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Abstract

Statistical Equivalent Models, or SEMs, have re-
cently attracted considerable interest as a general
approach to study computer simulators. By fit-
ting a statistical model to the simulator’s output,
SEMs provide an efficient way to quickly explore
the simulator’s result. In this paper, we develop
a SEM for random waypoint mobility, one of the
most widely used mobility models employed by
network simulators in the evaluation of commu-
nication protocols for wireless multi-hop ad hoc
networks (MANETs). We chose the random way-
point mobility model as a case study of SEMs
due to recent results pointing out some serious
drawbacks of the model (e.g., [1]). In particular,
these studies show that, under the random way-
point mobility regime, average node speed tends
to zero in steady state. They also show that aver-
age node speed varies considerably from the ex-
pected average value for the time scales under
consideration in most simulation analysis.

In order to investigate further the behavior of
the random waypoint model, we develop a SEM
that captures speed decay over time under ran-
dom waypoint mobility using maximum speed
and terrain size as input parameters. A Bayesian
approach to model fitting is employed to capture
the uncertainty due to unknown parameters of
the statistical model. The SEM is given by the
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USA

posterior predictive distributions of the average
node speed as a function of time. A direct re-
sult from our model is that, by characterizing
average node speed as a function of time, our
approach provides an accurate estimate of the
“warm-up” period required by simulations using
the random waypoint mobility model. Simulation
data from the “warm-up” period can then be dis-
carded to obtain accurate protocol performance
results. Given that random waypoint mobility is
still, by far, the most widely used mobility model
in the evaluation of MANETs, the contribution
of this work is potentially significant as it allows
network protocol designers to continue to use the
original random waypoint mobility model and yet
obtain accurate results characterizing MANET
protocol performance.

Keywords: Random Waypoint, Non-Linear
Regression, Ad-Hoc Networks, Mobility Model

1 Introduction

The problem of fitting a statistical model to com-
puter simulator results has recently been receiv-
ing considerable attention in the literature as an
efficient way to perform fast exploration of the
simulator’s output. The method, referred to as
Statistical Equivalent Modeling, consists of cre-
ating a relatively simple statistical model to ap-
proximate some function of the output of a com-
puter simulator. The resulting Statistical Equiv-
alent Model (SEM) must be flexible enough to
capture most of the variability in the simulator’s
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output. Since SEMs are used as surrogate mod-
els, it is important that the uncertainty in the
SEM predictions be easily assessed in order to
quantify its performance. SEMs are used for a
variety of purposes which can be roughly classi-
fied in four groups: (1) model calibration to find
ranges of the simulator input that produce sensi-
ble output; (2) data assimilation, which consists
of merging simulator output with observations;
(3) model validation for comparison of results
from a simulator to observations or other simula-
tors; and (4) model description and comparison
for describing and comparing certain configura-
tions of the simulator. The latter is the applica-
tion of Statistical Equivalent Modeling we employ
in the work described herein.

Regarding the literature on SEMs, the pro-
posed methods, typically, involve Gaussian pro-
cess response-surface approximations, i.e., the
use of Gaussian processes to approximate the
function that represents the computer simulator
output (e.g., [2]). The literature includes a num-
ber of Bayesian approaches with a range of corre-
sponding applications (see, e.g., [3, 4, 5, 6, 7, 8,
9]). Bayesian methodology is particularly suited
to addressing the four issues discussed above, to
quantifying multiple sources of error and uncer-
tainty in computer simulators, and to combin-
ing multiple sources of information. We note
that there has been relatively limited work on
statistical methodology for the analysis of com-
puter experiments under the practically impor-
tant setting where the computer simulator pro-
duces functional output (see [10, 11] for some
recent work in this direction).

The SEM we develop in this paper handles
functional computer simulator data, in particu-
lar, data on the average node speed, as a function
of time, based on the random waypoint mobility
regime. This is a mobility model that has been
extensively used by packet-level network simula-
tors to study the performance of communication
protocols for multi-hop wireless ad hoc networks
(MANETs).

Packet-level network simulators (e.g., ns-2 [12],
GloMoSim [13], QualNet [14], OPNET [15]) have
been an extremely popular platform for evaluat-

ing MANET protocols. There are clear advan-
tages to using simulations when evaluating net-
work (in particular, MANET) protocols, includ-
ing the ability to reproduce experiments and sub-
ject protocols to a wide range of network topolo-
gies and conditions, for example mobility pat-
terns. Topology, number of network nodes and
node mobility are important parameters that can
significantly affect protocol performance.

Most existing network simulators employ ran-
dom waypoint mobility to model how nodes move
on a terrain [16]. Nodes in the random waypoint
regime move according to the following rules: (1)
each node picks a destination randomly within
the simulation area and also picks a speed v that
is uniformly chosen between vmin and vmax. Each
node then moves toward the destination over a
straight line with speed v. (2) upon reaching
the destination, a node pauses for some pause-
time; (3) the node then picks the next destination
and the process re-starts. Typically, the values
of vmin, vmax, and pause-time are parameters of
the simulation and are selected according to the
requirements and operating environment of the
application at hand.

Recently, it has been reported that the ran-
dom waypoint model exhibits some originally un-
foreseen anomalous behavior. More specifically,
it has been shown that, under the random way-
point model, the average node speed decays with
time [1]. It has also been shown that nodes mov-
ing according to the random waypoint model tend
to concentrate in the middle of the simulation re-
gion, resulting in non-uniform node spatial dis-
tribution. In the specific case where vmin = 0,
as time t → ∞ , node speeds tend to zero, re-
sulting in a stationary system. One important
effect of this behavior is that, if simulations us-
ing the random waypoint model do not run for
sufficiently long periods beyond the initial steep
decay, the corresponding simulation results will
not be accurate. In fact, variations of up to 40%
in ad hoc routing performance over a 900-second
simulation have been detected [1].

From the above discussion, one important con-
sideration is how long does it take for the sys-
tem to converge to steady state. Given this in-
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formation, one easy “fix” to the random way-
point model is to run simulations long enough
to guarantee that protocol performance evalua-
tion is conducted after steady state is reached
to guarantee accurate results. In this paper, we
introduce a novel approach to study the behav-
ior of the random waypoint regime. We develop
a SEM to predict average node speed (through
both point and interval estimates) as a function
of input parameters vmax and field size. Since our
SEM also characterizes average node speed as a
function of time, it offers an efficient alternative
to obtaining an accurate estimate of how long
simulation experiments take to “warm-up”. Sim-
ulation data from the “warm-up” period can then
be discarded to obtain accurate protocol perfor-
mance results. Since random waypoint mobility
continues to be, by far, the most widely used mo-
bility model in the evaluation of MANETs, our
model allows protocol designers to use the orig-
inal random waypoint mobility model and still
characterize MANET protocol performance ac-
curately.

To build a SEM for random waypoint mobility,
we consider a random waypoint simulator where
the inputs are terrain size and maximum node
speed. We run the simulator for a number of dif-
ferent configurations of these two variables. We
then fit a statistical model to the resulting av-
erage node speed at different times. We vali-
date the statistical model by comparing its pre-
dictions against the actual simulator results. We
use the resulting model to measure the decay of
average node speed and quantify the time that
it takes for the “warm-up”. We also show that
our random waypoint mobility SEM is able to
provide information on the warm-up period for
different combinations of input parameters sig-
nificantly faster than running pre-simulations of
the mobility model for different input combina-
tions. For instance, using our model, it took us
20 minutes to compute the point estimates of the
warm-up period over a grid of values for vmax and
field size (and for two different values of speed de-
cay). Using the same (reasonably fast) machine,
it would take approximately 65 hours to run pre-
simulations for the same grid of vmax and field

size values.

In the rest of the paper we present our statis-
tical model in detail. Section 2 puts our work in
perspective by describing related efforts in mod-
eling the random waypoint regime. In Section 3,
we present the methodology employed to formu-
late and develop the model. Section 4 describes
the proposed statistical model. In Section 5, we
present results obtained from the model and eval-
uate its accuracy by validating it against data
obtained from the simulator. Finally, Section 6
presents concluding remarks as well as directions
for future work.

2 Background and Related

Work

Mobility models are an important component of
network simulators and are one of the key fac-
tors affecting the performance of ad-hoc network
protocols. A number of mobility models for ad-
hoc networks have been proposed and evaluated
( [17, 18, 19, 20]). One of the most widely
used mobility models is the random waypoint
model ( [16, 21, 22]) described in Section 1. This
model is implemented in a number of current
network simulation platforms such as ns-2 [12],
GloMoSim [13], and Qualnet [14].

However, it has been shown in [1] that under
the random waypoint regime, the average node
speed decays with time before reaching steady
state and the settling time to reach steady state
increases as the minimum speed parameter vmin

of the model decreases. In particular, the de-
fault random waypoint models distributed with
ns-2 and GlomoSim use vmin = 0 which causes
the average node speed to steadily decrease over
time. In [1], the impact of this speed decay
on ad-hoc routing protocols like DSR [16] and
AODV [23] was also investigated. It was shown
that speed decay can result in performance vari-
ations of around 40% over simulation times typ-
ically used in the study of ad-hoc network pro-
tocols. One suggested solution was to use non-
zero minimum speed or to discard results from
the “burn-in” period, i.e., the simulation period
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Figure 1: Speed decay under the random waypoint model

during which speed decay is most dramatic.

There have been several other bodies of work
such as [24, 25, 26] which have investigated the
spatial node distribution for the random way-
point model.

In [27], a framework for analyzing the speed
decay of mobility models was proposed; addition-
ally, based on this framework, a technique to ob-
tain the stationary equivalent to mobility models
that exhibit the speed decay behavior was intro-
duced. Essentially, the proposed strategy is to
choose initial speeds from the stationary distri-
bution and subsequent speeds according to the
original distribution. Similarly, in [28] the au-
thors have used palm calculus to provide nec-
essary and sufficient conditions for a stationary
regime to exist under the random waypoint model
and presented an algorithm to start simulations
in the steady state (so called perfect simulation).

The main difference of our work compared
to other approaches is that we propose a novel
method to study the behavior of the random way-
point model which uses a statistical model to
characterize speed decay. Our model is able to
predict average node speed (through both point
and interval estimates) as a function of input pa-
rameters vmax and field size. Our model also of-
fers an efficient alternative to obtaining accurate
results from simulations using the original Ran-
dom Waypoint model 1. More specifically, as it

1Note that the alternative is to run pre-simulations of
the mobility model for different combinations of parame-
ters of interest.

will become clear in Section 5.2, using our sta-
tistical model, one can obtain the speed decay as
a function of time (as well as the input param-
eters). This allows protocol designers running
simulations to plan their experiments accordingly
so as to discard results from the “warm-up” pe-
riod and hence perform accurate protocol perfor-
mance evaluation.

3 Methodology

We used GloMoSim [13] as the simulation plat-
form for the initial mobility experiments. The
simulation setup consisted of 150 nodes moving
according to the random waypoint model with
vmax from the set { 2, 3, 4, 5, 7.5, 10, 12.5, 15,
17.5 , 20 } m/s and vmin = 0. The pause-time
was set to 0 for all experiments. The field-size was
varied in the range { 500, 1000, 1500, 2000, 2500,
3000 } m2. Hence we ran mobility simulations
for 60 different combinations of vmax and field-
size with each run averaged over 10 different seed
values. The total duration of the mobility experi-
ments was set to 20,000 secs and we captured the
average node speed as reported by the simula-
tor every 5 secs. As noted previously the values
were averaged over 10 different runs using dif-
ferent seed values. The data obtained from these
mobility experiments was used as “computer sim-
ulator data” for our statistical model.

One key observation that helped to simplify
model formulation was the implicit relationship
between terrain size and number of nodes used in
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simulation experiments. For a given transmission
range, the terrain size chosen normally dictates
the minimum number of nodes required to en-
sure that the network is connected 2. Hence our
model implicitly accounts for number of nodes
through the “field-size” parameter, which is de-
fined as the 2-dimensional region within which
nodes can move.

Figure 1 is a pictorial representation of the
speed decay suffered by nodes using the Random
Waypoint mobility model. Note that, the aver-
age initial speed of the nodes is (vmax − vmin)/2
as expected and then starts decaying with time.
This is similar to the results observed in [1].

4 Statistical Model

We fitted a statistical model to observations on
average node speed, obtained from the simulator
as discussed in section 3, for 10 different choices
of vmax and 6 different field sizes. In what follows
we use the notation v for vmax, f for field-size, t
for time in seconds, and yt for the average node
speed at time t. We started by considering the
non-linear regression model

yt =
c

(1 + b(t/1000))a
+ ε, (4.1)

where ε is a random error term, for each of the
60 combinations of vmax and field-size. We fitted
these models using least squares and obtained a
set of 60 triplets corresponding to the fitted val-
ues of a, b and c. By exploring the dependence of
these values on v and f , we were able to gen-
eralize model (4.1) making the coefficients a, b
and c dependent on v and f . Hence we obtain
a SEM for the average node speed corresponding
to any combination of v and f given by yt(v, f) =
g(t, v, f ;a,b, c)+ ε, where

g(t, v, f ;a,b, c) =
c(v, f)

(1 + b(v, f)(t/1000))a(v,f)

(4.2)

2Node mobility can cause the network to be discon-
nected at certain times

with

a(v, f) = exp{a1 + a2 log(f/v) + a3 log(log(f/v))

+ a4 log(log((v/f) + 1))

+ a5 log(log(v + 0.5))}

b(v, f) = exp{b1 + b2 log v + b3 log f

+ b4 log(log(f/v)) + b5 log(log f)

+ b6 log(log(v + 0.5))}

c(v, f) = exp{c1 + c2 log v + c3 log f}

Here a = (a1, . . . , a5), b = (b1, . . . , b6) and
c = (c1, c2, c3) denote the vectors of the unknown
coefficients. These can be estimated from the
computer simulator data. This seemingly com-
plicated structure was obtained in a constructive
way, exploring many different alternatives and
preferring those that provided the best fit with
the smallest number of parameters. A critical
advantage of this formulation is that, once the 14
unknown parameters are estimated, one can esti-
mate the average node speed for any combination
of field-size and vmax, and for any time.

The estimation of the parameters in the SEM
was performed by assuming that the error term
follows a normal distribution with zero mean
and variance σ2. Therefore, given the data
Y = {yt(vi, fj); t = 1, . . . , T ; i = 1, . . . , 10; j =
1, . . . , 6}, we obtain the likelihood for the param-
eter vector, which is denoted by θ = (a,b, c, σ2),
as

L(θ|Y ) =
∏

t,i,j

(2πσ2)−1/2 exp{−
1

2σ2
(yt(vi, fj)

− g(t, vi, fj;a,b, c))2}

We estimate θ using a Bayesian approach. This
is based on exploring the posterior distribu-
tion p(θ|Y ). We consider a non-informative
prior p(a,b, c, σ2) ∝ 1/σ2. Thus p(θ|Y ) ∝
1/σ2L(θ|Y ). Under squared error loss, the op-
timal estimator is given by the posterior expec-
tation E(θ|Y ).

Given the difficulties involved in describ-
ing, integrating or maximizing p(θ|Y ), which
is a 15-dimensional function, we resort to
Markov chain Monte Carlo (MCMC) meth-
ods to obtain samples from p(θ|Y ). The
idea of MCMC methodology is to construct a
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Markov chain that is easy to sample from and
such that its equilibrium distribution is p(θ|Y )
[29]. Before we describe the Markov chain
that we used, we note that p(a,b, c, σ2|Y ) =
p(σ2|a,b, c, Y )p(a,b, c|Y ), where

p(a,b, c|Y ) ∝ A−60T/2

p(σ2|a,b, c, Y ) ∝ (σ2)−(60T+2)/2 exp{−A/(2σ2)},

with A =
∑

t,i,j(yt(vi, fj) − g(t, vi, fj ;a,b, c))2.

Thus we recognize p(σ2|a,b, c, Y ) as the den-
sity of an inverse gamma distribution with shape
60T/2 and scale A/2.

To obtain samples from the posterior p(θ|y) we
follow the steps:

1. Set initial values θ0 and total number of it-
erations K

2. Loop for k = 1, . . . ,K

3. At iteration k, denote the current samples
with the super-index k, and sample a vec-
tor of candidates (a∗,b∗, c∗) from a normal
distribution with mean (ak,bk, ck) and co-
variance matrix V.

4. Calculate α = min{1, r} where

r =
p(a∗,b∗, c∗|Y )

p(ak,bk, ck|Y )

5. Sample u from a uniform distribution on
(0,1).

6. If u < α then sample (σ2)∗ from an inverse
gamma distribution with shape 60T/2 and
scale A∗/2, where A∗ denotes the evaluation
of A at the candidate values (a∗,b∗, c∗). Let
(ak+1,bk+1, ck+1) = (a∗,b∗, c∗), (σ2)k+1 =
(σ2)∗ and cycle.

7. If u > α, let (ak+1,bk+1, ck+1) =
(ak,bk, ck), (σ2)k+1 = (σ2)k and cycle.

After an initial burn-in period, the results from
this chain yield a sequence of samples θ

k whose
distribution is approximately p(θ|Y ). These pos-
terior samples can be used to obtain inference for
θ.

5 Results

In this section we present results obtained from
the statistical model and assess its performance
using mobility data obtained from the simulator.
As explained in section 4, we ran a Markov Chain
Monte Carlo (MCMC) algorithm in MATLAB to
obtain samples from the posterior distribution for
p(θ|Y ). These samples were then used to esti-
mate a(v, f), b(v, f) and c(v, f) for different com-
binations of vmax and field-size. The estimates
thus obtained were then used to evaluate for each
combination of (v, f) the posterior mean of yt as
given in equation (4.2) for 4000 time-points up
to 20,000 secs. Note that for each combination
of (v, f) we obtain samples from the entire pos-
terior distribution for equation (4.2). We present
both point estimates and interval estimates (de-
noted by dashed lines in the subsequent figures)
based on 5% and 95% quantiles of the posterior
samples.

Figure 2 depicts the comparison between the
simulator data and posterior point and interval
estimates based on the statistical model for vmax

= 2 m/s, while figures 3 and 4 show the compar-
ison for vmax = 10 m/s and 20 m/s, respectively.
Note that, in the figures we only present model
fits up-to 15,000 secs for the sake of clarity as the
behavior beyond 15,000 seconds is very similar.

As seen from these figures, the statistical model
produces good fits as compared to the mobility
data from the simulator. The interval estimates
tend to capture the variability of the original data
as well. One minor discrepancy is the tendency
of the statistical model to overestimate the actual
values of the average node speed at t close to 0.

5.1 Model Validation

In order to verify the accuracy of the proposed
estimator we also ran some validation tests. In
these tests we used the random waypoint mobil-
ity SEM of section 4 to estimate average node
speed over time for values of vmax that are not
included in the set of 10 values used in developing
the SEM. We then validate the SEM predictions
against computer simulator data obtained under
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Figure 2: Inference: vmax 2 m/s
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Figure 3: Inference: vmax 10 m/s

the new vmax values. In particular, we used two
different values of vmax, i.e, {8, 25}, keeping all
other simulator parameters constant. Note that

one of the vmax values, i.e, 8 m/s is within the
data range originally considered while the other
value, i.e, 25 m/s is outside the data range used
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Figure 4: Inference: vmax 20 m/s
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Figure 5: Validation vmax 8 m/s

to formulate the SEM. Figures 5 and 6 illustrate
that the statistical model provides good fits for
the new simulator data as well.

5.2 Discussion

As mentioned in Section 1, the main contribution
of this work is the ability of the statistical model
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Figure 6: Validation vmax 25 m/s

to predict the average node speed (through both
point and interval estimates) as a function of in-
put parameters vmax and field-size. One of the
recommended techniques to obtain accurate sim-
ulation results using the random waypoint model
is to discard results from the “warm-up” period
during which average node speed is still decay-
ing. The proposed statistical model is useful in
providing inference for the “warm-up” period for
a specific simulation using the following equation

twarm−up = 1000.b−1{(c/yt)
a−1

− 1},

where yt is the required value for the speed decay
and a, b and c are functions of vmax and field-
size as defined in section 4. Hence we can obtain
the entire posterior distribution for twarm−up as a
function of vmax and field-size for different values
of speed decay yt.

Figure 7 represents the point estimates of the
“warm-up” period for a grid (of size 1250) over
a range of commonly used combinations of vmax

and field-size for 2 different values of yt.

To put these results in perspective, the al-
ternative approach would require running pre-
simulations of the mobility model. For the 1250

different combinations of vmax and field-size con-
sidered above this would take approximately 65
hrs for 10 different seed values on a sufficiently
fast simulation machine, whereas our approach
required approximately 20 minutes of computing
time.

6 Conclusions

This paper conducts a case study of Statisti-
cal Equivalent Modeling applied to the Random
Waypoint Mobility model used in network sim-
ulators. This novel modeling technique of char-
acterizing the behavior of the Random Waypoint
Mobility regime captures speed decay over time
using maximum speed and terrain size as input
parameters. A Bayesian approach to model fit-
ting is employed to capture the uncertainty due
to unknown parameters of the statistical model.
The resulting posterior predictive distributions of
the quantities of interest (i.e, average node speed)
can be used to formally address the fit of the sta-
tistical model. We present results obtained from
the model and evaluate its accuracy by validating
it against data obtained from the simulator.
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Figure 7: Point Estimates of twarm−up as a func-
tion of vmax and field size

One of the main contributions of our random
waypoint mobility SEM is that it offers an ef-
ficient alternative to circumventing recently un-
covered anomalies of random waypoint mobility,
one of the most widely used mobility models for
evaluating the performance of multi-hop wireless
ad hoc networks (MANETs). These anomalies
include the fact that average node speed tends
to zero as t → ∞ and that node speed varies
considerably from the expected average value for
the time scales under consideration for most sim-
ulation analysis. Since our model characterizes
average node speed as a function of time, it pro-

vides an accurate estimate of the time it takes for
random waypoint mobility simulations to “warm
up”, i.e., reach steady state. Using this infor-
mation, MANET protocol designers can continue
to use the original random waypoint mobility
model, discard simulation data produced dur-
ing the “warm-up” period and still obtain accu-
rate performance results for the protocols under
study. This is an important contribution given
that original Random Waypoint Mobility is still,
by far, the most widely used mobility model in
the evaluation of MANETs [30], [31], [32].

We also show that our random waypoint mo-
bility SEM is able to provide information on the
warm-up period for different combinations of in-
put parameters significantly faster than running
pre-simulations of the mobility model for differ-
ent input combinations. For instance, using our
model, it took us 20 minutes to compute the point
estimates of the warm-up period as a function
of vmax and field size for two different values of
speed decay. Using the same (reasonably fast)
machine, it would take close to 200 times longer
to run pre-simulations for the same number of
combinations of vmax and field size values.

One direction of future work involves extending
the random waypoint mobility SEM to incorpo-
rate non-zero minimum speeds (vmin 6= 0).
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