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Abstract

We consider monthly temperature data collected over a period of 16 years at
24 stations in the Elkhorn Slough National Estuary, located in the Monterey Bay
area in Central California, USA. Our goal is to develop a statistical model in order
to separate the annual cycle, short term fluctuations and long term trends, while
accounting for the spatial variability of these features. In the model, each station
has a specific, time-invariant mixture of two seasonal components, to encompass
the spatial gradient of oceanic influence. Likewise, long term trends are modeled
as local mixtures of two components. Finally, all stations share a common base-
line, whose temporal variability is linearly dependent on a variable that summarizes
several atmospheric measurements. We use a Bayesian approach with a purposely
developed Markov chain Monte Carlo method to explore the posterior distribution
of the parameters. We find that seasonal patterns have changed in time, that neigh-
boring stations can have substantially different behaviors and that most stations

show significant warming trends.
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1 Introduction

Estuaries are the most highly anthropogenically impacted of all habitat types (Edgar
et al., 2000), yet they host rich, distinctive biodiversity, including migratory shorebirds,
nursery fishes, among others (Laprise and Dodson, 1994; Whitfield, 1994; Price, 2002).
Even though Elkhorn Slough is a small, shallow estuary on a national scale, it is the
largest estuary between San Francisco and Morro Bay, California USA. It has an ex-
tremely important ecological role with a variety of habitats, including extensive marshes
and mudflats. Each estuary has unique, often complicated, spatial and temporal char-
acteristics. Therefore, it is a challenge to develop and maintain monitoring programs
that capture this variability while developing record lengths long enough to discern water
quality trends in the context of seasonal variation.

One of the goals of the Elkhorn Slough National Estuarine Research Reserve (ES-
NERR) is to examine spatial and temporal variation water quality and nutrient concen-
trations, to assess changes in ecosystem status of the whole estuary and at the site specific
level. Under that scope, we consider if there are significant long-term trends in tempera-
ture during the period 1988-2004 and if these changes occur similarly across the reserve,
or some regions present stronger signals. We examine records from 24 sites in the ES-
NERR where monthly water quality data have been collected for as long as 16 years. The
slough is located in the Monterey Bay area, between the cities of Watsonville and Salinas,
along the central coast of California. Much of the surrounding land use is dominated by
row crop agriculture. The locations of the stations can be seen in Figure 1. They have
been renumbered based on their ranked distance from the mouth of the slough. More in-
formation about the Elkhorn Slough is available from http://www.elkhornslough.org/.

We expected that, of all the water quality measures, temperature should be the most

tractable. For example, nutrient concentrations tend to be highly variable, and dissolved
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Figure 1: Locations of the monitoring stations in the Elkhorn Slough. Shaded areas show the

extent of the tidal salt marsh and continuous l'gles represents riverine or tidal channels



oxygen or turbidity measures are controlled by several factors simultaneously (e.g., sedi-
ment concentration, planktonic and benthic algae, water mixing, nutrient concentrations,
and day length). The results presented in this paper were obtained after using increas-
ingly complex statistical approaches. At the onset, visual inspection of the data strongly
suggests temperatures and their seasonal amplitudes are increasing in the slough in most
of the 24 sampled sites. In this paper we carefully quantify such trends.

Water temperature is strongly influenced by human changes to the slough’s hydrology,
which date back to the 1880s. Because the main channel is artificially opened to create
a harbor for fishing and research vessels, the slough experiences the semi-diurnal tidal
action. In the lower portion of the slough, water has a residence time of less than one
day. In the northern portion of the main channel, water has a longer residence time,
estimated to be 3 weeks (per. comm. Steve Monosmith). Currently, the main channel
extends inland for 11.4 km from Monterey Bay in Central California (Figure 1). The
slough includes a variety of habitats that receive seawater exchange through the mouth
and terrestrial freshwater from a few seasonal streams in upper Elkhorn main channel
(Carneros and Corncob Canyon Creek), plus flow from Salinas River, via the Old Salinas
Channel, and runoff from local terrestrial sources. Thus, some areas have limited tidal
exchange and temperature is isolated from the main channel, while other areas have
extremely high tidal exchange and temperatures similar to the ocean. Flow in many of
the freshwater sources is augmented by agricultural run-off, often in the form of summer
irrigation tailwater or winter storm driven events.

The main results from our analysis are summarized in the quantification of the tem-
perature trends. We show that such trends vary substantially from month to month and
from station to station. In most cases the summer temperature has increased by up to 5
°C in 16 years, while a comparable decrease has been observed in April in other stations.
Establishing the cause of this increase was beyond the scope of this effort.

The paper is organized as follows: in the next section we discuss the salient features
of the data, based on an exploratory data analysis; in Section 3 we present a statistical

model and discuss the Monte Carlo method that we use to estimate the parameters and
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Figure 2: Time series of the temperature readings for Station 22. This is one of the stations

with the most complete record.

check the goodness of fit; in Section 4 we present the results obtained from the model

and in the last section we present a discussion.

2 Exploratory data analysis

The data considered in this paper are the result of a 16-year program carried out by a
combination of volunteers and professional support. Starting in the fall of 1988, several
stations in the Elkhorn Slough were sampled for temperature, salinity, pH, turbidity,
dissolved oxygen, ammonium, nitrate, and soluble reactive phosphorous. The number of
stations increased over time, from 6 to 24. As an illustration of the data under analysis
we present the plot of the temperature measured at Station 22 in Figure 2.
Temperature measurements were made with YSI multiprobe sensors using thermistor

technology. The accuracy of temperature measurements is +0.15%°C with a resolution



of 0.01°C. Temperature thermistors are very reliable and require no calibration or main-
tenance (YSI, Series 6 Owners Manual, 069300B). They exhibit less than 0.01°C drift
that is usually associated with a change in the thermistor resistance. Thermistor drift is
generally caused by exposure to high temperatures, i.e. well outside the range of values
in estuarine environments. This information is important to exclude the possibility that
the observed trends are due to equipment malfunction.

Although data were nominally collected on a monthly basis, some observations were
missing. On the other hand, there were a few months where two samples were taken.
When a month with no samples followed or was preceded by a month with two samples,
these were often close to the extreme days of the month. In those cases, we moved
the sample closest to the empty month. Otherwise, we removed the sample with fewest
measured variables. Even after this 22% of the data were still completely missing.

Our exploratory data analysis began with time series plots of temperature at the 24
stations. Given the strong seasonal signal that was immediately apparent, we attempted
to model each time series as the sum of a stationary seasonal cycle, with sinusoidal shape,
a linear trend and random white noise. Preliminary results derived from these models
revealed several important features in the data. First, the seasonal signal varied markedly
from station to station in terms of amplitude, ranging between 4.5°C and 12.5°C. In
contrast, the phase seemed to be locked, with the yearly minimum occurring in January.
Secondly, 19 out the 24 stations presented long-term warming trends, up to 4°C in 16
years. Despite being smaller than yearly amplitudes, these trends seemed evident upon
visual inspection of fitted values together with observations. The significance of such
trends is supported by a seasonal Kendall test, which consists of a non-parametric test
well suited to data with strong seasonal patterns (Helsel and Hirsch, 1992). In this case,
we used month as the season (i.e. 12 seasons per year). Results suggested that 13 of
the 24 sites had a significant increase in temperature over the sampling period. The
increasing temperatures range from 1.1 to 5.4°C/(16 years). Stations where significant
trends are present are scattered throughout the slough and do not reflect an obvious

spatial pattern. In some stations, an amplification of the seasonal cycle, with warmer



summer months, seemed to be occurring, rather than a year-round temperature increase.

In contrast to our initial expectations, both trends and seasonal cycles were not always
similar for nearby stations. Even when factors such as connectivity and tidal influence
were accounted for, we could not find simple methods based on proximity to appropriately
estimate the results for a given station given the neighboring ones. This reflects the
complex circulation patterns present in estuarine systems, and hinders the interpolation
of observations to other locations in the estuary, as we first intended.

More importantly, the simple statistical models mentioned above could not adequately
describe temperature variability in the Elkhorn Slough, since residual analysis revealed
the presence of substantial unexplained structure. For instance, observations made in
April systematically produced positive residuals, indicating that one sinusoidal compo-
nent was not enough to capture the annual cycle of temperature. As will be depicted
below, this cycle was so complex that it required a form-free model where the effects
of each month were not linked. On the other hand, significant spatial and temporal
correlations were found in the residuals. This impaired any estimate of significance as-
signed to the trends, and implied the need for additional model parameters. Interestingly,
the time series of residuals obtained with stationary form-free models with linear trends
were similar among stations. This feature pointed to a common explanatory variable to
the short-term variability of temperature in the slough. We considered solar radiation,
rainfall and wind speed, measured in the weather station of Castroville, as well as sea
surface temperature (SST) data from a National Oceanic and Atmospheric Administra-
tion (NOAA) buoy located off the Monterey Bay. From a visual inspection of time-series
plots, we concluded that a known combination of some of these variables — potential
evapotranspiration — might provide the best regressor.

As we moved into models with form-free seasonal components, we observed that
coastal stations, clearly influenced by the entrance of seawater into the slough, displayed a
damped annual cycle of temperature variation similar to that of offshore SST. In contrast,
temperature in inland stations behaved more like air temperature, cooling slightly more

in winter and warming much more during summer. Thus, we hypothesized that each



station’s cycle could be a mixture of two seasonal patterns. Although the exact mixture
could not be deducted from the station’s location, the dimensionality of the problem was

greatly reduced, as will be shown below.

3 Statistical model

Let O, 4(s) be the temperature of station s, month m and year y. We assume that such
temperature can be expressed as the sum of the following: a seasonal component, a trend,
an atmospheric factor dependent baseline and random noise. The seasonal component is
location dependent and is the result of mixing two seasonal patterns. The trend is also
location dependent and results from mixing two trend components. For both the seasonal
component and the trend, one of the mixing terms corresponds to a coastal behavior and

the other to an inland behavior. More explicitly, the model for 6,,,(s) can be written as

Oy (5) = a(s)nly) + (L= a(s))ng) +B(s)7e) (t =)+ (1= B(s))v) (t=1) + Ae+emy (s) (1)

where t = t(y,m) = 12(y — y1) + m, with y; = 1988, and ¢ = 95. For month m,
nﬁi) and n,(ﬁ) are the two temperature seasonal components, which we identify with the
inland and coastal seasonal components, respectively. %(,%) and '77(,3) are the two long-term
linear trend components. For station s, a(s) and 3(s) correspond to weights (between
zero and one) assigned to n,(,i) and %(,1), respectively. \; corresponds to the short-term
temperature variability in the slough. The variability of A; has serial correlation and is
partially explained using atmospheric factors, as will be seen below. Finally €, ,(s) is
random noise. We will assume that the vector €,y = (€my(51), .-, €my(S24)) follows a
multivariate normal distribution with mean zero and covariance matrix V', for all m and
y and that €y, and €, ,s and independent if m # m’ or y # .

The salient features of the model in Equation (1) include two different seasonal pat-
terns described by twelve parameters each. This provides the flexibility needed to capture
the lack of symmetry observed in the data, in particular, the dip observed from April to

May at some stations. The hydrology of the slough suggests that monthly trends vary

with geographical location. A priori, we have no reason to believe that either coastal



or inland stations display stronger long-term trends, because we do not know the cause
for such temperature change. Therefore, we use different sets of weights for the seasonal
signal («) and the trends (). In both cases, the model does not impose any spatial
regularity; in fact, all our earlier attempts at considering seasonal patterns or trends that
were linked by proximity were unsuccessful. Nor does the model impose any relation
between the parameters that change with the month, since this would smooth out the
peculiar effect of months like April and December.

Denote the observations taken at station s, month m and year y as ,,,(s). We
assume that

Ty (8) = Omy(8) + Xmy(8),  Xmy(s) ~ N(O, T;) (2)

In words, the temperature at a given time and location is subject to a measurement error
Xm.y(s). We assume that such errors are all independent across time and location.

Local weather stations (California Irrigation Management Information System — CIMIS)
continuously measure temperature, solar radiation, rainfall, relative humidity, and wind
speed and direction and calculate reference evapotranspiration using the Penman-Monteith
equation. The resulting output provides daily assessments that might be associated to
drivers of short term temperature trends in the slough. We complete the model specified
by Equations (1) and (2) by incorporating reference evapotranspiration (ETy), denoted
as z;, as an explanatory variable for );. Daily reference evapotranspiration expresses the
evaporation power of the atmosphere from a standardized vegetated surface. ET\ has a
very regular cyclical pattern with a yearly periodicity, as can be seen in Figure 3. Thus,

we assume that z; and \; follow the model

z 1 cos(27t/12) ) 0 2 0
' = ' + Cta Ct ~ N ) (3)
)‘t (b 0 Kt 0 0 7')%
515 5?5,1 0 T2 0
= + &, & ~N ) ’ (4)
Kt Ki—1 0 0 7'3

We chose such a simple seasonal model for ET after a preliminary regression analysis

suggested that no additional sinusoids are needed.
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Figure 3: Time series of the reference evapotranspirations (ETy).

3.1 Prior distributions

We assume that all parameters have independent priors. We use sea surface tempera-
tures from the National Oceanic and Atmospheric Administration buoy 46042, and air
temperature data from CIMIS station 19, Castroville, to provide proper normal priors
for the coastal and inland average monthly temperatures, respectively. For the trends,
01, k1 and ¢, we assign vague normal priors, with mean zero.

For a(s) and ((s) we use uniform priors with support (0,1). The prior for the co-
variance matrix V' is an inverse Wishart with 25 degrees of freedom and scale matrix
equal to 25 times the identity. The priors for 73, 77 and 72 are given by inverse gammas
with parameters 0.05 and 5. Thus, we are allowing the monthly variability in ET{ to be
explained by changes in either the baseline or the seasonality, and we are not providing
much information as to how closely §; and A; vary. In contrast, 7'3 and 72 receive infor-
mative priors with inverse gamma distribution, with parameters 6.8 and 2000, and 0.05

and 500, respectively. These parameters are set so that twice the expectation of 7, and
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T, are close to the accuracy of water temperature and ETy measurements, respectively.

3.2 Fitting the model

In order to fit the proposed model we use a Markov Chain Monte Carlo method (for ex-
ample, see Gamerman and Lopes, 2006). For most parameters it is possible to obtain the
full conditionals in closed form. The detailed distributions are presented in the appendix.

Form =1,...,12, n,(n), n,(n), 7(1) and %(3) can be sampled from univariate normals. De-

note G,y = (Omy(51),- -+, 0my(s24)), a = (a(s1),...,a(s24)), B = (B(s1),...,8(s24))

and let 1 be a vector of ones. Then, according to Equation (1),
Oy — ) — (1— )@ — Byt — (1= B)y @t — 1\, ~ Noy(0,V), Vm,y.  (5)

Since the prior for V is an inverse Wishart, the full conditional will also be an in-
verse Wishart. Let X,,, denote the vector of observations at time (m,y). We write
Xy = (X3, X5,,), where X3 are the observed values and X, , the missing ones.
As is customary in a Bayesian framework, we treat the missing values as unknown pa-
rameters and sample them within the MCMC, from the appropriate multivariate normal
distribution.

Let Y =0y, — a777(n) (1- a)nm ﬁym —(1- ,8)%(3)15, then, sampling A\; can be
done by noticing that, conditional on all the remaining parameters, Y, = 1\; + €;. From
Equation (3) we have that A, ~ N(¢d;, 77). Thus the full conditional for )\; is given by a
normal with mean (1'VY; + ¢6;/72)/(V'V =1+ 1/7%) and variance (I'V'1+ 1/73)~".

To sample from the joint distribution of (d1,...,07, k1,...,kr) we use the forward
filtering, backward sampling algorithm (for example, see West and Harrison, 1997, Chp.
15) applied to the conditional multivariate dynamic linear model given by observation
equation (3) and evolution equation (4).

We use the appropriate normal distribution to obtain samples of ¢. Samples of
72,72, 75, 7, and 73 correspond to inverse gamma distributions.

To obtain samples of a(s) and [(s), for each s, we first considered an approach based

on a Metropolis step. Unfortunately the resulting samples showed very slow mixing.
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As an alternative, we follow the approach of Neal (2003) and use an overrelaxed slice
sampler, switching to a regular slice sampler every ten iterations of the MCMC. Since
the approach is the same for both sets of parameters, let us consider a(s) only and fix s.
Also, let us denote a™(s) as a newly sampled value of a(s)and a?(s) as a value sampled in
the previous iteration of the MCMC. The following paragraph summarizes the rationale
and algorithm of the slice sampling approach.

In both slice samplers, a slice of the distribution is defined, where the density is always
greater than a threshold given by a random fraction (between 0 and 1) of the density
at aP(s). While in the regular sampler a™(s) is sampled independently from a?(s), in
the overrelaxed sampler it is chosen to be on the opposite side of the mode, thereby
avoiding random walks. An implicit assumption in the overrelaxed sampler is that the full
conditional distribution is unimodal. We followed the scheme of Neal (2003) to define the
initial slice, trim its edges and obtain o™(s). The initial slice is set to have a width of 0.05
and is randomly placed in the interval (0, 1), provided that it includes o®(s). A random
variate with standard uniform distribution is drawn and multiplied to the full conditional
of a(s) to obtain the threshold. With an iterative procedure, the limits of the initial
slice are extended or contracted so that the posterior at its edges remains bigger than
the threshold. Once the lower (L) and the upper (U) edges of final slice are defined, the
overrelaxed slice sampler chooses the new candidate according to a”(s) = L+ U — a?(s),
while the regular slice sampler uses o™(s) = L + z(U — L), where z is a random variate
with standard uniform distribution. The candidate is accepted if its posterior exceeds
the threshold. Otherwise, the overrelaxed slice sampler sets a™(s) = aP(s), while the
regular slice sampler redefines the slice using a™(s) as one of the edges and samples a
new candidate. As Neal (2003) points out, for unimodal distributions the candidate is
almost never rejected, as long as the edges of the slice are accurately estimated. In our
application we obtained rejection rates of about 0.1% for the various «a(s) and 0.07% for
the 5(s).

For convergence diagnostics, we use the methods developed by Heidelberger and Welch

(1983); Gelman and Rubin (1992); Geweke (1992); Raftery and Lewis (1992b,a); Brooks
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and Gelman (1998), which are available in the package Bayesian Output Analysis Program
(BOA) (Smith, 2005) within R (R Development Core Team, 2005). We used the default
values of BOA to define the length of the burn-in stage, thin the chain, check stationarity
and define the adequate sample size to achieve the precision required, when sampling

from the posterior distribution.

3.3 Model checking

To perform model checking we plot, for each station, the time-series of the observations
together with the corresponding 95% posterior intervals, given by the model. In this way
we assess if the model closely follows the observations, while providing narrow intervals.
For stations with few missing values, we compare the ordinary least squares mean trend
and standard error estimates with the corresponding values provided by the model, month
by month. We perform this to see if our model is able to separate the long-term trends
from the short-term variability. We perform a third informal analysis to check if A,
successfully captures the short-term variability, or if some temporal structure is left in
the residuals. This consists of randomly choosing 100 iterations from the stationary
part of the Markov chain and, for each iteration and station, compute the temporal
autocorrelations of the model’s residuals. We plot each station’s results and search for
remaining temporal structure.

A more systematic analysis of the residuals is performed following the ideas in Kim
et al. (1998). Let © denote the collection of all parameters. For each site s consider the
random variable X;(s) that corresponds to the temperature at time ¢ and location s. The

one step ahead distribution of the temperature is
wo(z) = P(Xy(s) < 2@, mi(s),i = 1,...,t = 1).

Following Rosenblatt (1952), uy s(X1(s)),---,ur—1,s(X7-1(s)) are independent and uni-
formly distributed provided the underlying distribution is continuous. Gneiting et al.
(2005) denote this transformation as Probability Integral Transform and give an exten-

sive list of references regarding its application.
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of the coastal and inland components.

We notice that, conditional on ©, the one step ahead predictive distribution of the
temperature at any given site is normal. So, from each iteration of the MCMC after con-
vergence, we can obtain a collection of random variables that should be independent and
uniformly distributed. As in Kim et al. (1998) we consider a transformation to normality
given by ®~1(us(s)). We use quantile-quantile plots, correlograms and periodograms to

check that these variables are, respectively, normally distributed and independent.

4 Results

We present results based on 30,000 iterations of the MCMC after a burn-in of 20,000
iterations. BOA convergence diagnostics and parameter trace plots can be examined from
http://www.ams.ucsc.edu/ bruno/. In Figure 4 we present the 95% posterior intervals
that correspond to the parameters a(s) and [3(s) for each one of the 24 stations. These

parameters determine the proportion of each type (i.e. coastal or inland) of seasonality or
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Figure 5: Posterior mean and 95% probability intervals for the coefficients that define the
seasonality (left panel) and the long-term trend (right panel). The symbol o corresponds to 7
and v(; the symbol e corresponds to 7 and ().

seasonal trend that corresponds to a station. Since the stations are ordered with respect
to their distance to the mouth, we expect some association between the z-axis in the
plots and the weights. In fact a(s) generally increases with increasing distance inland.
This is particularly evident for the first seven stations. However, there is a great deal of
variability due to local conditions. The behavior of the weights for the monthly seasonal
trends is more irregular. Tidal stations and stations close to the coast (rank < 14) with
restricted flow due to structures in the channel, like tidal gates, culverts, etc. (muted),
admit an even mixing of the two seasonal trend components. In contrast, most northern
stations display average weights above 0.5. Station 24 is a clear exception.

Figure 5 displays the 95% posterior intervals for the parameters that correspond to
the two types of seasonality and trends. We observe both types of seasonality present a
dip in May. This is consistent with the behavior observed in the data, where a strong
decrease in temperature in May is present for most stations. 7 is typical of inland
stations, with higher temperatures, especially during the summer. For most months, the
main effects of the two types of seasonality have little overlap. The long-term trends

show substantial overlaps during the Fall and Winter months. Of particular interest is
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the fact that the components of v(!) are mostly positive, while those of ¥(?) are mostly
negative. The monthly differences indicate that, where present, the warming trend is not
consistent through the year. In general we observe that the trend is stronger for summer
months than for the rest of the year and that there may be a cooling trend in April.

Recall that the trend for a station indexed as s, corresponding to month m is given by

Bs)ra) + (1= B())7-

By using samples of 5(s), %%) and '77(3) for all months and stations we obtained a detailed
illustration of the yearly dynamics of the trends and their differences from site to site.
This is presented in Figures 6 and 7. We notice variations through the year for all
of the stations. For the majority of the stations there is some evidence of warming,
especially during the summer months. April is peculiar, since for some stations there is
some evidence of cooling trend during that month. The stations for which this effect is
strongest are 2, 7,9, 11, 14, 17 and 24. A strong warming trend is present in December
for almost all stations. In some cases the warming can be as high as high as 5 °C/(16
years) in median, but its value is highly variable.

An example of how the seasonal pattern changes with time is presented in Figure 8.
We observe substantial changes along the year, but the strongest differences are present
during the summer months when the mean of the seasonal component has had an increase
of about 4°C.

Figure 9 shows the estimation of the common baseline for all stations, A;, the baseline
for ETy, 6;, and the parameter that controls the seasonality of ETy, ;. Despite the large
monthly fluctuations, the link between A; and ¢; is clear. This is strengthened by the
fact that a posteriori, the parameter ¢, which regresses \; onto d;, is positive almost with
probability one. Its 95% posterior probability interval is (0.588,1.293); the mean is 0.975.
Another noticeable feature in Figure 9 is that most of the temporal variability in ETy is
explained by the baseline, whilst the seasonality remains nearly identical. This can also
be deducted from Table 1, where the posterior mean of the evolution variance for ¢; is 30
times greater than the evolution variance for x;.

As discussed in Section 2, the dependence among stations has a rather complicated
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Figure 9: Posterior mean for §; (left vertical axis, thick line), x; (left vertical axis, stippled
line) and \; (right vertical axis, thin line), and corresponding 95% intervals (dotted lines), at

different time steps.
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Table 1: Posterior means and 95% intervals for the variance parameters.

2 2 2 2 2
Ts T B TX T,

Upper Endpoint | 0.290 0.0188 3.42 0.00362 0.000114
Mean 0.236 0.0075 2.66 0.00340 0.000100
Lower Endpoint | 0.192 0.0029 2.05 0.00320 0.000089

structure. This is illustrated by the correlations estimated from the posterior mean of V
in the right panel of Figure 10. We notice that Figure 10 shows two distinctive clusters. A
block of gray areas corresponding to Stations 1 through 11 and another one corresponding
to Stations 12 to 24, with the exception of Stations 17, 20 and 23. Stations 14, 15, 16,
18, 19, 21, 22 and 23 share agricultural land use influence, are all fairly distant from the
mouth and are located in the northern part of the slough. We observe that Stations 17, 20,
and 23 have peculiar behavior with respect to its neighbors. They are strongly influenced
by Salinas River discharge which can be relatively high during the rainy season and low
during the dry season. Additionally, Station 20 is a lagoonal system, periodically open to
the ocean but dominated by upstream riverine processes from the Salinas River. Figure 10
demonstrates the relative strengths of the correlations but does not show the differences
in variances between stations. These are presented in the left panel of Figure 10. We
observe substantial differences even between stations that are close together. Posterior
inference for the other variance components in the model are presented in Table 1.

We use the method proposed in Section 3.3 to check the validity of the model. We
found that all of the 24 quantile-quantile plots conformed well to a normal distribution.
The autocorrelation functions display weak residual correlations, the largest value among
all stations being close to .20. The estimated periodograms present irregular patterns

with random fluctuations consistent with white noise.
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Figure 10: Covariance (left) and correlation (right) structure of the error.

5 Conclusions

We have presented a detailed analysis of the spatial and temporal variations of tem-
perature in an estuary in central California, based on observations collected over the
last 16 years. Based on our exploratory analysis, we designed our model based on the
assumption that the within-year dynamics needed to be described as a mixture of two
form-free components. The monthly variation of temperature is clear in Figure 5: only
three months separate the coldest and the warmest months of the year, i.e. December
and April respectively, and periods of strong temperature fluctuations contrast with oth-
ers of relative constancy or steady variation. This behavior can also be captured using
sinusoidal components. But the lack of symmetry would require many terms, involving
nearly as many parameters as the form-free representation. Given the results, we can
broadly identify the two form-free components as describing the coastal and the inland
variation of temperature. The coastal component, when compared to its counterpart,
has smaller annual amplitude and fluctuations. This is likely a reflex of the buffering

action of the ocean, since in this region the annual SST amplitude is smaller than 5°C.
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The maximum and minimum annual slough temperatures are not reflected in either SST
or air temperature, and thus they may reflect regional extremes in the balance between
radiation absorption and emission. Apart from tidal influence, site-specific effects seem to
come into play, since nearby stations can display quite distinct behaviors. As mentioned
in Section 2, this impairs the interpolation of the results to other locations in the estuary.
On the other hand, it highlights the importance of maintaining a network of stations
covering the Elkhorn Slough, for the longest time span possible.

Recent examples of models that consider time varying parameters appear in Shaddick
and Wakefield (2002), Huerta et al. (2004) and Lemos and Sansé (2006). The approach
taken in Lemos and Sansé (2006) considers temperature trends that vary smoothly in
space. The model in Huerta et al. (2004) focuses in the spatial variation of the amplitudes
of the series. Those approaches are not appropriate for the problem considered in this
paper, since the complex hydrology of the slough produces very localized effects. In fact,
we observed locations that are spatially adjacent with different warming trends. Also,
some stations that are very far from the mouth of the estuary exhibit a seasonal pattern
similar to the one observed along the coast, due to intense tidal flushing.

The above conclusion is also reached from the analysis of temperature trends. Here,
the two form-free components place northern and southern inland stations on opposite
poles, while stations close to the mouth have an even mix of the two behaviors. Southern
stations (11, 17, 20 and 23) display a marked cooling in April and warming in December,
which both reduce the annual amplitude over time. This may reflect an increasing tidal
flushing over time, as a consequence of channel erosion (Van Dyke and Wasson, 2005). In
contrast, northern stations reveal strong warming trends for several months, with summer
months and December being the most noteworthy. This warming in the northern part
of the Elkhorn Slough may have important biological implications, namely changes in
species composition and rates of biochemical processes. The cause for this temperature
change is unknown; it may be due to a natural or anthropogenic long-term change in the
hydrology of the slough, or to a combination of both.

The relevance of natural forcing on temperature in the slough is confirmed by our
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model, when it includes ET{ as a regressor (Figure 9). ET, affects all stations’ tem-
perature identically and describes a large fraction of the short-term variability. Thus, it
shows that location-independent phenomena contribute to temperature fluctuations as
well. Another component that may contain some natural variability is the error, since its
covariance structure presents interesting patterns that connect nearby stations. In all, our
approach demonstrates how temperature trends can be determined in a hydrologically

complex estuary.
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A Full conditional distributions

The dots are shorthand for the data and all the remaining parameters. u and o? respec-

tively denote the prior mean and variance of the parameter considered.
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