should this form not be known a priori, as is often the case in

practice, then the resulting designs could be far from optimal.

Other approaches used by the statistics community do not require a model of covariance. These include

space-filling designs: e.g., maximin distance and LH designs (Box et al., 1978; Santner et al., 2003; McKay

et al., 1979). Computing maximin distance designs can also be computationally intensive, whereas LH

designs are easy to compute and result in well-spaced configurations relative to random sampling, though
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there are some degenerate cases, like diagonal LH designs (Santner et al., 2003). LH designs can also be

less advantageous in a sequential sampling environment since there is no mechanism to ensure that the

configurations will be well-spaced relative to previously sampled (fixed) locations. Whereas most optimal

design methods like D-optimal, A-optimal, and maximin, are more computationally intense, they are easily

converted into sequential design methods by simply fixing the locations of samples whose response has already

been obtained, and then optimizing only over new sample locations.

2.2.1 An active learning approach sequential experimental design

In the world of Machine learning, design of experiments would (loosely) fall under the blanket of a research

focus called active learning. In the literature (Angluin, 1987; Atlas et al., 1990), active learning, or equiv-

alently query learning or selective sampling, refers to the situation where a learning algorithm has some,

perhaps limited, control over the inputs it trains on. There are essentially two active learning approaches to

the DOE using the GP. The first approach tries to maximize the information gained about model parameters

by selecting from a pool of candidates X̃, the location x̃ ∈ X̃ which has the greatest standard deviation in

predicted output. This approach, called ALM for Active Learning–MacKay, has been shown to approximate

maximum expected information designs (MacKay, 1992).

An alternative algorithm, called ALC for Active Learning–Cohn, is to select x̃ minimizing the expected

squared error averaged over the input space (Cohn, 1996). The global reduction in predictive variance, given

that the location x̃ is added into the data, is obtained by averaging over other locations y:

∆σ̂2(x̃) =

∫

y

∆σ̂2
y(x̃) =

∫

y

σ̂2
y − σ̂2

y(x̃) =

∫

y

σ2
[

k>(y)K−1

N k(x̃) − K(x̃,y)
]2

K(x̃, x̃) − k(x̃)>K−1

N k(x̃)

using the notation from (1). In practice the integral is usually a sum over a grid of locations Ỹ, typically

with Ỹ = X̃, and the parameterization to the model, i.e., K(·, ·) and σ2, is assumed known in advance. Seo

et al. (2000) provide a comparison between ALC and ALM using standard GPs.

2.2.2 Other approaches to designing computer experiments

Bayesian & non-Bayesian approaches to surrogate modeling and design for computer experiments abound

(Sebastiani and Wynn, 2000; Welch et al., 1992; Currin et al., 1991; Mitchell and Morris, 1992; Sacks et al.,

1989; Bates et al., 1996). References for the Bayesian approach usually include the landmark papers by

Kennedy & O’Hagan et al. (2000, 2001), which provide a framework using stationary GPs. A recent approach,

which bears some similarity to ours, uses stationary GPs and a so called spatial aggregate language to aid

in an active data mining of the input space of the experiment (Ramakrishnan et al., 2005). Specifically, the
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use of nonstationary surrogate models distinguishes our work from the methods described in those papers,

encouraging a more adaptive approach to sequential design. We presume to be pioneers in this respect.

Generally, the methods we describe create a much broader framework. Motivations for a fresh approach

to SDACE range from the inadequate nature of standard surrogate models (both in terms of speed and

modeling capacity, particularly stationarity assumptions) to the challenges inherent in adapting standard

optimal design techniques to modern supercomputer experiments which tend to run on highly parallel and

distributed supercomputers.

2.3 Treed Gaussian process model

We propose a new surrogate model for the sequential DOE: the Bayesian treed Gaussian process (treed GP)

model (Gramacy and Lee, 2006). The treed GP model extends Bayesian linear CART by using a GP model

with linear trend independently within each region, instead of constant (Chipman et al., 1998; Denison et al.,

1998) or linear (Chipman et al., 2002) models. A process prior (Chipman et al., 1998) is placed on the tree T ,

and conditional on T , parameters for R independent GPs in regions {rν}
R
ν=1 are specified via a hierarchical

generative model:

Zν |βν , σ2
ν ,Kν ∼ Nnν

(Fνβν , σ2
νKν) β0 ∼ NmX

(µ,B) σ2
ν ∼ IG(ασ/2, qσ/2) (3)

βν |σ
2
ν , τ2

ν ,W,β0 ∼ NmX
(β0, σ

2
ντ2

ν W) W−1 ∼ W ((ρV)−1, ρ) τ2
ν ∼ IG(ατ/2, qτ/2)

with Fν = (1,Xν), and W is a (mX + 1)× (mX + 1) matrix. N , IG, and W are the (Multivariate) Normal,

Inverse-Gamma, and Wishart distributions, respectively. Kν is the separable power family covariance matrix,

as in (2). The data {X,Z}ν in region rν are used to estimate the parameters θν of the model active in

the region. Parameters to the hierarchical priors depend only on {θν}
R
ν=1. Samples from the posterior

distribution are gathered using Markov chain Monte Carlo (MCMC). All parameters can be sampled using

Gibbs steps, except for the covariance structure and nugget parameters, and their hyperparameters, which

can be sampled via Metropolis-Hastings. More details are provided by Gramacy and Lee (2006).

The predicted value of y(x ∈ rν) is normally distributed with mean and variance

ẑ(x) = E(Z(x)| data,x ∈ Dν) = f>(x)β̃ν + kν(x)>K−1
ν (Zν − Fνβ̃ν), (4)

σ̂(x)2 = Var(z(x)| data,x ∈ Dν) = σ2
ν [κ(x,x) − q>

ν (x)C−1
ν qν(x)], (5)

where C−1
ν = (Kν + τ2

ν FνWF>
ν )−1 qν(x) = kν(x) + τ2

ν FνWνf(x) (6)

κ(x,y) = Kν(x,y) + τ2
ν f>(x)Wf(y)
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with f>(x) = (1,x>), and kν(x) a nν−vector with kν,j(x) = Kν(x,xj), for all xj ∈ Xν . The global

process is nonstationary because of the tree (T ) and, in particular, σ̂(x)2 in (5) is thus region-specific. The

predictive surface can be discontinuous across the partition boundaries of a particular tree T . However, in

the aggregate of samples collected from the joint posterior distribution of {T ,θ}, the mean tends to smooth

out near likely partition boundaries as the tree operations grow, prune, change, swap, and rotate integrate

over trees and GPs with larger posterior probability (i.e., Bayesian model averaging). Uncertainty in the

posterior for T translates into higher posterior predictive uncertainty near region boundaries. When the

data actually indicate a non-smooth process, e.g., as in the LGBB experiment in Section 5, the treed GP

retains the capability to model discontinuities.

The Bayesian linear CART model of Chipman et al. (2002) is implemented as a special case of the treed

GP model, called the treed GP LLM (short for: “with jumps to the Limiting Linear Model”). Detection of

linearity in the response surface is facilitated on a per-dimension basis via the introduction of mX indicator-

parameters b which are given a prior conditional on the range parameter to K(·, ·). The boolean bi determines

whether the GP or its LLM governs the marginal process in the ith dimension. The result, through Bayesian

model averaging, is an adaptively semiparametric nonstationary regression model which can be faster, more

parsimonious and numerically stable (Gramacy and Lee, 2006). Empirical evidence suggests that many

computer experiments involve responses which are either linear in most of the input dimensions, or entirely

linear in a subset of the input domain [see Section 5]. Thus the treed GP LLM is particularly well-suited to

be a surrogate model for computer experiments.

Compared to other approaches to nonstationary modeling, including using spatial deformations (Sampson

and Guttorp, 1992; Damian et al., 2001; Schmidt and O’Hagan, 2003) and process convolutions (Higdon

et al., 1999; Fuentes and Smith, 2001; Paciorek, 2003), the treed GP LLM approach yields an extremely

fast implementation of nonstationary GPs, providing a divide-and-conquer approach to spatial modeling.

Software implementing the treed GP LLM model and all of its special cases (e.g., stationary GP, linear

CART, linear model, etc.) is available as an R package (R Development Core Team, 2004), and can be

obtained from CRAN: http://www.cran.r-project.org/src/contrib/Descriptions/tgp.html.

3 Adaptive sequential design

Much of the current work in large-scale computer models starts by evaluating the model over a hand-crafted

set of input configurations, such as a full grid or some reduced design. After the initial set has been run,

a human may identify interesting regions and perform additional runs if desired. We are concerned with
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Figure 2: Emcee program gives finished simulations to the sampler and gets new ones from the queue.

developing improvements to this approach. The first task is to introduce the asynchronous distributed

supercomputer model commonly used to run complex computer codes. Methodologies can then be explored

for choosing new input configurations based on region-specific estimates of uncertainty, provided by the

nonstationary treed GP LLM surrogate model. (We shall drop the LLM tag in what follows, and consider

it implied by the label treed GP.)

3.1 Asynchronous distributed supercomputing

High fidelity supercomputer experiments are usually run on clusters of independent computing agents, or

processors. A Beowulf cluster is a good example. At any given time, each agent is working on a single input

configuration. Multiple agents allow several input configurations to be run in parallel. Simulations for new

configurations begin when an agent finishes execution and becomes available. Therefore, simulations may

start and finish at different, perhaps even random, times. The cluster is usually managed asynchronously

by a master controller (emcee) program that gathers responses from finished simulations, and supplies free

agents with new input configurations. The goal is to have the emcee program interact with a sequential design

program that maintains a queue of well-chosen candidates, and to which it provides finished responses as

they become available, so that the surrogate model can be updated [see Figure 2].

3.2 Adaptive sequential DOE via active learning

In the statistics community, there are a number of established methodologies for (sequentially) designing

experiments [see Section 2.2]. However, some classic criticisms for traditional DOE approaches precluded

such a traditional approach here. The primary issue is that “optimally” chosen design points are usually

along the boundary of the region, where measurement error can be severe, responses can be difficult to elicit,

and model checking is often not feasible (Chaloner and Verdinelli, 1995). Furthermore, boundary points are

only optimal when the model is known precisely. For example, in one-dimensional linear regression, putting

half the points at one boundary and half at the other is only optimal if the true model is linear; if it turns

out that the truth may be quadratic, then forcing all points to the boundaries is no longer optimal. Similarly
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here, where we do not know the full form of the model in advance, it is important to favor internal points

so that the model (including the partitions) can be learned correctly. Aside from the boundary-favoring,

other drawbacks to the standard statistical approach include speed, the difficulty inherent in using Monte

Carlo to estimate the surrogate model, lack of support for partition models, and the desire to design for an

asynchronous emcee interface where responses and computing nodes become available at random times.

Instead, we take a two-stage (hybrid) approach that combines standard DOE with methods from the

active learning literature. The first stage is to use optimal sequential designs from the DOE literature, such

as D−optimal, maximin, or LH, as candidates for future sampling. This ensures that candidates for future

sampling are well-spaced out relative to themselves, and to the already sampled locations. In the second

stage, the treed GP surrogate model can provide Monte Carlo estimates of region-specific model uncertainty,

via the ALM or ALC algorithm, which can be used to populate, and sequence, the candidate queue used by

the emcee [see Figure 2]. This ensures that the most informative of the optimally-spaced candidates can be

first in line for simulation when agents become available.

3.3 ALM and ALC algorithms

Given a set of candidate input configurations X̃, Section 2.2.1 introduced two active learning criteria for

choosing amongst—or ordering—them based on the posterior predictive distribution. ALM chooses the

x̃ ∈ X̃ with the greatest standard deviation in predicted output (MacKay, 1992). MCMC posterior predictive

samples provide a convenient estimate of location-specific variance, namely the width of predictive quantiles.

Alternatively, ALC selects the x̃ that minimizes the expected reduction in squared error averaged over the

input space (Cohn, 1996). Rather than focusing solely on design points which have large predictive variance,

ALC selects configurations that would lead to a global reduction in predictive variance. Conditioning on

T , the reduction in variance at a point y ∈ Yν , given that the location x̃ ∈ X̃ν is added into the data, is

defined as (region subscripts suppressed):

∆σ̂2
y(x) = σ̂2

y − σ̂2
y(x) where σ̂2

y = σ2[κ(y,y) − q>
N (y)C−1

N q>
N (y)],

and σ̂2
y(x) = σ2[κ(y,y) − qN+1(y)>C−1

N+1
qN+1(y)].

The above equations use notation for the GP predictive variance for region rν given in (5). The partition

inverse equations (Barnett, 1979), for a covariance matrix CN+1 in terms of CN , gives a means to arrive at

a nice expression for ∆σ2
y(x):

∆σ̂2
y(x) =

σ2
[

q>
N (y)C−1

N qN (x) − κ(x,y)
]2

κ(x,x) − q>
N (x)C−1

N qN (x)
. (7)
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The details of this derivation are included in Appendix A.1. For y and x̃ not in the same region rν , let

∆σ2
y(x̃) = 0. The reduction in predictive variance that would be obtained by adding x into the data set is

calculated by averaging over y ∈ Y:

∆σ2(x) = |Y|−1
∑

y∈Y

∆σ̂2
y(x) (8)

∆σ2(x) is easily approximated using MCMC methods. Compared to ALM, adaptive samples under ALC

are less heavily concentrated near the boundaries of partitions. Both provide a ranking of the candidate

locations x̃ ∈ X̃. Computational demands are in O(|X̃|) for ALM, and O(|X̃||Y|) for ALC. ALC requires an

order of magnitude more computing time than ALM and is more sensitive to the location and region-specific

count of candidates, especially Y. While this is generally desirable, for non-uniformly distributed Y, ∆σ2(x̃)

may be (artificially) magnified closer to high-density Y regions. McKay et al. (1979) provide a comparison

between ALM, ALC, and LH, on computer code data. Seo et al. (2000) provide comparisons between ALC

and ALM using standard GPs, taking Y = X̃ to be the full set of un-sampled locations in a pre-specified

dense uniform grid. In both papers, the model is assumed known in advance.

However, that last assumption, that the model is known a priori is at loggerheads with sequential design—

if the model were already known then why design sequentially? In the treed GP application of ALC, the

model is not assumed known a priori. Instead, Bayesian MCMC posterior inference on {T ,θ} is performed,

and then samples from ∆σ2
y(x̃) are taken conditional on samples from {T ,θ}. To mitigate the (possibly

enormous) expense of sampling ∆σ2
y(x̃) via MCMC on a dense high-dimensional grid (with Y = X̃), a

smaller and more cleverly–chosen set of candidates can come from the sequential treed D-optimal design,

described in the following subsection. The idea is to sequentially select candidates which are well-spaced

relative both to themselves and to the already sampled configurations, in order to encourage exploration.

Applying the ALC algorithm under the limiting linear model (LLM) is computationally less intense

compared to ALC under a full GP. Starting with the predictive variance given in (6), the expected reduction

in variance under the linear model is given in (9), below, and averaging over y proceeds as in (8), above.

∆σ̂2
y(x) =

σ2[f>(y)Vβ̃N
f(x)]2

1 + g + f>(x)Vβ̃N
f(x)

(9)

Appendix A.2 contains details of the derivation. Since only an mX × mX inverse is required, Eq. (9) is

preferred over simply replacing K with I(1 + g) in (7), which requires an N × N inverse.
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3.4 Choosing candidates

We have already discussed how large, i.e., densly gridded, candidates X̃ can make for computationally intense

ALM and (especially) ALC calculations. In an asynchronous parallel environment, there is another reason

why candidate designs should not be too dense. Suppose we are using the ALM algorithm, and we estimate

the uncertainty to be highest in a particular region of the space. If two candidates are close to each other in

this region, then they will have the highest and second-highest priority, and the emcee could send both of

them to agents. However, if we knew we were going to send off two runs, we generally would not want to pick

those two right next to each other, but would want to pick two points from different parts of the space. If

each design point could be picked sequentially, then the candidate spacing is not an issue, because the model

can be re-fit and the points re-ordered between runs. In the reality of an asynchronous parallel environment,

there may not be time to re-fit the model before the emcee needs an additional run configuration to send to

another agent. Thus we have a need for a candidate set of points which are spaced out relative to themselves

and also relative to the configurations which have already been sampled.

A sequential D-optimal design may seem like a reasonable approach because it encourages exploration.

But traditional D-optimal designs are based on a known parameterization of a single GP model, and are thus

not well-suited to MCMC based treed-partition models wherein “closeness” is not measured homogeneously

across the input space. A D-optimal design may not choose candidates in the “interesting” part of the input

space, because sampling is high there already. Another disadvantage to D-optimal designs is computational,

requiring repeated decompositions of large covariance matrices.

One possible solution to both computational and nonstationary modeling issues is to use treed sequential

D-optimal design. That is, a separate sequential D-optimal design can be obtained in each of the partitions

depicted by the maximum a posteriori (MAP) tree T̂ . The number of candidates selected from each region,

{r̂ν}
R̂
ν=1 of T̂ , can be proportional to the volume or the number of grid locations in the region. MAP

parameters θ̂ν |T̂ can be used in creating the candidate design, or “neutral” or “exploration encouraging”

parameters can be used instead. Separating design from inference by using custom parameterizations in

design steps, rather than inferred ones, is a common practice in the SDACE community (Santner et al.,

2003). Small range parameters, for learning about the wiggliness of the response, and a modest nugget

parameter for numerical stability, tend to work well together.

Since optimal design is only used to select candidates, and is not the final step in adaptively choosing

samples, employing a high-powered search algorithm (such as a genetic algorithm) seems excessive. Finding

a local maximum is generally sufficient to get well-spaced candidates. We use a simple stochastic ascent
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algorithm in each of the R̂ regions {rν}
R̂
ν=1 depicted by T̂ which can find local maxima without calculating

too many determinants. The R̂ search algorithms can be run in parallel, and typically invert matrices much

smaller than N × N .

−2 0 2 4 6

−
2

0
2

4
6

x

y

Treed D−optimal for Exp data

Figure 3: Example of a treed D-optimal design in 2-d. Open Circles represent previously sampled locations.
Solid dots are the candidate design based on T̂ , also shown.

Figure 3 shows an example sequential treed D-optimal design for the 2-d Exponential data [Section 4.2],

found by simple stochastic search. Input configurations are sub-sampled from a LH design of size 400, and

the chosen candidate design is of size ∼40 (i.e., d10%e). Dots in the figure represent the chosen locations of

the new candidate design X̃ relative to the existing sampled locations X (circles). The number of candidates

selected in each region is equal to the ceiling of 10% of the number of LH samples therein. Candidates

are resonably spaced–out relative to one another, and to existing inputs, except possibly near partition

boundaries. There are roughly the same number of candidates in each quadrant, despite the fact that the

density of samples (circles) in the first quadrant is almost two-times that of the others. Since the action of

the function is entirely in the first quadrant, we want to continue to sample most heavily in that quadrant.

A classical (non-treed) D-optimal design would have chosen fewer points in the first quadrant in order to

equalize the density relative to the other three quadrants.

3.5 Implementation methodology

Bayesian adaptive sampling (BAS) proceeds in trials. Suppose N samples and their responses have been

gathered in previous trials, or from a small initial design before the first trial. In the current trial, a treed GP

model is estimated for data {xi, zi}
N
i=1. Samples are gathered in accordance with ALM or ALC conditional

on {θ, T }, at candidate locations X̃ chosen from a sequential treed D-optimal design. The candidate queue

is populated with a sorted list of candidates. BAS gathers finished and running input configurations from
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the emcee and adds them into the design. Predictive mean estimates are used as surrogate responses for

unfinished (running) configurations until the true response is available. New trials start with fresh candidates.

Two implementations of an artificial clustered simulation environment, with a fixed number of agents,

were developed in order to simulate the parallel and asynchronous evaluation of input configurations, whose

responses finish at random times. One implementation is in C++ and uses the message passing features of

PVM (Parallel Virtual Machine) to communicate with the adaptive sampler. The second implementation

is in Perl and was designed to mimic, and interface with, the Perl modules at NASA which drive their

experimental design software. Experiments on synthetic data, in the next section, will use this interface.

BAS, as used for the LGBB experiment in Section 5, interfaces with the Perl module developed at

NASA to submit jobs to their supercomputer. Multi-dimensional responses, as in the LGBB experiment,

are treated as independent, i.e., each response has its own treed GP surrogate model, mZ surrogates total

for an mZ–dimensional response. Uncertainty estimates (via ALM or ALC) are normalized and pooled

across the models for each response. Treating highly correlated physical measurements as independent is

a crude approach. However, it still affords remarkable results, and allows the use of PThreads to get a

highly parallel implementation. Coupled with the producer/consumer model for parallelizing prediction

and estimation (Gramacy and Lee, 2006), a factor of 2mZ speedup for 2mZ processors can be obtained.

Cokriging (Ver Hoef and Barry, 1998), co-regionalization (Schmidt and Gelfand, 2003), and other approaches

to modeling multivariate responses are obvious extensions, but lie beyond the scope of the present work, and

are likely not parallelizable. The MAP tree T̂ , used for creating sequential treed D-optimal candidates, is

taken from the treed GP surrogates of each of the mZ responses in turn.

Chipman et al. (1998) recommend running several parallel chains, and sub-sampling from all chains in

order better explore the posterior distribution of the tree (T ). Rather than run multiple chains explicitly,

the trial nature of adaptive sampling can be exploited: at the beginning of each trial the tree is restarted,

or randomly pruned back. Although the tree chain associated with an individual trial may find itself stuck

in a local mode of the posterior, in the aggregate of all trials the chain(s) explore the posterior of tree-space

nicely. Random pruning represents a compromise between restarting and initializing the tree at a well-chosen

starting place. This tree inertia usually affords shorter burn-in of the MCMC at the beginning of each trial.

The tree can also be initialized with a run of the Bayesian Linear CART model, i.e., the treed LLM, for a

faster burn-in of the treed GP chain.

Each trial executes at least B burn-in and T total MCMC sampling rounds. Samples are saved every E

rounds in order to reduce the correlation between draws by thinning. Samples of ALM and ALC statistics
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only need be gathered every E rounds, so thinning cuts down on the computational burden as well. If the

emcee has no responses waiting to be incorporated by BAS at the end of T MCMC rounds, then BAS can

run more MCMC rounds, either continuing where it left off, or after re-starting the tree. New trials, with

new candidates, start only when the emcee is ready with a new finished response. Such is the design so that

the computing time of each BAS trial does not affect the rate of sampling. Rather, a slow BAS runs fewer

MCMC rounds per finished response, and re-sorts candidates less often compared to a faster BAS. A slower

adaptive sampler yields less optimal sequential samples, but still offers an improvement over naive gridding.

4 Illustrative examples

In this section, sequential experimental designs are built for synthetic 1-d and 2-d data with the treed GP

LLM as a surrogate model. Section 5 returns to the motivating rocket booster experiment.

4.1 1-d Synthetic Sinusoidal data

Consider synthetic sinusoidal data first used by Higdon (2002), and then augmented by Gramacy and Lee

(2006) with a linear region:

z(x) =











sin
(

πx
5

)

+ 1

5
cos
(

4πx
5

)

x < 10

x/10 − 1 otherwise,
(10)

observed with N(0, σ = 0.1) noise. Figure 4 shows three snap-shots, illustrating the evolution of BAS on

this data using the ALC algorithm with treed D-optimal candidates. The first column shows the estimated

surface in terms of posterior predictive means (solid-black) and 90% intervals (dashed-red). The MAP tree

T̂ is shown as well. The second column summarizes the ALM and ALC statistics (scaled to show alongside

ALM) for comparison. Ten D-optimally spaced samples were used as an initial design.

The snapshot in the top row of Figure 4 was taken after BAS had gathered a total of 30 samples. BAS

recently learned that there is probably one partition near x = 10, with roughly the same number of samples

on each side. Predictive uncertainty (under both ALM and ALC) is higher on the left side than on the right.

ALM and ALC are in relative agreement, however the transition of ALC over the partition boundary is more

smooth. The ALM statistics are “noisier” than ALC because the former is based on quantiles, and the latter

on averages (8). Although both ALM and ALC are shown, only ALC was used to select adaptive samples.

The middle row of Figure 4 shows a snapshot taken after 45 samples were gathered. BAS has sampled more

heavily in the sinusoidal region (by a factor of two), and learned a great deal. ALM and ALC are in less

agreement here than in the row above. Also, ALC is far less concerned with uncertainty near the partition
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Figure 4: Sine data after 30 (top), 45 (middle), and 97 (bottom) adaptively chosen samples. Left: posterior
predictive mean and 90% quantiles, and MAP partition T̂ . Right: ALM (black-solid) and ALC (red-dashed).

boundary, than it is, say, near x = 7. Finally, the snapshot in the bottom row of Figure 4 was taken after 97

samples had been gathered. By now, BAS has learned about the secondary cosine structure in the left-hand

region. It has focused almost three-times more of its sampling effort there. ALM and ALC both have high

uncertainty near the partition boundary (T̂ ), but are otherwise do have some disagreement about where to

sample next. ALM is larger everywhere on the left than it is on the right. ALC has peaks on the left which

are higher than on the right, but its valleys are lower.

In summary, the left panels of Figure 4 track the treed GP surrogate model’s improvements in its ability

to predict the mean, via the increase in resolution from one figure to the next. From the scale of y-axes in

the right column one can also see that as more samples are gathered, the variance in the posterior predictive
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distribution of the treed GP decreases as well. Despite the disagreements between ALM and ALC during

the evolution of BAS, it is interesting to note that difference between using ALC and ALM on this data

is negligible. This is likely due to the high quality of the treed D-optimal candidates X̃ which prevent the

clumping behavior that tends to hurt ALM, but to which ALC is somewhat less prone.

Perhaps the best illustration of how BAS learns and adapts over time is to compare it to something that

is, ostensibly, less adaptive. Gramacy et al. (2004) show how the mean-squared error (MSE) of BAS evolves

over time on a similar data set, but in a more controlled setting where only one sample is taken at a time,

and the surrogate model is allowed to re-fit before the next (single) adaptive sample is chosen. They show

how the MSE of BAS decreases steadily as samples are added, despite the fact that fewer points are added

in the linear region, yielding a sequential design strategy which is two-times more efficient than LH sampling

on this data. They also show how BAS measures up against ALM and ALC, as implemented by Seo et

al. (2000)—with a stationary GP surrogate model. Seo et al. make the very powerful assumption that the

correct covariance structure is known at the start of sampling. Thus, the model need not be updated in light

of new responses. Alternatively, BAS quickly gathers enough samples to learn the partitioned covariance

structure, after which it outperforms ALM and ALC based on a stationary model.

4.2 2-d Synthetic Exponential data

The nonstationary treed GP surrogate model has an even greater impact on adaptive sampling in a higher

dimensional input space. For an illustration, consider the domain [−2, 6]× [−2, 6] wherein the true response

is given by z(x) = x1 exp(−x2
1 − x2

2), observed with N(0, σ = 0.001) noise. The top row of Figure 5 shows

a snapshot after 30 adaptive samples have been gathered with BAS under the ALC algorithm. Room for

improvement is evident in the mean predictive surface (left column). The remaining two columns show

surfaces for ALM and ALC, and the single partition of T̂ , with samples evenly split between the two regions.

Because of mixing over the tree space, one can see in both the ALM and ALC plots that the model also

considers a tree with a single split along the other axis.

After 50 adaptive samples have been selected, the situation is greatly improved. The second row of Figure

5 shows a posterior predictive surface with the right main features. ALM and ALC, in the middle and right

columns of the figure, agree that the first quadrant is most interesting, and as a result (adaptive) sampling

is higher in this region. The dots in Figure 3 illustrate treed D-optimal candidates used during this round.

[Notice that the X locations (circles) in Figure 3 match the dots in the center row of Figure 5.] Finally, the

bottom row of Figure 5 shows the snapshot taken after 80 adaptive samples. The predictive surface looks
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Figure 5: Exponential data after 30 (top), 50 (middle) and 80 (bottom) adaptively chosen samples. Left:
posterior predictive mean surface; Center: ALM criterion surface; Right: ALC criterion surface, with MAP
tree T̂ and samples X overlayed.

flawless. More than 54% of the samples are located in the first quadrant which occupies only 25% of the

total input space. ALM would choose to sample there next, nearest to the global minima/maxima. ALC,

while mostly in agreement, is also concerned about the locations of the split points.

In terms of comparing to other methods such as LH sampling, ALM, and ALC with stationary GPs, much

the same can be said here as with the sinusoidal data. Gramacy et al. (2004) show that the MSE of BAS

decreases steadily as samples are added, despite that most of the sampling occurs in the first quadrant and

that it is at least two-times more efficient than LH sampling on this data. However, the unlike the sinusoidal

data, the exponential data is not defined by step functions. Transitions between partitions are smooth. Thus

it takes BAS longer to learn about T , and the corresponding three GP models in each region of T̂ . Once it
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does however—after about 50 samples—BAS outperforms the (in hindsight) well-parameterized stationary

model using the ALM algorithm.

5 LGBB CFD experiment

The final experiment is our motivating example. It is the output from computational fluid dynamics sim-

ulations of a proposed reusable NASA launch vehicle, called the Langley Glide-Back Booster (LGBB).

Simulations involved the integration of the inviscid Euler equations over a mesh of 1.4 million cells (0.8

million cells were used for the supersonic cases). Three input parameters are varied over (side slip angle,

speed, and angle of attack), and for each setting of the input parameters, six outputs (lift, drag, pitch,

side-force, yaw, and roll) are monitored. Each run of the Euler solver on an input triplet takes on the order

of 5-20 hours on a high end workstation. All six responses are computed simultaneously. In a previous

experiment, a supercomputer interface was used to launch runs at over 3,250 input configurations in several

hand-crafted batches. Figure 1 plots the resulting lift response as a function of Mach (speed) and alpha

(angle of attack), with beta (side-slip angle) fixed to zero. A more detailed description of this system and

its results are provided by Rogers et al. (2003).

BAS for the LGBB is illustrated pictorially by the remaining figures in this section. The experiment was

implemented on the NASA supercomputer Columbia—a fast and highly parallelized architecture, but with

an extremely variable workload. The emcee algorithm of Section 3.1 was designed to interface with AeroDB,

a database queuing system used by NASA to submit jobs to Columbia, and a set of CFD simulation codes

called cart3d. To minimize impact on the queue, the emcee was restricted to ten submitted simulation jobs

at a time. Candidate locations were sub-sampled from a 3-d grid consisting of 37,909 configurations.
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Figure 6: Full set of adaptively sampled configurations projected over beta (side-slip angle; left), for fixed
beta = 0 (center) with MAP partition T̂ , and then over alpha (angle of attack; right).

Figure 6 shows the 780 configurations sampled by BAS for the LGBB experiment, in two projections, and

a subset of those which appear in the beta = 0 slice (middle). The left panel shows locations as a function
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Figure 7: LGBB slice of mean posterior predictive surface for six responses (lift, drag, pitch, side, yaw, roll)
plotted as a function of Mach (speed) and Alpha (angle of attack) with Beta (side slip angle) fixed at zero.

of Mach (speed) and alpha (angle of attack), projecting over beta (side slip angle); the right panel shows

Mach versus beta, projecting over alpha. NASA recommended treating beta as discrete, so we used a set of

values which they provided. We can see that most of the configurations chosen by BAS were located near

Mach one, with highest density for large alpha. Samples are scarce for Mach greater than two and relatively

uniform across all beta settings. A small amount of random noise has been added to the beta values in the

plot for visibility purposes.

After samples are gathered, the treed GP model can be used for Monte Carlo estimation of the posterior

predictive distribution. The first plot in Figure 7 shows a slice of the lift response, for beta = 0, plotted as

a function of Mach and alpha. The center panel of Figure 6 shows the sampled configurations and MAP

tree T̂ (for beta = 0). The MAP partition separates out the near-Mach-one region. Samples are densely

concentrated in this region—most heavily for large alpha.

Figure 7 shows posterior predictive surfaces for the remaining five responses as well. Drag and Pitch

are shown for the beta = 0 slice. Other slices look strikingly similar. Side, yaw, and roll are shown for the

beta = 2 slice, as beta = 0 slices for these responses are essentially zero. All six responses exibit similar

characteristics, in that the supersonic cases are tame relative to their subsonic counterparts, with the most
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interesting region occuring near Mach 1, especially for large angle of attack (alpha). The treed GP model has

enabled BAS to key in on this phenomenon and concentrate sampling in these areas (Figure 6). Compared

to the initial experiment, BAS reduced the simulation burden on the supercomputer by more than 75%.

6 Conclusion

We showed how the treed GP LLM can be used as a surrogate model in the sequential design of computer

experiments. A hybrid approach, combining active learning and classical design methodologies, was taken

in order to develop a flexible system for use in the highly variable environment of asynchronous agent-based

supercomputing. In other words, a flexible and adaptive approach was taken, rather than strictly “optimal”

one. Two sampling algorithms were proposed as adaptations to similar techniques developed for a simpler

class of models. One chooses to sample configurations with high posterior predictive variance (ALM); the

other uses a criteria based on an average global reduction in uncertainty (ALC). These model uncertainty

statistics were used to determine which of a set optimally spaced candidate locations should go for simulation

next. Optimal candidate designs were determined by adapting a classic optimal design methodology to

Bayesian partition models. The result is a highly efficient Bayesian adaptive sampling strategy, representing

a large improvement on the state-of-the-art of computer experiment methodology at NASA.

Bayesian adaptive sampling (BAS) was illustrated on two nonstationary synthetic data sets. Finally, BAS

was implemented on a supercomputer at NASA in order to sequentially design the computer experiment

for a proposed reusable launch vehicle. With fewer than one-quarter of the samples used in a previous

experiment, BAS was able to produce superior response surfaces by sampling more heavily in the interesting,

or challenging, parts of the input space, relying on treed GP model to fill in the gaps in less-sampled regions.

ALM, ALC, and treed D-optimal design are implemented in the tgp package for R available on CRAN.

Code for adaptive sampling via an asynchronous supercomputer (emcee) interface is available upon request.

Further improvements in computational time may be available. For example, a simple statistical analysis

of the experimental apparatus, i.e., the supercomputer, may improve adaptive sampling. Accurate forecasts

of how many agents will complete their runs before the next adaptive sampling trial could be used to tune

the size of the optimal candidate designs. Configurations which are likely start running before the next

round can be incorporated into the design ahead of time, with mean-predictive responses as surrogates, so

that future candidates can be focused on other parts of the input space.

For the longer term there are some enhancements which can be made towards applying the methods

herein to a broader array of problems. Three such closely related problems are of sampling to find extrema
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(Jones et al., 1998), to find contours (Ranjan et al., 2005) generally, or to find boundaries, i.e., contours

with large gradients (Banerjee and Gelfand, 2005), a.k.a. Wombling. Other related problems include that of

learning about, or finding extrema in, computer experiments with multi-fidelity codes of varying execution

costs (Huang et al., 2005), and those which are paired with a physical experiment (Reese et al., 2004).
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A Active Learning – Cohn (ALC)

Section A.1 derives the ALC algorithm for a hierarchical Gaussian process and Section A.2 does the same

for a linear model.

A.1 For hierarchical Gaussian processes

The partition inverse equations (Barnett, 1979) can be used to write a covariance matrix CN+1 in terms of

CN , so to obtain an equation for C−1

N+1
in terms of C−1

N :

CN+1 =





CN m

m> κ



 C−1

N+1
=





[C−1

N + gg>µ−1] g

g> µ



 (11)

where m = [C(x1,x), . . . , C(xN ,x)], κ = C(x,x), for an N + 1st point x where C(·, ·) is the covariance

function, g = −µC−1

N m, and µ = (κ−m>C−1

N m)−1. If C−1

N is available, these partitioned inverse equations

allow one to compute C−1

N+1
, without explicitly constructing CN+1. Moreover, the partitioned inverse can

be used to compute C−1

N+1
with time in O(n2) rather than the usual O(n3).

Using notation for a hierarchically specified Gaussian process, in the context of ALC sampling, the matrix

which requires an inverse is KN+1 +FN+1WF>
N+1. This matrix is key to the computation of the predictive

variance σ̂(x)2.

KN+1 + F>
N+1WFN+1 =





KN kN (x)

k>
N (x) K(x,x)



+





FNWF>
N FNWf(x)

f(x)>WF>
N f(x)>Wf(x)





=





KN + FNWF>
N kN (x) + FNWf(x)

k>
N (x) + f(x)>WF>

N K(x,x) + f(x)>Wf(x)



 .

(*) Using the notation CN = KN + FNWF>
N , qN (x) = kN (x) + FNWf(x), and κ(x,y) = K(x,y) +

f(x)>Wf(y) yields some simplification:
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CN+1 = KN+1 + FN+1WF>
N+1 =





CN qN (x)

qN (x)> κ(x,y)



 .

Applying the partitioned inverse equations (11) gives

C−1

N+1
= (KN+1 + F>

N+1WFN+1)
−1 =





[C−1

N + gg>µ−1] g

g> µ



 (12)

where g = −µC−1

N qN (x), and µ = (κ(x,x)− qN (x)>C−1

N qN (x))−1 using the most recent definitions of CN

and κ(·, ·), see (*).

From here an expression for the key quantity of the ALC algorithm from Seo et al. (2000) can be obtained.

It calculates the reduction in variance at a point y given that the location x is added into the data:

∆σ̂2
y(x) = σ̂2

y − σ̂2
y(x),

where σ̂2
y = σ2[κ(y,y) − q>

N (y)C−1

N q>
N (y)],

and σ̂2
y(y) = σ2[κ(y,y) − qN+1(y)>C−1

N+1
qN+1(y)].

Now ∆σ̂2
y(x) = σ2[κ(y,y) − q>

N (y)C−1

N qN (y)] − σ2[κ(y,y) − q>
N+1(y)C−1

N+1
qN+1(y)]

= σ2[qN+1(y)>C−1

N+1
qN+1(y) − q>

N (y)C−1

N qN (y)].

Focusing on q>
N+1(y)C−1

N+1
qN+1(y), first decompose qN+1:

qN+1 = kN+1(y) + FN+1Wf(y)

=





kN (y)

K(y,x)



+





FN

f>(x)



Wf(y) =





kN (y) + FNWf(y)

K(y,x) + f>(x)Wf(y)



 =





qN (y)

κ(x,y)



 .

Turning attention back to C−1

N+1
qn+1(y), with the help of (12):

C−1

N+1
qN+1(y) =





[C−1

N + gg>µ−1] g

g> µ









qN (y)

κ(x,y)



 =





[C−1

N + gg>µ−1]qN (y) + gκ(x,y))

g>qN (y) + µκ(x,y)]



 .

Then, another multiplication:

q>
N+1(y)C−1

N+1
qN+1(y) =





qN (y)

κ(x,y)





> 



(C−1

N + gg>µ−1)qN (y) + gκ(x,y))

g>qN (y) + µκ(x,y)





= q>
N (y)[(C−1

N + gg>µ−1)qN (y) + gκ(x,y)] + κ(x,y)[g>qN (y) + µκ(x,y)].
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Finally ∆σ̂2
y(x) = σ2[qN+1(y)>C−1

N+1
qN+1(y) − q>

N (y)C−1

N qN (y)].

= σ2[q>
N (y)gg>µ−1qN (y) + 2κ(x,y)g>qN (y) + µκ(x,y)2]

= σ2µ
[

q>
N (y)gµ−1 − κ(x,y)

]2

∆σ̂2
y(x) =

σ2
[

q>
N (y)C−1

N qN (x) − κ(x,y)
]2

κ(x,x) − q>
N (x)C−1

N qN (x)
.

A.2 For hierarchical (limiting) linear models

Under the (limiting) linear model, computing the ALC statistic is somewhat more straightforward. Starting

back at the beginning; now with the predictive variance under the limiting linear model:

∆σ̂2
y(x) = σ̂2

y − σ̂2
y(x) = σ2[1 − f>(y)Vβ̃N

f(y) − 1 − f>(y)Vβ̃N+1
f(y)]

= σ2f>(y)[Vβ̃N
− Vβ̃N+1

]f(y),

where Vβ̃N+1
from (Gramacy and Lee, 2006) includes x, and Vβ̃N

does not. Expanding out Vβ̃N+1
:

∆σ̂2
y(x) = σ2f>(y)



Vβ̃N
−

(

W−1

τ2
+

F>
N+1FN+1

1 + g

)−1


 f>(y)

= σ2f>(y)






Vβ̃N

−







W−1

τ2
+

1

1 + g





FN

f>(x)





> 



FN

f>(x)











−1




f(y)

= σ2f>(y)

[

Vβ̃N
−

(

W−1

τ2
+

F>
NFN

1 + g
+

f(x)f>(x)

1 + g

)−1
]

f(y)

= σ2f>(y)

[

Vβ̃N
−

(

V−1

β̃N

+
f(x)f>(x)

1 + g

)−1
]

f(y).

The Sherman-Morrison-Woodbury formula (Bernstein, 2005), where V ≡ f>(x)(1 + g)−
1
2 and A ≡ V−1

β̃N

gives

∆σ̂2
y(x) = σ2f>(y)





(

1 +
f>(x)Vβ̃N

f(x)

1 + g

)−1

Vβ̃N

f(x)f>(x)

1 + g
Vβ̃N



 f(y)

∆σ̂2
y(x) =

σ2[f>(y)Vβ̃N
f(x)]2

1 + g + f>(x)Vβ̃N
f(x)

.
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