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Abstract

We propose a class of Bayesian nonparamet-
ric mixture models with a Beta distribution
providing the mixture kernel and a Dirichlet
process prior assigned to the mixing distribu-
tion. Motivating applications include density
estimation on bounded domains, and infer-
ence for non-homogeneous Poisson processes
over time. We present the mixture model for-
mulation, discuss prior specification, and de-
velop a computational approach to posterior
inference. The model is illustrated with two
data sets.

1. Introduction

In looking beyond standard parametric families one
is naturally led to mixture models. In particular, fi-
nite mixture distributions provide flexible modeling
and are now feasible to implement due to advances in
simulation-based model fitting. Though it may appear
paradoxical, rather than handling the large number of
parameters resulting from finite mixture models with
a large number of mixands, it may be easier to work
with an infinite dimensional specification by assuming
a random mixing distribution which is not restricted
to a specified parametric family. The Dirichlet pro-
cess (DP) (Ferguson, 1973) is the most widely used in
this context, following Antoniak (1974), Lo (1984) and
Ferguson (1983). Under the DP mixture setting, the
generic form of the random mixture density is given by
f(·; G) =

∫

k(·; θ)dG(θ), where k(·; θ) is a paramet-
ric kernel (with parameter vector θ), and the random
mixing distribution G is assigned a DP prior. The DP
prior can be specified in terms of two hyperparameters,
a precision parameter α > 0, and a base distribution
G0, and, will thus be denoted by G ∼ DP(α, G0).

Appearing in Proceedings of the Workshop on Learning with
Nonparametric Bayesian Methods, 23 rd ICML, Pittsburgh,
PA, 2006. Copyright 2006 by the author(s)/owner(s).

Within the field of Bayesian nonparametrics, the class
of DP mixture models has witnessed several applica-
tions (see, e.g., the reviews by MacEachern & Müller,
2000, and Müller & Quintana, 2004). This is, ar-
guably, due to the availability of posterior simula-
tion techniques (mainly Markov chain Monte Carlo,
MCMC, algorithms) for DP mixtures, following the
work of Escobar (1994) and Escobar & West (1995).
Moreover, more recent work, has been focusing on
extensions of the DP, including development of pri-
ors with more flexible structure in their hyperparam-
eters (e.g., Ishwaran & James, 2001; Lijoi, Mena &
Prünster, 2005), as well as prior models for dependent
distributions (e.g., MacEachern, 2000; De Iorio et al.,
2004; Gelfand, Kottas & MacEachern, 2005; Griffin &
Steel, 2006; Teh et al., 2006).

Most of the work with DP mixtures is based on normal
kernels, either univariate or multivariate. However,
there are several applications where different choices
for the kernel are more natural/appropriate. Relevant
examples include models for unimodal densities on the
real line (e.g., Brunner & Lo, 1989; Brunner, 1995;
Kottas & Gelfand, 2001; Kottas & Krnjajić, 2005) and
models for survival and reliability analysis (e.g., Mer-
rick, Soyer & Mazzuchi, 2003; Kottas, 2006; Hanson,
2006).

In this paper we study the utility of DP mixtures of
Beta distributions. This class of DP mixture mod-
els emerges as a natural candidate for density esti-
mation problems when the support of the distribu-
tion is restricted on a bounded interval. Moreover,
we consider applications of the mixture model to in-
ference for non-homogeneous Poisson processes over
time. The method is based on the direct connection of
the Poisson process intensity function with an associ-
ated density function. To model the density function,
we employ the Beta DP mixture model. The resulting
nonparametric prior for the intensity function enables
model-based, data-driven inference for non-standard
intensity shapes.
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The plan of the paper is as follows. Section 2 presents
the formulation for the Beta DP mixture model, in-
cluding discussion of prior specification and posterior
predictive inference. In Section 3 the mixture model
is utilized to develop a modeling approach for Pois-
son processes. Full posterior inference for the intensity
function and the mean measure of the Poisson process
is discussed. The methodology is illustrated with two
data sets in Section 4. Finally, Section 5 concludes
with a summary and discussion of possible extensions.

2. The probability model for density

estimation

Consider observations yi, i = 1, ..., n, assumed to arise
from a distribution, with density f , which is supported
by a bounded interval, (0, T ), on the positive real line.
Of interest is inference for f and for other features of
the distribution.

The well-studied DP mixture of normals model is not
optimal in this context, since inference for the density
would be subject to edge effects for data sets with mea-
surements close to the endpoints of (0, T ). Mixtures of
Beta densities emerge as a natural alternative. With
appropriate mixing, this model yields a wide range of
distributional shapes, in fact, it can be used to approx-
imate arbitrarily well densities defined on bounded in-
tervals (Diaconis & Ylvisaker, 1985). We parameterize
the rescaled Beta distribution, with support on (0, T ),
in terms of its mean µ ∈ (0, T ) and a scale parame-
ter τ > 0. Specifically, letting θ = (µ, τ), the kernel
density of the DP mixture can be written as

k(y; µ, τ) =
yµτT−1

−1(T − y)τ(1−µT−1)−1

Be{µτT−1, τ(1 − µT−1)}T τ−1
, (1)

where y ∈ (0, T ), and Be(a, b) denotes the Beta func-

tion,
∫ 1

0 ua−1(1 − u)b−1du, a > 0, b > 0.

Hence the mixture model for the random density f is
given by

f(y; G) =

∫

k(y; µ, τ)dG(µ, τ), G ∼ DP(α, G0). (2)

We assume random α with a gamma(aα, bα) prior dis-
tribution p(α) such that E(α) = aα/bα. To specify the
base distribution G0, we assume independent compo-
nents, G0(µ, τ) = G01(µ)G02(τ), and note that the
variance under (1) is µ(T − µ)/(τ + 1). Hence µ de-
termines the location of a mixture component and,
for specified µ, τ controls its dispersion. The default
choice of a uniform distribution on (0, T ) for G01(µ) is
appealing and, in fact, proves to be sufficiently flexible
in applications. For G02(τ) we take an inverse gamma

distribution with fixed shape parameter aτ and ran-
dom scale parameter β, which is assigned an exponen-
tial prior distribution p(β) with mean 1/d. In Section
4 we discuss prior specification for α and β as well as
sensitivity of posterior estimates to these prior choices.

The probability model for the observables yi, i =
1, ..., n, can be expressed in hierarchical form by intro-
ducing a latent mixing parameter vector θi = (µi, τi)
associated with each yi. Then, given G, the θi are i.i.d.
from G, and, at the first stage of the model, given the
θi, the yi are conditionally independent with densi-
ties k(·; µi, τi) as in (1). The discrete countable nature
of the DP (Ferguson, 1973; Sethuraman, 1994) is a
key feature as it enables data-driven clustering in the
θi. The discreteness for the DP is immediate from its
constructive definition (Sethuraman, 1994), according
to which, a realization G, given α and β, is (almost
surely) of the form

G =

∞
∑

j=1

ωjδ(µ̃j ,τ̃j), (3)

where δx denotes a point mass at x, ω1 = z1, ωj =

zj

∏j−1
s=1(1 − zs), j = 2,3,..., with zs | α independent

from a Beta(1, α) distribution (where this notation
refers to the standard parameterization for the Beta
distribution), and, independently, (µ̃j , τ̃j) | β indepen-
dent from G0.

To obtain posterior predictive inference under model
(2), it suffices to work with the marginalized version
of the hierarchical model that arises by integrating G
over its DP prior. Several posterior simulation tech-
niques have been suggested for the resulting marginal
posterior, p(θ, α, β | data), where θ = (θ1, ..., θn), and
data = (y1, ..., yn) (see, e.g., the references in Müller
& Quintana, 2004). We have used algorithm 5 from
Neal (2000), which, though the least efficient among
the MCMC algorithms discussed by Neal (2000), is
the easiest to implement, and provided an acceptable
exploration of the posterior for the data examples dis-
cussed in Section 4 as well as for artificial data in a sim-
ulation study (not reported here). However, it would
be of interest to experiment with other posterior sim-
ulation methods as is briefly discussed in Section 5.

The posterior draws θb = {(µib, τib) : i = 1, ..., n}, αb,
βb, b = 1, ..., B, from p(θ, α, β | data) can be used to
estimate the posterior predictive density p(y0|data) at
any point y0 ∈ (0, T ),

p(y0|data) =
∫

k(y0; µ0, τ0)p(µ0, τ0|θ, α, β)
p(θ, α, β | data).

(4)

Here, p(µ0, τ0|θ, α, β) is a mixed distribution with
point masses (equal to (α + n)−1) at the θi, i =
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1, ..., n, and continuous mass (equal to (α + n)−1α)
on G0(µ0, τ0|β). The posterior predictive density pro-
vides the standard Bayesian density estimate. Note,
however, that p(y0|data) is only the posterior expec-
tation for f(y0; G), the density functional at y0. More
general inference is discussed in Section 3 in the con-
text of modeling for Poisson processes.

To our knowledge, general Beta DP mixtures of the
form in (2) have not appeared in the literature. Re-
garding the use of Beta mixtures in Bayesian mod-
eling, Robert & Rousseau (2003) developed a good-
ness of fit method using discrete Beta mixtures with
unknown number of components. Petrone (1999a;
1999b) and Petrone & Wasserman (2002) focus on den-
sity estimation based on random Bernstein densities,
∑k

j=1 wj,kbe(x; j, k − j + 1), where k is assumed ran-
dom and be(x; a, b) denotes the Beta density with pa-
rameters a and b (again, under the standard parame-
terization for the Beta distribution). Thus Bernstein
densities form a specific class of discrete Beta mix-
tures such that, for a given number of components, the
component parameters are specified and only the mix-
ing weights are random. In particular, the Bernstein-
Dirichlet prior model induces a prior on the weights
through wj,k = F (j/k) − F{(j − 1)/k}, where F is a
distribution function, with support on [0, 1], modeled
with a DP prior. We also refer to Mallick & Gelfand
(1994) and Gelfand & Mallick (1995) for related work,
which employs mixtures of Beta distribution functions
to model random monotonic functions.

3. Applications to inference for Poisson

process intensities

Point processes are stochastic process models for
events that occur separated in time or space. Ap-
plications of point process modeling can be found in
several scientific fields, including traffic engineering,
software reliability, neurophysiology, weather model-
ing, and forestry. Poisson processes play a fundamen-
tal role in the theory and applications of point pro-
cesses. Focusing on point processes over time, let N(t)
denote the number of event occurrences in the time
interval (0, t]. Then, formally, the point process N =
{N(t) : t ≥ 0}, is a non-homogeneous Poisson process
if for any t > s ≥ 0, N(t) − N(s) follows a Poisson
distribution with mean Λ(t) − Λ(s), and N has in-
dependent increments, that is, for any 0 ≤ t1 < t2
≤ t3 < t4, the random variables N(t2) − N(t1) and
N(t4) − N(t3) are independent. Here, Λ is the mean
measure (or cumulative intensity function) of the Pois-
son process. For any t ∈ R+, it is defined as Λ(t) =
∫ t

0
λ(u)du, where λ is the Poisson process intensity

function, which is a non-negative and locally integrable
function, that is,

∫

B
λ(u)du < ∞, for all bounded

B ⊂ R+. See, e.g., Kingman (1993), Guttorp (1995),
and Moller & Waagepetersen (2004) for background
on the theory and applications of Poisson processes.

Based on its definition, from a modeling perspective,
of interest for a non-homogeneous Poisson process is
its intensity function. We consider such a process ob-
served over the time interval (0, T ] with events that
occur at times 0 < t1 ≤ t2 ≤ ... ≤ tn ≤ T . The like-
lihood for the Poisson process intensity function λ is
given by

exp{−
∫ T

0 λ(u)du}
n
∏

i=1

λ(ti). (5)

Let γ =
∫ T

0
λ(u)du. To cast the problem in a den-

sity estimation framework, the key observation is that
f(t) = λ(t)/γ, t ∈ (0, T ], is a density function on (0, T ].
Hence, since (f, γ) provides an equivalent representa-
tion for λ, a nonparametric prior model for f , with
a parametric prior for γ, will induce a semiparametric
prior for λ. We use the Beta DP mixture model (2) for
f . Note that we are creating a prior model for random
intensity functions induced by the prior model for the
associated random density functions. In fact, since γ
only scales λ, it is f that determines the shape of the
intensity function λ, and thus a flexible model for f
will capture non-standard shapes in λ.

Using (5), the full Bayesian model for γ and f , equiv-
alently, for γ and G, becomes

exp(−γ)γn

{

n
∏

i=1

∫

k(ti; µi, τi)dG(µi, τi)

}

p(γ)p(G | α, β)p(α)p(β)
(6)

with the prior structure p(G | α, β)p(α)p(β) for G and
its hyperparameters discussed in Section 2, and a prior
p(γ), with support (0,∞), for γ.

Because, in general, it seems difficult to specify param-
eters for a prior distribution for γ, we use Jeffreys prior
based on the marginal likelihood, L∗(γ), for γ, which
arises from (6) by integrating out all other parameters
over their (proper) priors. Specifically, logL∗(γ) ∝
−γ + n log γ, and, hence, the Fisher’s information
based on this marginalized likelihood yields the prior
p(γ) ∝ γ−1. In fact, this is the reference prior for
γ with the DP mixture prior playing the role of the
conditional prior for the nuisance parameters (all pa-
rameters other than γ). The reference prior approach
(see, e.g., Bernardo, 2005) is too technical to discuss
here, but its basic idea is to choose the prior which, in
a certain asymptotic sense, maximizes the information
in the posterior that is provided by the data.
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Based on the model structure in (6), and under
the p(γ) ∝ γ−1 prior for γ, it is straightforward to
verify that the joint posterior, p(γ, G, θ, α, β|data), is
proper. In fact, the marginal posterior p(γ|data) =
gamma(n, 1), and p(γ, G, θ, α, β|data) = p(γ|data)
p(G, θ, α, β|data), where data = (t1, ..., tn).
Hence, to explore the full posterior distribu-
tion p(γ, G, θ, α, β|data), it suffices to imple-
ment an MCMC method to obtain draws from
p(G, θ, α, β|data), the posterior for the DP mixture
part of model (6). We use the approach proposed in
Gelfand & Kottas (2002), and Kottas (2006), which
yields full inference for functionals of the random
mixture density f(t; G).

Using results from Antoniak (1974),

p(G, θ, α, β|data) = p(G | θ, α, β)p(θ, α, β | data).

Here the distribution for G | θ, α, β is a DP with
updated precision parameter α + n and base distri-
bution G∗

0(µ, τ |θ, α, β) = (α + n)−1{αG0(µ, τ |β) +
∑n

i=1 δ(µi,τi)(µ, τ)}. Posterior draws θb, αb, and βb

from p(θ, α, β | data) (obtained as in Section 2)
can be used to draw Gb from p(G | θb, αb, βb) us-
ing a truncation approximation to (3). Specifically,

we take Gb =
∑J

j=1 wjbδ(µ′

jb
,τ ′

jb
), where w1b = z1b,

wjb = zjb

∏j−1
s=1(1 − zsb), j = 2, ..., J − 1, wJb =

1 −
∑J−1

j=1 wjb =
∏J−1

s=1 (1 − zsb), with zsb independent
Beta(1, αb + n), and, independently, (µ′

jb, τ
′

jb) inde-
pendent G∗

0(µ, τ | θb, αb, βb). The approximation can
be made arbitrarily accurate. For instance, because
E(

∑J−1
j=1 wjb | αb) = 1 − {(αb + n)/(αb + n + 1)}J−1,

we can choose J that makes, say, {(n+maxb αb)/(n+
1 + maxb αb)}J−1 arbitrarily small. Now,

fb0 =

∫

k(t0; µ, τ)dGb(µ, τ) =
∑J

j=1
wjbk(t0; µ

′

jb, τ
′

jb)

is a realization from the posterior of f(t0; G), for any
time point t0 in (0, T ). Hence, if γb is a draw from
p(γ|data), γbfb0 is a posterior draw for λ(t0; γ, G) =
γf(t0; G), the intensity function functional at t0.

Analogously, Fb0 =
∑J

j=1 wjbK(t0; µ
′

jb, τ
′

jb), where K
is the distribution function for the density k in (1), is

a posterior realization for F (t0; G) =
∫ t0

0 f(u; G)du =
∫

K(t0; µ, τ)dG(µ, τ), and γbFb0 is a draw from
the posterior of the cumulative intensity function
functional at t0, Λ(t0; γ, G) =

∫ t0

0
λ(u; γ, G)du =

γF (t0; G). Hence full posterior inference for the in-
tensity and the cumulative intensity functions at any
point in the time interval (0, T ) is available. For in-
stance, posterior point estimates and associated uncer-
tainty bands for λ and Λ can be obtained using point
and interval estimates from p{λ(t0; γ, G) | data} and
p{Λ(t0; γ, G) | data} over a grid of time points t0.

Regarding the Bayesian nonparametric literature on
modeling for Poisson processes, most of the work has
focused on the cumulative intensity function Λ, includ-
ing priors based on gamma processes, weighted gamma
processes, Beta processes, and Lévy processes; see Lo
(1992), Kuo & Ghosh (1997), Gutiérrez-Peña & Nieto-
Barajas (2003) and further references therein. Poten-
tial drawbacks in working with Λ might include the
lack of smoothness in the resulting posterior estimates,
induced by properties of the stochastic processes used
as priors, and the fact that inference for λ is typi-
cally not readily available. Regarding prior models for
the intensity function, the existing work includes the
method suggested by Lo & Weng (1989), which was
recently extended in Ishwaran & James (2004). Under
this approach, λ(t; H) =

∫

m(t; v)H(dv), t ∈ (0, T ],
where m is a specified non-negative kernel (typically,
not a density) with parameters v, and the mixing mea-
sure H is assigned a weighted gamma process prior.
A similar formulation arises under the approach of
Wolpert & Ickstadt (1998) applied to one-dimensional
Poisson processes. Wolpert & Ickstadt (1998) devel-
oped a hierarchical model to account for spatial varia-
tion in the intensity function of a spatial Poisson pro-
cess. The approaches by Wolpert & Ickstadt (1998)
and Ishwaran & James (2004) are useful for general
multiplicative point processes. However, for the im-
portant special case of non-homogeneous Poisson pro-
cesses, the proposed approach based on DP mixture
models might be a useful addition to the existing meth-
ods as it builds on a familiar Bayesian density estima-
tion framework, facilitating the choice of kernel and
prior for the mixing distribution.

4. Data illustrations

Here, we illustrate the methodology with two data
sets. Regarding the priors for the DP hyperparam-
eters, recall that α controls the number n∗ of distinct
components in the DP mixture (2) (Antoniak, 1974;
Escobar & West, 1995). For instance, for moderately
large n, E(n∗) ≈ (aα/bα) log{1 + (nbα/aα)}. To spec-
ify the mean, 1/d, of the exponential prior for β, we
consider a single component of mixture (2), for which
the variance is µ(T −µ)/(τ +1). Setting aτ = 2, which
yields an inverse gamma distribution G02(τ) with in-
finite variance, and using marginal prior means for µ
and τ , based on G0, a rough estimate for the variance
above is 0.25T 2/(1 + d−1). Let r be a prior guess at
the range of the yi (Section 2) or the ti (Section 3).
Then we specify d through 0.25T 2/(1+d−1) = (r/6)2.
This approach is fairly automatic and, in fact, yields
a noninformative specification as it is based on the
special case of the mixture with a single component,
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whereas, in applications, more components are needed
to capture the density or intensity function shape. For
both data sets discussed below, we used r = T (which
can be viewed as a default choice) leading to an ex-
ponential prior for β with mean 8. We have also ex-
perimented with less informative priors for β, based
on T < r ≤ 1.5T , revealing little sensitivity of the
resulting posterior estimates.
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Figure 1. Turtle data. Posterior predictive densities under
three prior choices (see Section 4 for details) overlaid on
histogram of the data.

The first data set is a standard example from the field
of directional statistics. It consists of directions (in
degrees, clockwise from north) in which each of 76 fe-
male turtles moved after laying their eggs on a beach.
A histogram of the data is provided in Figure 1. Most
of the turtles show a preference for swimming approxi-
mately in the 60◦ direction, while a substantial minor-
ity prefer the opposite direction. See, e.g., Ferreira,
Juárez & Steel (2006) for recent work on model-based
approaches to the analysis of directional data as well
as for references to earlier analyses of the turtle data.
Here, we work only with the data on the direction an-
gle to study the performance of the Beta DP mixture
model in density estimation.

Figure 1 includes estimates for the posterior predictive
density (4) under three priors for α, a gamma(2, 5.25)
prior (dotted line), a gamma(2, 2.19) prior (dashed
line), and a gamma(2, 0.75) prior (solid line). These
choices correspond to E(n∗) ≈ 2, 4, and 9, respectively.

Regarding inference for n∗, the posterior 25% per-
centile, posterior median, and posterior 75% percentile
are given by 3, 4, and 5, under the gamma(2, 5.25)
prior for α; by 4, 6, and 7, under the gamma(2, 2.19)
prior; and by 6, 8, and 10, under the gamma(2, 0.75)
prior. We note that, although the posterior summaries
for n∗ are affected to some extent by the prior for α,
the posterior density estimates depict relatively little
sensitivity to sensible prior choices for α.

We next turn to the analysis of a temporal point pat-
tern, to illustrate the modeling approach for Poisson
processes over time. The data set consists of 31 fail-
ure times, in days, based on the trouble report for
one of the larger modules of the Naval Tactical Data
System, and has been previously analyzed, among oth-
ers, by Kuo & Yang (1996), Kuo & Ghosh (1997) and
Gutiérrez-Peña & Nieto-Barajas (2003), using both
parametric and nonparametric Bayesian methods.
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Figure 2. Software reliability data. Posterior point esti-
mates (solid lines) and interval estimates (dashed lines) for
the intensity function (left panel) and the cumulative in-
tensity function (right panel). In both panels, the observed
failure times are plotted on the horizontal axis.

We fit model (6) using a gamma(2, 1.64) prior for α,
which implies E(n∗) ≈ 4. We also obtained posterior
results under different priors for α, yielding E(n∗) be-
tween 2 and 7. Encouragingly, even with the smaller
sample size which is available here, posterior inference
was again robust to these prior choices.
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Figure 3. Software reliability data. Posteriors for the cu-
mulative intensity at time points, t0 = 40, 90, 200, and
450, plotted by the solid, dashed, dashed-dotted, and small
dashed lines, respectively.

Figure 2 shows point estimates (based on posterior
means), and interval estimates (based on 95% point-
wise central posterior intervals) for the intensity func-
tion and the cumulative intensity function. Results
for the cumulative intensity function are similar to the
ones reported in Kuo & Ghosh (1997) and Gutiérrez-
Peña & Nieto-Barajas (2003), although the Beta DP
mixture model yields smoother estimates, which is,
arguably, a desirable property for a prior probability
model in this context. Moreover, it readily provides
inference for the intensity function depicting more em-
phatically the pattern of failures over time.

To indicate the range of inferences the method pro-
vides, Figure 3 plots the entire posterior for the cu-
mulative intensity functional, Λ(t0; γ, G), at four time
points, t0 = 40, 90, 200, and 450, and Figure 4 plots
the posterior for 1− exp{Λ(s)−Λ(t)}, that is, for the
probability of at least one failure in the time interval
(s, t]; included are the posteriors corresponding to four
intervals of length equal to 20 days.

5. Summary

We have proposed a modeling approach for density
functions on bounded intervals, and for Poisson pro-
cess intensity functions. The method is based on DP
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Figure 4. Software reliability data. Posterior for the prob-
ability of at least one failure in the time intervals (0, 20],
(90, 110], (335, 355], and (490, 510], plotted by the solid,
dashed, dashed-dotted, and small dashed lines, respec-
tively.

mixtures of Beta distributions. We have discussed
how posterior inference can be obtained for both ap-
plications considered. Finally, we have illustrated the
model with two data examples.

An extension of the methodology discussed in this
paper to modeling for spatial non-homogeneous Pois-
son process intensities has been recently proposed by
Kottas and Sansó (2006), where particular emphasis
was placed on applications to extreme value analy-
sis problems. The DP mixture model used in Kottas
and Sansó (2006) is based on a bivariate Beta den-
sity. When covariate information is available, a prac-
tically important extension of the model (for Poisson
processes either over time or over space) would be to
semiparametric regression settings. In particular, cur-
rent work studies new modeling formulations for data
that include individual-specific covariates, that is, for
point patterns that can be assumed to arise from a
marked Poisson process.

In addition to extensions to new modeling scenarios,
of practical importance would be a study of the per-
formance of different posterior simulation methods for
the proposed Beta DP mixture model. Such a study
might include, for instance, alternative MCMC algo-
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rithms for non-conjugate DP mixtures (e.g., MacEach-
ern & Müller, 1998; Neal, 2000) as well as alternative
approaches to MCMC methods, such as variational in-
ference methods (Blei & Jordan, 2006).
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