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Abstract

We extend the numerical algorithm developed by Wang et al. (2003. J. Theor. Biol. 221, 491-511) for studying biomolecular
transport processes to include the linkage that connects molecular motors to their cargo. The new algorithm is used to investigate
how the stiffness of the linkage affects the average velocity, effective diffusion coefficient, and randomness parameter. Three
different models for molecular motors are considered: (1) a discrete stepping motor (2) a motor moving in a tilted-periodic potential
and (3) a motor driven by a flashing potential. We demonstrate that a flexible motor—cargo linkage can make inferences on motor
behavior based on measurements of the cargo’s position difficult. We also show that even for the case of a tilted-periodic potential
there exists an optimal stiffness of the linkage at which transport is maximized. The MATLAB code used in this paper is available at:

http://www.unc.edu/~telston/code/.
© 2005 Published by Elsevier Ltd.
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1. Introduction

The development of single-molecule techniques for
measuring the biophysical properties of molecular
motors has motivated the use of mathematical models
to elucidate the mechanisms used by these proteins for
force generation. Processive motors, such as kinesin,
myosin, and dynein, are used for transporting vesicles
within cells and for force generation during processes
such as mitosis. In general, processive molecular motors
consist of two head domains and move along micro-
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tubule or actin polymers. The heads interact with
specific binding sites along the polymer track and are
connected through a-helical coiled-coil stalk that ex-
tends from the neck region of each head. The stalk ends
in a tail domain that is used to connect the motor to its
cargo or to adjacent polymers.

There are three basic categories of models that are
used to describe molecular motors. (See Julicher et al.
(1997), Bustamante et al. (2001), Reimann (2002),
Howard (1994) for reviews of molecular motors.)
Spatially discrete models use continuous time Markov
chains to describe the motion of the motor protein. The
mathematical states of these models represent the
different chemical states of the hydrolysis cycle used to
drive the physical motion and the positions of the
discrete binding sites along the polymer. While this
approach can account for all the chemical steps in the
reaction cycle, it does not model the physical motion of
the free head as it moves between binding sites.
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Therefore, the approximation that underlies these
models is that the continuous motion of the free head
occurs instantaneously. Continuous models assume that
the motor moves in a continuous free energy potential
and is subject to thermal diffusion. These models more
accurately represent the physical motion of the motor;
however, they are only valid when the time-scale of the
chemical kinetics is short as compared with the physical
motion of the motor. The advantage of using fully
discrete or continuous models is that they are analyti-
cally tractable and often provide qualitative insights into
motor function. The third category of models treat
changes in the chemical state of the motor as discrete
events while maintaining the continuous motion of the
heads. These models provide the most accurate descrip-
tion of the mechanochemistry that underlies energy
transduction in molecular motors. Until recently most
of the models of molecular motor function did not take
into account the biophysical properties of the stalk
region that connects the motor to its cargo. However, it
is becoming increasingly clear that this linkage can have
important consequences on the performance of the
motor (Elston and Peskin, 2000; Elston et al., 2000;
Xing et al., 2005; Chen and Yan, 2001; Chen et al.,
2002).

Because of the small size of molecular motors,
experiments are often performed by attaching a large
bead to a single molecular motor and observing the
motion of the bead. This experimental arrangement has
the added advantage of allowing forces to be applied to
the motor through the use of a laser trap. (See Visscher
et al. (1999), Schnitzer et al. (1999), Block (1996), Maier
et al. (2004), Hunt et al. (1994) for examples of
experimental methods.) In this type of experimental
arrangement, the underlying assumption is that the
motion of the bead is representative of the motor’s
motion. While certainly true at a high level, if the tether
between cargo and motor is not rigid but elastic, then
the motor’s motion is obscured, and inferences about
the motor based on the beads behavior need to be made
carefully. For example, Chen et al. (2002) demonstrated
using a two-state discrete model with no reversible steps
that the randomness parameter, which under appro-
priate assumptions is the reciprocal of the number of
rate-limiting chemical steps, can deviate significantly
from the expected value of % when the motor—cargo
linkage is elastic. Therefore, the empirically approxi-
mated randomness parameter cannot be trusted to
infer the number of rate-limiting chemical steps
per physical motor step. Another reason for considering
the motor—argo linkage is that the average velocity
of the system depends on the properties of this
connection. In fact, whether a flexible or stiff linkage
produces more effective transport depends on the
mechanism of force generation (Elston and Peskin,
2000; Elston et al., 2000).

Since rigorous analysis is complicated and generally
restricted to asymptotic cases (e.g. the limits of infinitely
stiff and weak springs) (Elston and Peskin, 2000; Elston
et al., 2000), we suggest an extension of the numerical
method proposed by Wang et al. (2003) (WPE) to
include the cargo. In this method, the continuous spatial
motion of the motor is described by an appropriate
discrete approximation. The transition rates for the
spatial motion are chosen so that the approximate
discrete model converges to the continuous case in the
limit that the grid size goes to zero. Additionally, the
transition rates are chosen to preserve detailed balance
for systems at equilibrium, a crucial feature required for
accurately approximating asymptotic quantities. The
numerical method is used to compute both the average
velocity and effective diffusion coefficients. These
asymptotic quantities can then be used to compute the
randomness parameter. While Monte Carlo simulations
could also be used to compute these quantities, our
method has the advantage that no stochastic simulations
are required. Therefore the error associated with finite
sampling, which often dwarfs other sources of error
such as discretization, is not an issue. In addition, we are
interested in asymptotic quantities, and this method
allows us to calculate these quantities without using a
discretization in time. The numerical scheme presented
here is well-suited for investigating intermediate spring
constants that are not amenable to theoretical analysis.
The models of molecular motors considered here have a
spatially periodic structure that allows the motor’s
motion to be decomposed into transitions within a
period and transitions between periods. The cargo does
not have a periodic structure. However, the tether
connecting the cargo to the motor keeps the cargo
“near” the motor and thus requires us to calculate the
distribution of the cargo only on a limited grid.

2. Model description and mathematical framework

Fig. 1 is a schematic diagram of a motor pulling a
cargo. The state variables that describe this system are
the position of the motor along the microtubule, x, the
position of the cargo projected onto the microtubule, y,
and the chemical state of the motor, i. In reality, the
cargo is free to move in three dimensions. However, the
dynamics of the motor are primarily along the direction
of the microtubule, and we do not expect the qualitative
behavior of this simplified system to deviate significantly
from the true system (Elston and Peskin, 2000).

The equations of motion for this system are the
following set of coupled Langevin equations:
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Fig. 1. A motor pulling cargo. The position of the motor along the
track is given by x and the position of the cargo is y.
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where @(x, y,i) is the potential energy of the system in
chemical state 7, {; and {, are the friction coefficients of
the motor and cargo, respectively, kT is the Boltzmann
coefficient times the absolute temperature, and f,(¢) and
f5(¢) are two independent Gaussian white-noise pro-
cesses. The chemical state i is a random process whose
behavior is described by a discrete space Markov chain.
We restrict ourselves to a linear spring thus @ has the
form ®(x,y,i) = (/2)(y — x)* + ¢, (x, i), where ¢,.(x,1)
is the potential for the interaction between the motor
and the track. The numerical algorithm presented here
can handle more complicated potentials for the linkage
including nonlinear and piecewise continuous, but the
computational cost for these may be higher than for a
quadratic potential.

The WPE method (Wang et al., 2003) only considered
the motor (i.e. Eq. (1) with @ replaced by ¢,.). Ignoring
the chemical state of the motor, this leads to the
following Fokker—Planck equation for the temporal and
spatial evolution of the probability density

dp(x,0) _ 8 (1 3¢, Kl
al _Dax (kBT ax p(xa t)+axp(x’ t) ’ (3)

where D = kpT/( is the diffusion coefficient. The force
from the motor/track interaction, —0¢,,/0x, is assumed
to be spatially periodic. Therefore, ¢,, is a tilted periodic
potential. The WPE method depends on spatially
discretizing the continuous process described by Eq.

(3). In which case the Fokker—Planck equation may be
approximated by the master equation for an approx-
imating discrete process as follows (see appendix for
details):

d . . . .
where

p(i’ Z‘) = (pl(]" t)aPZ(ia t)a- . '9PN(i’ t))T (5)

and p,(j, t) is the probability that the motor is at position
j€+ (n— 1)¢/N at time ¢. That is, j denotes the period of
the potential and 7 the position of the motor within the
jth period which is divided into N grid points. The
matrices L, L., and L_ contain the transitions within a
period, the transitions to the following period, and the
transitions to the previous period. Let F, be the
transition rate from site n forward to site n + 1 and B,
the transition rate from site n backward to site n — 1.
The WPE method uses local solutions of Eq. (3) to
calculate F,, and B, as

B = D . (_Ad)n—l/kBT)
"7 (Ax)? exp(=A¢,_/ksT) — 1"

(6)

— D . (Ad)n/kBT)
"7 (Ax) exp(Ad, /kgT) — 1

where A¢, = ¢, (xp11) — ¢, (x,). Matrices L, L, and
L_ are sparse and consist of transition rates described
above (see the appendix for details).

In this paper, we focus on computing three quantities
that can be measured using single molecule techniques
(Visscher et al., 1999; Schnitzer et al., 1999; Block,
1996): the average velocity, Vel, the effective diffusion
coefficient, D,zr, and the randomness parameter, R.
These three quantities are defined in the following way:
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where ¢ is the length of the period of the potential, which
corresponds to the step size of the motor. Because these
quantities can be measured experimentally, any pro-
posed model for energy transduction must faithfully
capture their behavior under different experimental
conditions. One advantage of the numerical method
described above is that it provides a straightforward
method for calculating the average velocity and effective
diffusion equation without using Monte Carlo simula-
tions. This is accomplished by using the following
formulae derived by Wang et al. (2003) (see appendix for
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more complete discussion):

Vel = ¢ EN; [(L+ — Lo)p'],s (11)
€2 N
Dy = 5; [(Ly + Lo)p* +2(Ly — L), (12)
where p* and r are determined by
Mp'=(L+L,+L)p’ =0, (13)
N
Mr = <Zl [(Ly — Lo)p’], — (Ly — L)) ¥ (14)

subject to the constraints

g =1 (15)
N
> =0 (16)

It is important to point out that p* and r are steady-state
solutions. The calculation of average velocity and
effective diffusion does not involve solving a time-
dependent evolution. Note that because we have
approximated the continuous processes as a Markov
chain, it is also possible to use the analytic expressions
derived by Kolomeisky and Fisher (2001, 2000a, b) to
compute the average velocity and effective diffusion
coefficient. However, the analytic expressions tend to
become unwieldy quickly as the complexity of the
system increases. Therefore it is simpler to solve Egs.
(11)—(16) numerically.

A common assumption is that the randomness
parameter R is the reciprocal of the number of rate-
limiting chemical steps that must occur for the motor to
move forward one physical step. This is indeed true for
the situation of a Markov jump process without
reversible steps. For motors with an elastic linkage to
a cargo, the randomness parameter is no longer a good
indicator of how many internal substeps in one motor
step (Chen and Yan, 2001). Additionally, this inter-
pretation does not hold for reasonable alternative
models, such as continuous space models (Wang et al.,
2003). Nevertheless, the randomness parameter is
related to the effective diffusion coefficient and is a
constraint, in addition to the average velocity, on
theoretical models. In comparing theoretical models
with experimental results, it is important to compute the
randomness parameter of the theoretical models accu-
rately. Hence, it is important to have a reliable method
for computing the randomness parameter that can be
applied to all the different types of models.

As we show below, an important feature for general-
izing the WPE method to the motor—cargo system is to

consider the position of the cargo in terms of the
distance from the last period crossed by the motor
instead of its absolute position. When the motor moves
into another period, the transition rates for the cargo are
adjusted by the distance of one period. Thus, we are
only required to track the position of the cargo on a
finite grid covering a reasonable distance from the
motor so that the probability of the cargo being outside
this region is negligible. This description of the cargo
position is critical for computing the effective diffusion
coefficient. The details of the generalized algorithm are
presented in the first example and in the appendix.

3. Examples
3.1. Two-state model

Chen et al. (2002) studied a simple model of a
motor—argo system in which the motor takes two
substeps per period of the track. The substeps corre-
spond to different chemical states of the motor. While
this model does not fall into the formulation presented
above for discretizing a continuous spatial model, it is a
good example for demonstrating the numerical method.
The motor is restricted to positions given by
Xnj = €(j + (n—1)/2), where ¢ is the period length of
the track (step size), j denotes the current period for the
motor and 7 can either be 1 or 2 (see Fig. 2). Let FM(n)
and BM (n) be the forward and backward transition rates
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Fig. 2. Spatial discretization of the 2-D model for elastically coupled
motor and cargo. (a) The left panel shows the discretization in x
(coordinate of motor) and y (coordinate of cargo). Solid circles
represent grid points used in computation. Hollow circles represent
grid points not used in computation. Solid arrows represent the regular
jumps that are derived from the differential equation. Dashed arrows
represent ad hoc jumps that are added to better preserve the flow of
probability when the computational domain of y is moderate. (b) The
right panel shows the discretization in x and z where z is the distance
between the cargo and the left edge of the period of x. We can see that
as x jumps forward (backward) to the next period the computational
domain of z stays the same and everything is period in x.
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for the motor in the absence of the cargo. Note that
FM(n) and BM(n) are independent of j and periodic in n
(.e. FM(n)=F"(n+2) and BM(n) = B¥(n +2)). Let
the continuous variable y(f) denote the position of the
cargo at time 7. To model the effects of the cargo, Chen
et al. modified FM(n) and BM(n) in the following way:

FM(n) N FM(j, n,y) = FM(n)e(_CF(”)(A‘DHU;”J’))/]‘BT)’ (17)

BM(n) — BM(j,n,y) = BM (n)e!CrAPGn=1)/ksT)

(18)
In the above -equations the potential energy
®(j,m,p) = (/2)(Xpr1.; — »)* + Fp, where x is the
spring constant of the motor—cargo linkage, F is an
experimentally applied load force, and A9®, =
d(j,n+ 1,y) — &(j,n,y). Following Chen et al. (2002),
Cr(n) is the fraction of the force from the linkage that
affects forward movement when the motor moves from
state n to n+ 1, and Cp(n) is the fraction of the force
from the linkage that affects backward movement when
the motor moves from state n to n — 1. Note that we
have dropped the explicit time dependence of y and the
conventions x3 ; = X, ;41 and Xo ; = xp j_; are being
used.

To use the numerical method presented above
requires that the cargo’s position be approximated as a
discrete space random process. Let y,, = mAy, where m
can take on any integer value. The forward and
backward transition rates for the cargo BC(j,n, m) and
FC(j,n,m) are determined from Egs. (6) and (7),
respectively, using A®,, = &(j,n,m+ 1) — &(j,n,m).
We can see that for this problem the L matrix of Eq.
(4) is invariant to translations by a distance ¢. That is, in
terms of the physical positions of the motor and cargo
the following identity holds: L(x + ¢,y + ¢) = L(x, »).
(The L matrices also possess this symmetry.) However,
to use Egs. (11)~(16) for the average velocity and
effective diffusion coefficient requires that the L
matrices are invariant under the following operation
L(x 4+ ¢,z) = L(x,z). That is, the matrices need to be
invariant under translations of the motor alone. To
achieve this symmetry, we introduced the variable z
defined as the distance from the cargo to the left edge of
the period that contains the motor. That is,
zm = mAy — ¢j. For illustrative purposes, Fig. 2a shows
the spatial discretization of the 2-D model for elastically
coupled motor and cargo in x (motor coordinate) and y
(cargo coordinate). For each period of x, the computa-
tional domain of y is finite. Solid circles represent grid
points used in computation. Hollow circles represent
grid points not used in computation. The computational
domain of y does not change within a period of x. It is
shifted up (down) when x goes forward (backward) to
the next period. As discussed above, for clarity this
example uses only two numerical grid points in one
period [0, ¢) in the x-direction. In the y-direction, we use

three grid points in a length of size ¢, and we use a
computational domain of size 3¢ for y. In actual
computations of the 2-D model, the computational
domain of y is determined by the value of the spring
constant x. For a soft spring (small value of «), a large
computational domain is needed to ensure the numerical
accuracy. In Fig. 2a, solid arrows represent the regular
jumps in the x or the y that are derived from the 2-D
diffusion equation. Dashed arrows represent the bound-
ary conditions for y. These are ad hoc jumps that are
added to preserve the flow of probability and improve
the computational accuracy when the computational
domain of y is moderate. (See appendix for further
details.) When the spring is stretched to a point where y
would be beyond the computational domain, these
jumps cause the cargo coordinate to remain at the
boundary. When the computational domain of y is
large, the probability of being near the ends of domain is
small. Thus, the effect of these ad hoc jumps is
insignificant when the computational domain is large
enough. Fig. 2b shows the discretization in x and z
coordinates, where z is the distance between the cargo
and the left edge of the period of x. Mathematically,

!

where function |o] represents the largest integer that is
less than or equal to o. It is clear that as x jumps forward
(backward) to the next period the computational
domain of z stays the same and everything is periodic
in x. In the appendix, we give the explicit forms of the L
matrices needed to implement the numerical scheme.

0.06
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Fig. 3. Joint distributions for the motor and cargo. The curves on the
left correspond to a spring constant of 8§ pN/nm. The lower dashed
curve is the function p(z — x1|x)p(x1). That is, the joint density for the
motor to be at position x; and the distance position of the cargo with
respect to the motor to be z— x;. The upper curve is the function
p(z — x2|x2)p(x2). The curves on the right are the same except with a
spring constant of 40 pN/nm. All four curves were calculated with
D =300nm?/s =3 x 1072 cm? /s, [ATP] = 2000 uM, and F = 0 pN.



6 J. Fricks et al. | Journal of Theoretical Biology 1 (11l1) 1ii-1H1

This example allows us to see in a simple framework
some interesting aspects of the numerical method. Fig. 3
shows the stationary conditional distributions for the
distance from the motor to the cargo y — x and the
motor position x. Each distribution is weighted by the
probability for the motors position. That is, the curves
represent p(z — x;, x;) = p(z — x;|x;)p(x;). Results for
two different spring constants are presented. As
expected, the distributions appear nearly Gaussian with
the weaker spring producing greater variances. This type
of plot gives a good diagnostic tool for determining the
size and position of the grid required to accurately
capture the distribution of the variable z. Additionally,
we can sum over z to obtain the stationary distribution
for the position of the motor. In this example, this
would simply correspond to the probabilities for the
motor to be at x; or x,. Alternatively, we may sum over
the probability of being in state x; and x, to obtain an
unconditioned stationary distributions for z. (The
distance from the cargo to the last period crossed by
the motor.) We see such distributions in Fig. 4 which
show the distribution of z for both a low and high spring
constant.

The z variable can be used to provide information
about the step distribution that would be measured from
experiments in which a bead is attached to a motor
protein (Block, 1996). Fig. 4 shows the distribution of z
for two different spring constants. We can see that for a
low spring constant the difference between steps is
“washed out”, and the distribution resembles a single
Gaussian. A large spring constant more clearly displays
a bimodal distribution confirming the fact that there are
two substeps within each period. With a flexible linkage
it would be very difficult to resolve substeps using a
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Fig. 4. Marginal distributions of z = y — €| x/€]. The curve on the left
corresponds to a spring constant of 8 pN/nm. The curve on the right is
the same except with a spring constant of 56 pN/nm. Both curves were
calculated with D = 300nm?/s = 3 x 10™'>cm?/s, [ATP] = 2000 uM,
and F = 0pN.

binning method. With a stiffer linkage it may be possible
to identify substeps, although in practice this may still
be difficult. Also note that the method presented here
does not take into account the sampling rate. Therefore,
while the method can give some indication of whether it
is plausible to differentiate substeps, the effect of the
stepping rate would need to be explored with a method
which explicitly accounts for the dynamics of the motor,
such as Monte Carlo simulations.

Fig. 5 shows the convergence of the effective diffusion
coefficient as the grid size is reduced for varying spring
constants. Fig. 6 is a log-log plot of the relative error in
the effective diffusion coefficient as a function of the
grid size. From this plot we see that the algorithm is
second-order accurate in the grid size (Atkinson, 1989).

In the calculations that follow, we reproduce the
results of Chen et al. (2002). For the dependence of the
randomness parameter on the spring constant. In the
absence of the cargo, the forward and backward rates
for the motor are FM(1)=3.75[ATP], FM(2) = 141.1,
BM(1) = 0.034, and BM(2) = 0.0047, where [ATP] de-
notes the ATP concentration. The constants in the
exponentials of Egs. (17) and (18) are Cp(1) = 0.25,
Cp(1) = 0.435, Cr(2) =0.065, and Cp(2) = 0.25; these
values are based on physical assumptions on how the
force per step is distributed over the two substeps (Chen
et al., 2002). The free parameters are then the spring
constant x, the diffusion coefficient of the cargo D, the
ATP concentration [ATP], and the applied force F.
Figs. 7 and 8 show results for the randomness parameter
as a function of the spring constant. The two figures
correspond to different values for the cargo’s diffusion
coefficient. These curves show good agreement with the
results presented in Figs. 5c and d of Chen et al. (2002).

Effective Diffusion vs Elasticity

260

250f

240f

2301

2201

2
Deﬁ(nm /s)

210}
200} /\
190} ‘/\
180

0 10 20 30 40
K (pN/nm)

Fig. 5. Numerical convergence for the effective diffusion coefficient. In
this figure [ATP]=20pM, F=0pN, and D =300nm?/s=
3x 10712 cm?/s. The curves from top to bottom correspond to
AY =4,2,1,5, 5 Lam.
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the L' norm and D,(x) is the effective diffusion across values of « (see
Fig. 5) with AY = 237" A linear fit of the points has a slope of —1.98
showing second-order convergence.

0.8

0.6}

Randomness

0.4
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K (pN/nm)

Fig. 7. Randomness parameter versus spring constant. This figure
corresponds to Fig. 5c of Chen et al. (2002). The diffusion coefficient
of the cargo equals 300,000nm? /s = 3 x 10~ cm?/s. The dashdot line
corresponds [ATP] =20uM and F = 0pN, the dotted line corre-
sponds to [ATP] = 2000 uM and F = 0pN, the solid line corresponds
to [ATP] =20 uM and F = 3.59 pN and the dashed line corresponds to
[ATP] =200 uM and F = 3.59 pN.

To obtain their results, Chen et al. developed a Monte
Carlo method for simulating sample paths of the process
and then averaged over many realizations. Therefore,
the dominant source of error in their calculations is due
to finite sampling in time. Unless very large sample sizes
are used, which requires large amounts of computer
time, these errors are significantly larger than the
numerical errors that occur from finite grid effects.
With our method we are able to resolve subtle trends
that would not be easily observable using Monte Carlo

o
©
.

Randomness
=
[*2)

o4t - - :

0.2 1 1 1
0 10 20 30 40

Fig. 8. Randomness parameter versus spring constant. This figure
corresponds to Fig. 5d of Chen et al. (2002). This figure is the same as
Fig. 7 except that the diffusion coefficient of the cargo equals
300nm?/s = 3 x 10712 cm?/s.
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Fig. 9. Effective diffusion coefficient versus spring constant. The
parameter values used to compute the curve shown in this figure are
the same as in Fig. 8.

methods. For example, the effective diffusion coefficient
is seen to go through a local maximum in Fig. 9.
Resolving this behavior using sample paths would be
very computationally expensive.

A common interpretation of the randomness para-
meter is that it is the reciprocal of the number of rate-
limiting chemical steps in the hydrolysis cycle that drives
the motion of the motor. This interpretation is strictly
correct in the absence of any cargo and when the
chemical steps are irreversible. As pointed out by Chen
et al. the randomness parameter can change significantly
depending on the elastic properties of the tether
connecting the motor and cargo. This is demonstrated
in Fig. 8. This graph corresponds to a case in which the
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diffusion coefficient of the cargo is considerably smaller
than that of the motor (i.e. a large cargo). In each of the
examples shown in this figure, the motor makes two
chemical steps per physical step, and the forward rate
constants are much larger than the backward ones.
However, we can see that the randomness parameter can
vary significantly from the value of % expected for a
system lacking cargo.

3.2. Tilted-periodic potential

Another class of models used to study molecular
motors are those in which the motor moves in a titled-
periodic potential. That is, the potential has the
following property: ¢,.(x + ¢) = ¢,(x) — F{, where the
period length is ¢ and the average force per period is F.
If F =0 then the potential is periodic, and the motor
does not experience a net velocity. In this example, we
assume that the potential has the form of a tilted sine
potential. The specific form of the potential for the
motor—cargo system is

¢(x,y)=Asin<27nx> —F-x+g(y—x)2, (19)

where A is the amplitude of the periodic part of the
potential and k is again the spring constant of the
motor—cargo linkage. As discussed above, to implement
the algorithm we must change variables from the
position of the cargo, y, to the distance from the cargo
to the left edge of the period that contains the motor, z.
Before presenting the numerical results, it is informa-
tive to consider the behavior of the system in various
limits. Consider the limit in which k¥ — oo. In this case,
the motor and cargo move as one object with a diffusion
coefficient given by (Elston and Peskin, 2000),

b _ DD
Stl'ff_Dx_I_Dy'

The opposite limit in which ¥ — 0 is a little more
delicate. In this weak spring limit, the force felt by the
motor as a result of the cargo is essentially constant
(Elston and Peskin, 2000). Likewise, the cargo feels a
constant force from the motor that is equal in
magnitude but opposite in direction. This force balance
along with the fact that the average velocity of the
motor and cargo must be identical leads to a graphical
method for determining the average velocity of the
motor—cargo system in the weak spring limit (Elston and
Peskin, 2000; Elston et al., 2000). This method is
illustrated in Fig. 10. The figure shows a plot of the
velocity of the motor as a function of a load force
—Fjpqd- Also shown is the average velocity of the cargo
subject to a positive force F,, s (i.e., the cargo velocity
is Fj,,q4/¢2). The point at which the curves cross
denotes the average velocity of the motor—cargo system.
Let —F denote the force at which the two curves cross.

(20)
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Fig. 10. Velocity versus load force. A positive force is applied to the
cargo (increasing line) and a negative force is applied to the motor
(decreasing curve). The point where the curves cross corresponds to the
velocity of the motor-cargo system in the weak spring limit. The
parameters for these curves are A =8kgT, D, = 9000 nmz/s,
D, =900nm?/s, and F = 30pN.

Using similar reasoning, the following formula for the
effective diffusion coefficient can be derived (manuscript
in preparation):

(D, kg T)ZDeff(F — F)+ (V(F - F))’D,

D / 7\\2
((Dy/kpT)+ V'(F — F))

>

weak —

21

where both D, (F — F) and V(F — F) can be calcu-
lated efficiently and accurately in 1-D simulations using
the WPE method (Wang et al., 2003). Likewise, V'(F —
F) is the derivative of the average velocity with respect
to F under the same conditions. If in addition to the
weak spring limit, we also consider the case in which
D,/D, — 0 (i.e., the motor diffusives very fast as
compared to the cargo), then it is possible to show that
the asymptotic velocity for the cargo is F/{, (Elston and
Peskin, 2000). This represents an upper bound for the
velocity of the motor—cargo system.

With these limiting behaviors in mind, we now use our
numerical method to compute the average velocity and
effective diffusion coefficient for different values of the
spring constant k. Fig. 11 is a plot of the average
velocity versus k for two different values of the motor
diffusion coefficient D,. In this figure 4 = 8kpT, £ =
8nm and F = 30pN. The lower curve corresponds to a
case in which the diffusion coefficient of the motor is 10
times larger than the diffusion coefficient of the cargo.
The dashed horizontal lines represent the weak and stiff
spring limits discussed above. There are two surprising
features of this curve. First, the average velocity in the
stiff spring limit is greater than that of the weak spring
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Fig. 11. Average velocity versus spring. The parameters for the lower
curve are A =8kpT, D,=9000nm?/s, D, =900nm?/s, and
F = 30pN. The parameters for the upper curve are the same except
for D, =90,000nm?/s. The dashed lines correspond to the weak
spring and tight spring limits.

limit, and second, the velocity goes through a maximum
at a finite value of x. This is in contrast to the results
found by Elston and Peskin (2000) in which case the
velocity was a monotonically decreasing value of the
spring constant. The resolution to this apparent contra-
diction is that the average velocity computed by Elston
and Peskin is an asymptotic result valid in the limit
D, /D, — 0. The upper curve in Fig. 11 corresponds to a
case in which the diffusion coefficient of the motor is a
hundred times greater than that of the cargo. As can be
seen, the weak and stiff spring limits are now almost the
same. If the diffusion coefficient of the cargo is further
increased, the weak spring limit exceeds the stiff spring
limit, and the curve becomes monotonically decreasing
(data not shown). In this limit the weak spring
asymptotic velocity is given by F/{, = 6.429nm/s,
whereas the stiff spring asymptotic velocity is
3.466nm/s. The slow convergence of the weak spring
limit to the asymptotic limit of F/{, is due to the large
amplitude A =8kgT of the potential. With this
amplitude a very large motor diffusion coefficient is
required to ensure that motor comes to a quasi-
equilibrium with respect to the cargo. In contrast Elston
and Peskin (2000) considered an imperfect ratchet and
found that the asymptotic velocity was reached when
D,/D, =0.01. An important difference between the
models is that in the tilted sine model, the motor must
overcome a barrier to move to the next state, whereas in
the ratchet model the barriers only prevent the motor
from moving back to the previous state. Thus, the motor
comes to quasi-equilibrium more rapidly in the ratchet
model.

Fig. 12 shows the effective diffusion coefficient as a
function of k. Again, the horizontal dashed lines

25001 1

2
Deh‘ (nm*/s)

1500 1

1000 ]

-1 -0.5 0 0.5 1 15 2
Loglo[K (PN/nm)]

Fig. 12. Effective diffusion coefficient versus spring constant. The
parameters for this curve are the same as in Fig. 11 with
D, =9000nm?/s. Again the dashed lines correspond to the weak
and tight spring limits.

15
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Fig. 13. Randomness versus force: (a) In this figure x = 6 pN/nm.
From left to right, the curves correspond to amplitudes of 2k T, 4kpT,
6kpT, and 8k T. The dashed curve corresponds to the stiff spring limit
with an amplitude of 8k5T’; (b) Same as in (a) except k = 10 pN/nm.

represent the weak and stiff spring limits. The weak
spring limit was calculated from Eq. (21) and in the stiff
spring limit D,q is found by using the diffusion
coefficient given in Eq. (20) in a system consisting
of the motor alone moving in the tilted-sine potential.
Note that for both the average velocity and the effective
diffusion coefficient, there is considerable deviation
from the asymptotic results and the numerical solutions
in the large x limit. This is due to numerical error that
occurs as the transition rates become large. However, in
the range of biologically realistic spring constants
0.5-25 pN/nm the algorithm works well.



10 J. Fricks et al. | Journal of Theoretical Biology 1 (11l1) 1ii-111

0.14

0.12} AN
0.1} ! \

0.08f ! '

p(x)

0.06f

0.04f

0.02f

Fig. 14. Marginal stationary distribution for the position of the motor
within a period. The dotted line corresponds to the motor with a
moderately loose spring, x = 1 pN/nm. The solid line corresponds to
the tight spring limit. The parameters used in both curves are 4 =
4kgT and F = 20pN.

Figs. 13a and b are plots of the randomness parameter
as a function of F for various amplitudes 4. In Fig. 13b,
the spring constant k = 10 pN/nm. In this case at large
amplitudes, the randomness parameter remains near one
for a wide range of forces and closely resembles the
results of Wang et al. (2003) for a motor without a
cargo. Therefore, the motor—cargo system is effectively
behaving like a single particle, and in the region where
the randomness parameter is near one, the system can be
well approximated by a Poisson process. In contrast, in
Fig. 13a, the spring constant has been reduced to 6 pN
and the region over which the process looks Poisson is
decreased. This result again highlights potential pro-
blems that can occur when making inferences about the
motor’s behavior from the motion of the cargo.

We have so far focused on asymptotic velocity and
effective diffusion. However, our method can also be use
to calculate the steady-state distributions for the motor
and cargo. Fig. 14 shows the marginal probability
distribution of the position of the motor. The solid curve
represents the stiff spring limit. The dashed curve
corresponds to a spring constant of 1 pN/nm. We can
see that there is a considerable difference between the
two distributions and that the distribution becomes
sharper with a weaker spring.

3.3. Flashing ratchet

In general, the interaction between the motor and the
polymer track along which it moves depends on the
chemical state of the motor. Likewise, the reaction rates
for the ATP hydrolysis cycle that drives the motion of
the motor depend on the position and orientation of the

motor on the track. This coupling of biochemical
reactions with physical forces is referred to as mechan-
ochemistry. Flashing ratchet models (also called corre-
lation ratchets) provide a general mathematical
framework for describing mechanochemistry and have
been used to model many different types of molecular
motors. In its simplest form, the flashing ratchet
represents a Brownian particle whose dynamics is
governed by a potential that can exist in two states.
The transitions between the two configurations of the
potential represent changes in the chemical state of the
motor and therefore occur at random. For this simple
model the Langevin equations for the motor and cargo
are

Q%:_@%ﬂﬁ+/ZEﬁ&¢ (22)
X

Ox i
) % =— %}’}y’l) +\/20kpTS (1), (23)

where i=0,1 is a binary random variable that
determines the state of the potential. A common choice
for one state of the motor/track interaction is the
sawtooth potential (Rousselet et al., 1994; Astumian,
1997; Peskin et al., 1994). In this state the potential for
the motor—cargo system is given by

A
(x,p, 1) = = x4+ (= x? for x<pe, (24)
pl 2
_4
Py )= — o (x—t
()= = (=D
~|—g(y—x)2 for x> p¢, (25)

where 4 is the amplitude of the sawtooth potential and p
is a measure of the spatial asymmetry (p = % for a
symmetric potential). In the second state, we assume
that the motor is free to diffuse along the track. That is,
the full potential is given by

(5,300 =5 (v = 9. (26)

The waiting time between transitions in the potential is
assumed to be exponentially distributed and for
simplicity independent of the motors position. To
compute the average velocity and effective diffusion
coefficient for this model requires a slight generalization
of the method outlined above. The basic idea is to
construct the matrices L, L, and L_ associated with
each of the two potentials and also the matrices
corresponding to transitions between the two states,
then piece these matrices together to form large “L”
matrices for the full system.

Results for the average velocity and effective diffusion
coefficient are shown in Fig. 15. In these plots the
flashing rate increases from the top panel to the bottom
panel. Again the dashed horizontal lines represent the
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Fig. 15. Average velocity and effective diffusion coefficients versus
spring constant. In each example, 4 = 37.5k3T, D, = 9000 nmz/s, and
D, =900nm?/s. The flashing rate is increasing from top to bottom.
The top two figures correspond to a flashing rate of 10(D}./[2). The
center two figures correspond to a flashing rate of 100(D,,/ £%). Finally
the bottom figures have a flashing rate of lOOO(Dy/€2)A

weak and stiff spring limits. The weak spring limit for
the average velocity was computed in the same way as
described above for the tilted-periodic potential. The
stiff spring limits are computed using the motor alone
with the diffusion coefficient given in Eq. (20). We have
not attempted to calculate the weak spring limit of the
effective diffusion coefficient. We can see that at the
slowest flashing rate the average velocity starts at low
and then reaches a slight maximum before leveling off at
the stiff spring limit (top left panel). Again, the
discrepancy between the asymptotic stiff spring limit
and the numerical result is due to numerical error that
arises when large spring constants are used in the
transition rates. At intermediate flashing rates (middle
left panel), the velocity is almost identical in the weak
and stiff spring limits and goes through a pronounced
maximum at intermediate values of the spring constant.
In the limit of very fast flashing rates, the velocity is a
monotonically decreasing function of the spring con-
stant. These figures agree qualitatively with the results of
Elston et al. (2000) obtained from Monte Carlo
simulations. In that study, the authors also considered
a two-state flashing ratchet. However, they used a
smooth potential rather than the sawtooth potential
used here. Results for the effective diffusion coefficient
are shown in the right column. These results would be
very difficult to obtain from Monte Carlo simulations,
because this would require estimating the variance of the
position at long times. In all three cases, the effective
diffusion coefficient is larger in the weak spring limit
than the stiff spring limit, and at moderate and fast

switching rates it goes through a maximum value at
intermediate values of the spring constant.

4. Discussion

We have expanded the numerical algorithm of Wang
et al. (2003) for studying molecular motors to include
the effect of the cargo. The important step in this
generalization is to describe the system not in terms of
the motor and cargo positions, but in terms of the motor
position and the distance of the cargo to the left edge of
the period of the track in which the motor is located. In
addition to producing the steady-state probability
distribution for the motor—cargo system, the algorithm
can be used to directly calculate the randomness
parameter, the effective diffusion coefficient, and the
asymptotic velocity. Our method eliminates the need to
average over multiple Monte Carlo simulations, which
can be computationally expensive and inaccurate.

Several simple examples were used to show the
important role that the cargo plays in determining the
asymptotic properties of the motor. In the two-state
stepping model, we verified the results of Chen et al.
(2002) that illustrate that the randomness parameter of
the motor—cargo system can strongly differ from the one
predicted from the motor alone. Thus, inferences made
about motor behavior based on measurements of the
cargo should be done with care. For the example in
which the motor moves in a tilted-sine potential, we
discovered the surprising result that the average velocity
depends non-monotonically on the stiffness of the
motor—cargo linkage. We also found that depending
on the ratio of the diffusion coefficients of the motor
and cargo, the average velocity can be slower in the
weak spring limit than in the stiff spring limit. This
seems to contradict the results of Elston and Peskin
(2000) in which it was shown that the velocity increases
as the spring is weakened. However, this is an
asymptotic result for the limit in which D,/D, — 0.
This limit requires that the motor comes to a quasi-
equilibrium before the cargo moves a significant
distance. The slow convergence to this limit seen here
is due to the large amplitude of the sine potential which
greatly increases the time required for the motor to come
to equilibrium.

The numerical method seems to be quite successful
over a broad range of parameter values and offers
obvious advantages over Monte Carlo methods for
calculating asymptotic quantities by eliminating errors
that have accumulated in time and errors due to finite
sampling. While the method outlined in the current
work is not simulation based and has no time
discretization, the method does produce numerical
errors because it approximates a continuous state—space
system as a discrete state—space process. These errors
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lead to numerical instabilities at very large spring
constants. This numerical error can be decreased by
using the improved transition rates recently developed
by Xing et al. (2005).

Mathematical models provide an important tool for
understanding the mechanisms used by molecular
motors for energy transduction. To compare these
mathematical models with experimental data requires
fast and accurate numerical techniques for analysing the
models. For example, we discovered using our algorithm
that for a motor—cargo system moving in a tilted sine
potential there is an optimal spring constant at which
the average velocity is maximized. This observation
cannot be captured by analytical methods that are only
valid in asymptotic limits or easily discovered by Monte
Carlo simulations that require large amounts of
computer time. The existence of such an optimal spring
constant might help explain the biophysical properties
of the linkage that connects molecular motors to their
cargo.
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Appendix A. The WPE method

In this appendix, we review the WPE method
proposed in Wang et al. (2003).

A.1. The WPE method for 1-D Fokker— Planck equations

We consider the 1-D Fokker—Planck equation

op 0 1 0¢ dp
ar = Pox <k3T6xp+6x>’
where ¢(x) is a tilted periodic potential: ¢(x + ¢€) =
¢(x) — AG and ¢ is the period.

We first divide the 1-D space (—o0,00) into a set of
infinite number of periods of equal length ¢. The jth
period is defined as [j¢, (j 4+ 1)£). We further divide each
period into a set of N subintervals of equal size
Ax = ¢/N. Let us consider the local coordinate s of a
numerical grid point within a period relative to the left
boundary of the period. The nth numerical grid point in
the jth period has local coordinate s, = (n — 1)Ax and
global coordinate jf+ s,. Thus, each numerical grid
point is associated with a pair of indices (j, n), where j is
the index of the period and # is the index of the grid
point within that period. The global coordinate of grid
point (j,n) is j€ + s,.

27)

We use this infinite set of numerical grid points to
represent the 1-D space (—oo0,00). We discretize the
continuous Markov process represented by the Fokker—
Planck equation as a jump process on this infinite set grid
points. Each numerical grid point represents a subinterval
of size Ax centered at the grid point. The motor can jump
from one grid point to an adjacent grid point (in the 1-D
case, there are only two adjacent grid points).

Let p,(j, t) be the probability that the motor is at grid
point (j,n) at time ¢. The evolution equation for p,(J, f)
is

d . . .
&pn(]st) = - (FVL+Bn)pn(]st)-i_Fn*lpnfl(]:t)
+ Bn+1]7n+1(j, l), (28)

where F, is the rate of the motor jumping from grid
point (j,n) to grid point (j,n + 1) and B, is the rate of
the motor jumping from grid point (j,n) to (j,n — 1). F,
and B4 are a pair of forward and backward jump rates
between (j,n) and (j,n+ 1). In Wang et al. (2003), the
jump rates were derived by comparing the numerical
probability flux with the exact probability flux corre-
sponding to a local steady-state solution. F, and B,
are given by

D (=A¢,/ksT)
(Ax)* exp(=Ad, /kpT) — 1’

Bn+l =

_ D (A$,/ksT)
"7 (Ax) exp(Ad,[kgT) — 1

where A¢, = ¢(sp+1) — ¢d(sy). To calculate the jump
rates between periods, we simply use the fact that the
grid point (j — I, N) is the same as (J,0), and the grid
point (j + 1, 1) is the same as (j, N + 1). The behavior of
the motor can be simulated using the evolution Eq. (28).
For example, the average velocity of the motor is

Vg lim e S P D)

1— 00 t

(29)

(30)

We can see that if we use Eq. (30) in a straightforward
way to calculate the average velocity, we have to follow
the dynamics of the motor over long time and over a
very large computational domain. This is computation-
ally very expensive. As we will see below, both the
average velocity and the effective diffusion can be
calculated from steady-state solutions (no time depen-
dence) over just one period.

We put the probabilities at the N grid points of each
period into a vector

p(jat):(pl(jat)alJZ(sz)a'"spN(jsl))T' (31)

The evolution equation for p(J, ¢) is

d . . : .
(32)
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In Eq. (28). py(jt) =py(j— 1) and py,i(ji) =
p1(j+ 1, 1). That is why, in Eq. (32), p(J,?) is affected
by both p(j — 1,7) and p(j+ 1,¢). In Eq. (32), L is an
N x N tridiagonal matrix with non-zero elements given by
Ln,n = _(Fn + Bﬂ)a

Lnfl,n = Bn:
Ln+l,n = Fna

(L) and (L, ) are two N x N matrices, each having only
one non-zero element given by
(Lf)N,l = B,

(L) v = Fy.

In Eq. (32), p(J, ?) has no steady-state solution. The motor
position distribution will be further and further spread out.
To express the average velocity in terms of a steady-state
solution, we consider

p(0) = (1D, p2(0), ...

o]

> pGi 0, (33)

=0

9pN(l))T =

p,(2) is the probability that the motor is at local grid point
s, (of some period) at time ¢. In Eq. (32), summing with
respect to j, we obtain that p(¢) satisfies

€ P = (Lt Ly +Lop(0). (349

p(¢?) does have a steady state. Let p* be the steady state of
p(?). p® satisfies

L+Ly+L)p’=0 (35
subject to the constraint

N
Y =1 (36)
n=1

Now we express the average velocity in terms of p°.
Multiplying Eq. (32) by vector e = (1, 1,..., 1), we have

d N
o (ano, z)) = e(L+(p(j — 1,0) = p(j, 1)
n=1

+L_(p(j + L,5) = p(j, ). (37)

Here we have used the fact that
eL+L,+L_)=0.

Multiplying by j and summing with respect to j, we get

i ( > Z/pn(f, t))

= e(L+ > pUi0—Lo Y 0 r))
Jj=—00 j==00
= e(Ly — L)p(0)
N
= [(Ly — LO)p(0)],, (38)
n=1

where [u], denotes the nth element of vector u. Applying
the L’Hopital’s rule to calculate the limit in Eq. (30), we

obtain
N
V=0 [(Ly —Lo)p'], (39)
n=1
To calculate the effective diffusion, we consider
r=>_ (jp(j, 1) = p(j. 1) le > il r)] ) (40)
pam— j==%0

r(¢) has a steady state. Let r° be the steady state of r(7). r’
satisfies (see Wang et al. (2003) for details of the
derivation)

(L+Ly+Lo)f

N
= (Z [(Ly —LO)p’], — (Ly — L_>> ¥ (41)
n=1
subject to the constraint

N
S r=0. (42)
n=1

Applying the L’Hopital’s rule to calculate the limit in
b 2 et Pa ) = (S PG 1)
€ff ={° lim 5

1—00 2t

we obtain

N
Dy = %Z [(Ly +LOp’ +2(Ly — L),

A.2. The WPE method for 2-D Fokker— Planck equations

We consider the 2-D Fokker—Planck equation
0 0 1 09 )
P_pl ( p)

- Palore’ To
3/ 1 90 op

pL o 4

* ay(kBTay +ay)’ *3)

where x represents the position of motor and y the
position of cargo. The total potential is @(x, y) = ¢d(x)+
(/2)(y — x)%. Here ¢(x) is a tilted periodic potential:
¢(x+ ) = p(x) —AG with ¢ as the period, and
(x/2)(y — x)? is the elastic energy stored in the linkage
connecting the motor and the cargo.

In the x-dimension, we divide (—o0,00) into a set of
infinite number of periods of equal length ¢. The jth
period is [j¢, (j + 1)£). We then divide each period into a
set of N subintervals of equal size Ax = ¢/N. The local
coordinate in the x-dimension of a numerical grid point
within a period is defined as the distance from the left
boundary of the period: s = x — j£. In the y-dimension
the elastic potential increases quadratically as y getting
away from x. So we can use a bounded computational
domain. As the motor moves forward, the cargo will
follow the motor. Therefore, the computational domain
in the y-dimension needs to be changed from period to
period. For the jth period, the motor position is between
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jt and (j+ 1)¢. We use [(j —yo)t, (j+ 14+ y){] as the
computational domain of y. For example, if y, = 1, then
the computational domain of y for the zeroth period is
[—¢,2¢], and the computational domain of y for the first
period is [0, 3¢] as shown in Fig. 2. For the convenience
of bookkeeping, we introduce a local coordinate in the
y-dimension: z =y —jf. For z, the computational
domain is always [—yy¢, (1 4+ yy)¢] as shown in Fig. 2.
We divide [—y,¢, (1 + p,){] into M subintervals of equal
size Ay = ((2y, + 1))/ M.

In this way, each grid point is associated with a triplet of
indices (j,n,m) where —oo<j<oo is the index of the
period; 1<n<N is the index in the local coordinate
s=x—jl; and 1<m<M +1 is the index in the local
coordinate z = y — j£. We use this infinite set of numerical
grid points to represent the 2-D space of the motor—cargo
system. We discretize the continuous Markov process
represented by the Fokker—Planck equation as a jump
process on this infinite set grid points. Each numerical grid
point represents a subregion of size (Ax) x (Ay) centered
at the grid point. The motor can jump from one grid point
to another grid point adjacent to this one in the x
coordinate or in the y coordinate.

The jump rates between grid points (j,n,m) and
(j,n,m+ 1) are given by Wang et al. (2003)

B _ Dy ) (_Ay¢n,m/kBT)
T AR exp(—A, @y [kpT) — 17
c Dy (Ay¢11,n1/k3 T)

= . , 44
nm (Ay)2 exp(Ayd),,,m/kBT) -1 (44)

where
Ay@n,m = ¢(sna Zm+l) - (D(Sns Zm)

and the script ¢ denotes that these are the jump rates of
the cargo. The jump rates between grid points (j,n, m)
and (j,n+ 1,m) are given by Wang et al. (2003)

B _ Dx (_Ax¢n,m/kBT)
n+lm — (AX)Z eXp(—qu)n,m/kBT) — 1 ’
o D (A4xPum/kpT) (45)

m (AX)2 ' eXp(Ax®n,m/kBT) -1 ’
where
Ax(pn,m = D(Syt1,2Zm) — P(Sp, Zm)

and the script m denotes that these are the jump rates of
the motor. To calculate the jump rates between periods,
we simply use the fact that grid point (j + 1, 1,m) is the
same as (j, N + 1,m + N), and grid point (j — 1, N,m) is
the same as (j,0,m — N).

Let p,,,(j,?) be the probability that the motor is at
grid point (j,n,m) at time . We put the probabilities at
the N x (M + 1) grid points of each period into a vector

p(J> D) = {Pnm(J, D}- (46)

The evolution equation for p(j, ) is

d . . . .
ap(], H=Lp(j,0)+Lp(j—1,0+L_p(j+1,0).
(47)

In Eq. (47), L is an N x N sparse matrix containing the
jumps rates among the N x (M + 1) grid points of the
Jjth period; L, contains the jump rates from the (j — 1)th
period to the jth period; and L_ contains the jump rates
from the (j+ 1)th period to the jth period. L, L, and
L_ always satisfy

eL+L,+L)=0, e=(,1,...,1).
The average velocity is given in terms of a steady-state
solution as

M+1 N

V=33 Ly —Lpl,,, (“48)

m=1 n=1
where the steady-state solution p° satisfies the linear system
L+Li+L)p’=0 (49)
subject to the constraint

M+1 N

>N ma=1 (50)

m=1 n=1
The effective diffusion is given by

2 M+1 N

Doy =5 3 D M(Ls +Lp' +2(Ls — L)),

m=1 n=I

where the steady-state solution r* satisfies the linear system

(L+L,+L)r

M+1 N
= (Z > Iy —Lop', — (L —L_)>p‘* (51)

m=1 n=1
subject to the constraint

M+1 N

> m=o. (52)

m=1 n=1

A.3. Example implementation

In this subsection, we provide further details on how
to implement the numerical algorithm. In the previous
subsection, we described the numerical grid designed for
a motor—cargo system. Let p,,(/,7) denote the prob-
ability that the motor—cargo system is at grid point
(j,n,m) at time ¢. Here j is the index for the period that
the motor is in, 7 is the index for the local coordinate of
the motor relative to the left end of that period, and m is
the index for the local coordinate of the cargo relative to
the left end of that period. At the grid point (/, n, m), the
motor position is x = jf + s, and the cargo position is
y = jt + z,,. The biggest advantage of introducing local
coordinates for motor and cargo within each period is
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that both the computational domain and the indices for
s, and z,, are stationary going from one period to the
next (see Fig. 2). The computational domain for the local
coordinate of motor s, is always [0,£). In the example
shown in Fig. 2, for clarity, we use 2 grid points for the
local coordinate of motor s, : 1 <n<2.We select [, 2¢)
as the computational domain for the local coordinate of
cargo z,,. We use 9 grid points for z,, : 1<m<9. More
specifically, the cargo’s local coordinate is discretized into
9 states {zy, z2, . . ., z9} with three states in the period ahead
of the period that contains the motor ({z9, zg, z7}), three in
the period of the motor ({z¢,zs,z4}), and three in the
period behind the motor ({z3,z»,z;}). Define the vector
p(J, ?) in the following way:

p(J, 1) = (p11(J> 0, P21 (J, ), p12(J, D),

P22(Js 0 -5 p19(J5 1), Pao( s ', (53)
0 Bm()Q,Zl) 0 Bm(XQ,Zz) 0 Bm(X2,Z3) 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

p(Jj, ?) is a vector with 18 components. It evolves according
to Eq. (4). The matrix L is now an 18 x 18 matrix with the
form

-2 B"(s2,z1)  B“(s1,22) 0 0
F"(s1,21) -2 0 B(s2,22) 0
F(s1,21) 0 —23 B"(s2,22)  B(s1,23)

0 Fe(s2,z1)  F"(51,22) =24 0
0 0 F(s1,22) 0 -2

where X; =3 (L+L_+Ly); ;. F"(s;,2) is the for-
ward rate for the motor when the motor is at local
coordinate s; and the cargo is at local coordinate z;.
Similarly, B"(s;, z;) is the backward rate for the motor,
and F“(s;, z;) and B°(s;, z;) are the forward and backward
rates for the cargo. These rates are given in Eqs. (44)
and (45).

Now, let us look at one of the matrices representing
the transitions from one period to the next, namely L.

The important thing to recall is that as the motor
moves forward one period, if the cargo remains
at the same position, then the local coordinate
of the cargo is shifted back one period. In the two-state
model, we have only two grid points for the local
coordinate of the motor: s; and s,. To illustrate
the transitions between periods, let us consider the
case where the motor is at s, and the cargo is at z;. When
a transition moves the motor from s, of the current
period to s; of the next period, the local coordinate of
the cargo changes from z; to z_3 if j—3>1. For
example, the system jumps from (sy,zs) to (sj,22).
If j —3<1, then, to conserve the probability, we let
the local coordinate of the cargo changes to z; (see Fig.
2). For example, the system jumps from (s3,z;) to
(s1,z1). The matrix L, will therefore have the following
form:

B"(x3,z4) 0 0 0 0
0 0 0 0 0
0 0 B"(xp,z5) 0 0
0 0 0 0 0
0 0 0 0  B"(x2,z)
0 0 0 0 0
0 0 0 0 0
0
0
0 .

B(sy,z3) ... |’

B"(s2,23)

A similar procedure must be carried out when creating
the matrix L_.
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