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Abstract 

Decadal scale oscillations in the environment result in substantial alterations to 

population dynamics as evidenced by time series of abundance and recruitment.  Regime 

shifts may occur on very short time scales and are often undetected for several years.  

Consequently, tools that allow the estimation of regime-specific population dynamic 

parameters may be of great value.  Using a hidden Markov model to describe the 

unobserved regime state, we develop methods to infer regime-specific parameters for a 

commonly used model of density dependent recruitment in addition to identifying the 

unobserved regime state.  We apply the method to recruitment data for Japanese sardine 

and Baltic cod.   

 

Keywords: regime shift, hidden Markov model, density dependence, Japanese sardine, 

Baltic cod. 
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Introduction 

Fluctuations in climate and ocean conditions result in substantial changes in 

marine ecosystem structure and dynamics and organisms at all trophic levels may be 

affected by variations in a variety of environmental variables.  Since the responses of 

organisms to environmental change have substantial ecological and economic impacts, 

understanding the relationship between climatic variables and population dynamics is of 

fundamental importance in conservation and management. 

Environmental variation may affect species distributions and population 

dynamics.  For instance, shifts in species ranges (Parmesan 1996) have been documented, 

though the degree to which ranges shift is species specific.  For example, a comparison of 

intertidal invertebrate communites in California between 1933 and 1993 revealed that 

northern species decreased, southern species increased, and cosmopolitan species 

remained the same (Barry et al. 1995).  Consequently, environmental variability may lead 

to shifts in community structure (Holbrook et al. 1997) and species interactions 

(Cattadori et al. 2005).  

Environmental variation may also affect a number of vital rates.  Kjesbu et al. 

(1998) found a tight correlation between fecundity and both temperature and prey 

availability.  In steelhead (Oncorhynchus mykiss) juvenile survival varies with 

environmental state (Welch et al. 2000).  Moreover, rates of somatic growth are strongly 

influenced by temperature and prey availability (Elliot 1994).  Combined, these effects 

lead to environmentally induced fluctuations in density dependence (Jacobson and 

MacCall 1995, Sugimoto et al. 2001).   
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These observations have prompted many attempts (on the order of hundreds) to 

incorporate environmental variables into density dependence models for juvenile survival 

(e.g. Cushing 1982, Drinkwater and Myers 1987).  Typically, the approach used is to 

multiply a standard model by some additional function of the environment (e.g. 

Madenjian et al. 2005, Majormaki 2004, Kuikka et al. 1999) although Koster et al. (2001) 

have attempted to build up a model from a series of stage-specific regressions relating 

survival to some environmental variables.  Very few of such environmental correlations, 

however, are upheld in subsequent analyses (reviewed in Myers 1998).   

Recent efforts indicate that aggregate variables such as the NAO index and PDO 

are better predictors of ecological processes than more mechanistically interpretable 

variables such as temperature.  Hallett et al. (2004) suggest that this result is driven by the 

complexity of the interactions between weather and ecology; because the specific 

environmental mechanisms that are most important in any year may vary, aggregate 

variables such as the NAO do a better job in coarse-grained analyses.  

Over the past two decades, long-term environmental fluctuations or "regimes" 

have become apparent.  Regimes are quasi-stable states with residence times on the order 

of decades.  However, regime shifts occur relatively rapidly, typically within the course 

of a year or two.  Many aspects of the ocean environment change in the course of a 

regime shift – changes in atmospheric circulations, surface layer salinity and temperature, 

mixed layer depth, and mean sea level.  As a consequence, regime shifts may have 

profound effects on population dynamics.  Production indices for sablefish, sardine, 

English sole, Pacific cod, North Sea plaice, and several salmonids all show pronounced 

decadal scale fluctuations (McFarlane et al. 2000, MacCall 2002, Kell and Bromley 
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2004).  These fluctuations, when compounded with shifts in species distributions, lead to 

decadal scale fluctuations in landings in many species including saury, sardine, filefish, 

sandfish, pollock (Kang et al. 2000, Wooster and Zhang 2004).   

Several studies have also demonstrated decadal scale variations in recruitment 

time series (e.g. McFarlane et al. 2000, Daskalov 2003) that correspond with shifts in 

physical variables.  Hare and Mantua (2000) review a large number of physical and 

biological time series and suggest that regime shifts may be more easily recognizable in 

recruitment indices than in the environmental variables themselves.  For example, 

although the physical data do not unambiguously point to a regime shift in 1986, one is 

clearly visible in recruitment patterns of Pacific groundfishes.  This observation led Tian 

et al. (2004) to suggest the use of saury as a bioindicator of regime shifts.   

In light of the many species affected by regime shifts, it will be valuable to be 

able to incorporate regime effects into models of density dependent juvenile survival.  

One possibility would be to incorporate a set of environmental variables or aggregate 

indices into standard models.  However, since regime shifts are characterized by 

relatively substantial changes in many biological and abiotic factors, regime-specific 

models might be more appropriate.  Indeed, Wada and Jacobson (1998) find that the 

intercepts of models fit to data during each regime were significantly different.  Thus a 

"recruitment-regime" approach seems warranted.  However, since it is frequently unclear 

whether a regime shift has occurred until several years have passed, an alternative 

method is needed.   

Here, we propose a new method for fitting regime specific models for density 

dependent juvenile survival and simultaneously estimating the probability that a regime 
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shift has occurred. We assume that there are two environmental regimes characterized by 

distinct survival dynamics. This assumption corresponds well with the observed impacts 

of regimes on recruitment (Wada and Jacobson 1998, Hare and Mantua 2000). We 

develop a two-component mixture model where the components are associated with the 

underlying regimes; i.e. the mean of each mixture component is defined by a regime 

specific model for density dependent juvenile survival. Temporal aspects are captured 

using a two-state Markov chain for the mixing distribution. We employ a Bayesian 

modeling formulation, which allows incorporation of prior information regarding both 

the regime shifts and the regime specific density dependence models, and yields full and 

exact inference. Our approach is alternatively referred to as a Markov-dependent mixture 

model, Markov switching regression model, or hidden Markov model (HMM). 

(However, note that HMMs do not typically include the regression component.) HMMs 

have been successfully applied to problems in several fields, including  speech 

recognition (e.g., Juang and Rabiner 1991), bioinformatics  (e.g., Liu et al. 1999), 

econometrics (e.g., Billio et al. 1999),  hydrology (e.g., Lu and Berliner 1999), and image 

processing  (Romberg et al. 2001). Scott (2002) provides a review on Bayesian methods 

for HMMs. To our knowledge, HMMs have not been applied in population dynamics.   

The Methods section introduces the statistical modeling approach. The 

methodology is tested with simulated data and subsequently applied to two real data sets, 

one for Japanese sardine and one for Baltic cod.  

 

Methods 
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If the regime states for each year were known, the problem would be 

straightforward; we could divide the data into regime-specific subsets and fit separate 

models to each.  However, as noted above, the regime state may shift over a short period 

of time and may not be adequately characterized for several years following a shift.  As a 

consequence, we require a method that allows us to make inferences regarding the regime 

state as well as the regime-specific model parameters.  To do so, we characterize the 

regime state as a hidden variable whose dynamics are determined by a first order Markov 

process.  As discussed in the Introduction, we work with two environmental regimes, 

although in principle our methodology can be extended to any specified number of 

regimes.  Specifically, the regime state in year t (rt) takes on one of two values (here, 1 or 

2) with some probability that depends on the regime state in year t-1.  That is, 

 

1)   P 1( | )        i, j = 1 or 2t t ijr i r j q−= = =  

  

where the qij’s are the probabilities of transitions into regime i from regime j.  In a 

Bayesian context, these transition probabilities themselves require a prior probability 

model.  We use a pair of independent Beta distributions for the probability of remaining 

in each regime, specifically, qjj ~B(π j, ρj), j = 1,2.  In everything that follows we used π j = 

40 and ρj = 4.44 which establishes a prior expectation of remaining in each regime of 0.9 

with a standard deviation of 0.045, in keeping with the fairly extensive time series on 

regime shifts.   
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For each regime-specific model of juvenile survival, we use a generalized contest 

competition model referred to as the Shepherd (1982) function.  Specifically, survival 

from birth to some fixed point in time, hereafter referred to as recruitment (R) is given by 
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where N0 is the initial number of individuals in a cohort and the subscript indicates 

parameters for recruitment under regime j. We assume that errors around the recruitment  

relationship are multiplicative and log normal.  Consequently, we switch to the 

transformed variables, y = ln(R), x = ln(N0).  Since each of the three parameters of the 

Shepherd model must be positive, we use a slightly different parameterization to facilitate 

model fitting.  Our log-transformed, re-parameterized recruitment model is given by  

 

3)   )}]exp()exp{(1ln[),,|( jjjjjj xxxF κβακβα ++−+=  

 

where a=exp(α), bc = exp(β), and c = exp(κ).  For each of α, β, and κ we define 

independent, diffuse normal priors with means and variances indicated by µα, σα
2, etc.  

For both regimes we set µ = 4, -4, 0 for α, β, and κ, respectively, and σ2 = 10 for each of 

these parameters.  The error variances, Vj, are given independent inverse Gamma priors 

(Gelman et al. 1995) with the same parameters (γV, ηV).  We set γV = 11, ηV = 1 which 

asserts a prior expectation of 0.1 for Vj with a standard deviation of 0.03.  Although this  

prior is fairly informative, we found that the results did not change if less specific priors 
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were used (i.e. doubling the S.D. for Vj doesn't change the results).  To simplify notation,  

we gather the regime-specific model parameters into a vector 

θ = {θ1 ,θ2} with θj={α j, β j, κj}, the regime specific error variances into V ={V1, V2} and 

the transition probabilities into a vector Q.  The fully specified Bayesian model is 
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Here N(y|µ,V) denotes a normal density for y with mean µ = F(x|θ) (as defined in Eq 3) 

and variance V.  P(rt|rt-1,Q) is given in Eq 1, and the priors for Q, θ, and V are defined 

above.  T is the final year in which recruitment was observed.  Since the regime 

designation is arbitrary, we set r1 = 1 for model identifiability. Sampling from the  

posterior for all of the parameters and imputed regime states (r = {r1,…, rT}), i.e. 

p(Q,θ,V,r | data), was accomplished with standard techniques for HMMs (see, e.g., Scott 

2002 and references therein).  Details of the sampling algorithm are described in 

Appendix A. 

 

Since it may be of interest to apply this method when it is uncertain whether two 

regimes exist, we want to compare the two regime model to a model with only one 

regime.  Several approaches exist for formal Bayesian model comparison (e.g., Bernado 

and Smith 2000).  Here we utilize a posterior predictive space criterion suggested by 

Gelfand and Ghosh (1998).  This criterion favors the model (m) which minimizes  
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where data indicates the obesrved {yt, xt; t=1,…,T}. E(m) and V(m) denote the posterior 

mean and variance in the predicted recruitment in year t (yt,new) under model m given xt.  

The first term can be viewed as a penalty term for model complexity; too simple or too 

complex models will yield large values.  The second term is a sum of squared deviations 

between the posterior mean recruitment in year t under model m and the observed 

recruitment.  Thus D(m) represents a balance between predictive uncertainty and fidelity 

to past observations.  We estimate E(m) and V(m) for each t using samples from the 

posterior predictive distribution, p(m)(yt,new| x t , data).   

There are several additional quantities beside the fit of the model that are of 

interest.  These include the posterior predictive distributions (forecasts) for subsequent 

recruitment and the conditional probability of the regime state given a new recruitment 

observation.  First, we might want to know what the long run probability of recruitment is 

given the initial cohort size (i.e. p(y|x)).  This marginal posterior can be obtained from the 

stationary distribution for the regime states and the regime specific recruitment 

probabilities conditional on the parameters, i.e.  
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where π1 is the long-run or stationary probability of regime 1, which is calculated as π1 = 

(1-q22)/[2-(q11+q22)], for each of the sampled values of Q.  The long run recruitment 
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probability p(y|x) is calculated by averaging over these conditional regime specific 

recruitment probabilities obtained at each step in the sampling algorithm.   

The second quantity of interest is the posterior forecast of the next year's 

recruitment (yT+1) given a specific initial cohort size (xT+1).  This is distinct from the long 

run probability of recruitment in that we are explicitly taking into account the dependence 

of next year's regime state on the regime state in year T.  This posterior forecast can be 

obtained as described above by averaging over the posterior  
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where π∗=p(rT+1=1| rT , Q) as given in Eq 1.   

Finally, we may be interested in assessing the likelihood that a regime shift has 

occurred given some new recruitment observations.  Here we focus on the probability 

that the regime in year T+1 is 1 given the observed initial cohort size and subsequent 

recruitment in year T+1.  This posterior predictive probability is given by p(rT+1| xT+1, 

yT+1,data) = p(rT+1, yT+1| xT+1, data)/ p(yT+1| xT+1, data).  The denominator is calculated 

by averaging over posterior samples from Eq 7 as described above.  The numerator is 

estimated by averaging over the posterior samples the conditional probability,  
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Testing the method 

We tested the method on simulated data generated from mixtures of two Shepherd 

models with a common error variance.  The ability of our method to resolve the regime 

specific models should be sensitive to the distance between the two models relative to the 

residual variance.  However, how to define the distance between the nonlinear regime 

specific models is not clear.  To address this, we simulated three data sets in which the 

regime specific models were held fixed and the error variance around each was 0.001, 

0.01, and 0.1.  This approach generated data sets with recruitment CVs of 23%, 30%, and 

44% respectively.  The remaining parameters for the underlying models were θ1 = {1.2, 

0.01, 1}, θ2 = {1, 0.02, 0.8}, Q = {0.75, 0.6}.  For these data sets we also tabulated the 

frequency with which the regimes were correctly classified.  Note that our purpose in 

presenting these simulations is to demonstrate the efficacy of the approach when the true 

answer is known, not to conduct an exhaustive analysis of the sensitivity of our method.  

Results of rigorous sensitivity analyses will be published in a more general context in a 

subsequent paper. 

We also applied the method to two real data sets.  The first is the sardine data 

previously analyzed by Wada and Jacobson (1998).  We used their egg production 

estimates and index of age 1 recruits from 1977-1995 (reported in Wada and Jacobson 

1998, Table 1).  In this case, given the previously established regime shifts in Pacific 

species, we expect to be able to identify distinct regime-specific differences in survival to 

age 1.  The second data set is for Baltic cod from 1970 to 1993.  Baltic cod have 

experienced a substantial decline in abundance and recruitment through the 1990's, which 

is thought to have resulted from a combination of high fishing pressure and 
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environmental effects (Mollman and Koster 1999).  The data for our analysis are for 

Baltic areas 25-32 as downloaded from R. Myers Stock Recruitment Database 

(http://www.mscs.dal.ca/~myers/welcome.html).  In this case, recruitment is defined in 

terms of the numbers of individuals surviving to age 2 and the biomass of mature 

individuals is used as a proxy for the initial numbers in the cohort. 

 

Results 

Under relatively low variability, the method recovers the underlying mixture of 

density dependence models well (Figure 1).  As variability increases, the fit to the data 

remains good but the deviation between the fitted model and generating model increases 

substantially.  In the low variance case, regimes for all years were correctly identified.  In 

the intermediate variance case, 10% of regimes were misclassified and the degree of 

confidence in regime classifications was lower.  In the high variance case, the method 

converged on a regime configuration with 30% of regimes misclassified.  For the low, 

medium, and high variance cases, the model selection criterion was 1.6, 1.5, and 3.7 for 

the single regime model and 0.2, 0.4, and 1.0 for the two regime model.  Thus in each 

case, we would choose the two regime model. 

The marginal posterior density for the sardine recruitment series successfully 

identifies two, clearly separated recruitment regimes (Figure 2A).  The inferred regime 

states agree fairly well with the known environmental regime states (Figure 2B) and the 

model selection criterion strongly supports the existence of distinct recruitment regimes 

(D = 5.8 for 2 regimes and D = 40.1 for a single Shepherd function).  There were, 

however, a number of years in which the regime state differed from expectation based on 



 14 

prior analyses of environmental variables (Tian et al. 2004, Hare and Mantua 2000), 

notably 1979, 1982, and 1992.  The fit to the Baltic cod data was also quite good 

resulting in clear separation between recruitment regimes (Figure 3A).  Again, the model 

selection criterion favors two regimes, though less strongly than in the sardine example 

(D = 3.1 for 2 regimes and 7.1 for a single regime model). Interestingly, the inferred 

regimes suggest a return to the high recruitment relationship for the years 1991-1993 

(Figure 3B). 

In both of these data sets, the posterior mean error variance was considerably 

smaller than expected based on previous studies in which single density dependence 

models were fit.  For the cod data we found posterior mean (± 1 S.D) error variances of 

0.03 (±0.01) and 0.04 (± 0.01) and for the sardine data we found posterior mean error 

variances of 0.05 (±0.01) and 0.04 (± 0.01).  In each case these are an order of magnitude 

lower than that commonly reported for similar data.  Thus, if there are multiple 

recruitment regimes, estimates of error variance based on a single model will be severely 

biased upwards.   

 

Discussion 

Most efforts to incorporate environmental effects into density dependence models 

do so by multiplying a standard model with an exponential term containing some linear 

combination or generalized additive model of environmental variables.  Since many of 

the relevant environmental drivers are highly correlated on long time scales, 

incorporating them all through a regression approach may produce unreliable fits due to 

multicolinearity.  The regression approach essentially modifies the slope parameter with 
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the intent of capturing environmentally induced changes in reproductive output or density 

independent mortality.  However, this approach does not actually model density 

independent factors but confounds density dependent and density independent effects 

since both are represented in the denominator of Eq 2.  Moreover, given that regime 

changes are characterized by substantial changes in the prey and predator fields to which 

cohorts are exposed prior to recruitment, it is certainly plausible that the nature of density 

dependence changes as well.  Our method allows both the density dependent and density 

independent terms to vary under multiple environmental regimes.  Moreover, the hidden 

Markov model on which our approach is based allows inferences to be made regarding 

the unobserved regime state.   

Based on previous analyses (Wada and Jacobson 1999), we had a strong 

expectation that the data for the Japanese sardine would show a clear regime signal.  

Although this was the case, there were several odd years that did not fit well into the 

decadal regime paradigm.  Curiously, 1979, 1982, and 1992 exhibited marked deviations 

from the norm in the Winter North Pacific index reported in Tian et al. (2004).  However, 

visual inspection of the results suggests that had we used a model with an inflection 

point, 1979 and 1982 would have been assigned to the expected regime, suggesting that 

Allee effects may be important.  Most interestingly, the posterior mean (± 2 SD) for the 

shape parameter (c) for the high recruitment regime was 0.9 (±0.3) and for the low 

recruitment regime was 2.6 (±0.4) indicating that the nature of density dependence is 

substantially different in the two regimes.   

The Baltic cod data also clearly indicate the presence of two distinct recruitment 

regimes.  Given the well documented difficulties in several cod fisheries (Myers et al. 
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1997), it may be worthwhile to consider the implications of decadal variation in 

recruitment regimes (MacCall 2002).  Although many correlations between recruitment 

and the environment have been demonstrated, these are rarely used in management 

(Myers 1998).  There are two good reasons for this.  The first is that environmental 

correlations are notoriously unreliable – the vast majority have failed to stand the test of 

time (Myers 1998).  Second, and perhaps more importantly, in order to use them to make 

predictions of future recruitment success, we must be able to forecast each of the relevant 

environmental variables.  Under the coarse grained approach used here, the information 

necessary to forecast future regime states is estimated as part of the model.  This can be 

used to forecast future recruitments conditional on the most recent regime estimates 

(Figure 4).  These recruitment forecasts may be far different than the long run  probability 

of recruitment (compare color in Figure 4 to Figures 2 and 3).  Moreover, as adumbrated 

by Tian et al. (2004) new observations of recruitment may be used to estimate the 

probability of a regime shift (Figure 5).   

There are several extensions of this method worth pursuing.  The first would be to 

include environmental variables in the model either as a means of constraining the regime 

estimates or directly as covariates.  Additionally, we might reason that multiple 

populations or species living in the same geographic region must experience the same 

time series of regimes, even if they respond to the actual environment in different ways.  

Thus incorporating multiple populations into the model may improve our ability to 

determine the unobserved regime state.  One major extension which we are currently 

investigating involves replacing the parametric Shepherd model with a nonparametric 

Bayesian approach (e.g. Munch et al. 2005).  This extension would allow us to approach 
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regime specific dynamics without the prior assumptions that a fixed parametric form is 

appropriate when the available biological data do not support such assertions. 

We close by noting that there is one other important difference between the 

regime-specific recruitment approach and the use of environmental correlations; we 

expect environmental regimes to persist long enough to merit regime-specific 

management practices (MacCall 2002).  For instance, the expected recruitment for 

sardines under each regime differ by a factor of about 7 indicating that very different 

management practices are required under each regime for sustainability.   
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 Figure 1.  Results for simulated data.  Left column: Black dots are simulated data, white 
lines indicate the generating model, black lines indicate the posterior mean SR function 
for each regime.  The color in each plot is proportional to the posterior density.  Right 
column:  Black bars indicate the posterior probability that rt is 2 for each year.  White 
dots indicate the true regime, low for regime 1, high for regime 2.  Rows A-C indicate 
results for V = 0.001, 0.01, and 0.1, respectively. 
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Figure 2.  Results for Pacific sardines. A. Numbers indicate year and recruitment for the  
observed data with dotted lines connecting consecutive years. The color in each plot is 
proportional to the long-run posterior density (see Eq 6).  B. Black bars indicate the 
posterior probability of being in the low recruitment regime (regime 2) for each year.   
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Figure 2.Results for Baltic cod. A. Numbers indicate year and recruitment for the 
observed data with dotted lines connecting consecutive years. The color in each plot is 
proportional to the long-run posterior density (see Eq 6).  B. Black bars indicate the 
posterior probability of being in the low recruitment regime (regime 2) for each year.   
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Figure 4.  Posterior forecast density for next year's recruitment as a function of initial 
population size for the sardine (A) and for the Baltic cod (B), conditional on previous 
regime states.  Recruits are in tons for panel A and numbers of individuals for panel 
B.Color indicates posterior density with dark blue being zero and warmer color indicating 
higher probability.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Probability of the next year's regime, as a function of initial cohort size and 
recruitment, updated based on a new observation of recruitment for the sardine (A) and 
Baltic cod (B).  Recruits are in tons for panel A and numbers of individuals for panel 
B.Color indicates probability with dark red indicating probability 1 of being in the low 
recruitment regime and dark blue indicating probability zero of being in the low 
recruitment regime.  The black line indicates the point where this probability is 0.5.   
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 Appendix A. Sampling from the posterior 

The full conditional for the error variance Vj is an inverse Gamma distribution with 

parameters  

 

Α1)   γV'j =γV + Tj/2,  Tj = |{t:rt=j}| 
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Note that Tj is the total number of years for which rt = j and the summation is over those 

years as well.  The probability that the regime is in state 1 in year t conditional on the 

data, parameters, and all other regime states is given by  
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where r-t indicates the set of regime states with rt removed.  To sample from the full 

conditionals for the qjj's, we first define nij as the number of transitions into state i from 

state j in the current sample of r.  Then, conditional on all other parameters, the qjj's ~B(π j 

+njj, ρj+nji). 
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Finally, the Metropolis step (Gammerman 1997) for the vector θ consists of drawing new 

values θnew from a multivariate normal proposal distribution centered on θ with 

covariance matrix S, and accepting these values with probability u, 
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The covariance matrix S was initially 0.05*I, where I is a six dimensional identity matrix.  

S was updated every 5000 iterations based on the observed covariance among sampled 

elements of θ.  Specifically, we used S = 0.5Chol(Σ) where Σ is the covariance among 

sampled parameters, and Chol(•) denotes the Cholesky factorization.  The factor 0.5 

seemed to allow reasonable rejection rates. 

 

Unfortunately, the model structure described above is unidentifiable.  Since the 

regime designation is arbitrary, for any data set there are two equally probable solutions 

corresponding to swapping the regime labels.  That is, under one solution, some set of 

observations are assigned to group 1, the remainder to group two and parameters for each 

group are determined appropriately.  The other equally reasonable solution is to swap 

group assignments for all members of each group and update parameter distributions 

accordingly.  Thus, for sufficiently close regime-specific parameter sets, the algorithm 

will switch regime assignments for all (or nearly all) observations between each jump 

resulting in bimodal posteriors for the parameters and equiprobable group assignment.   
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A possible approach to overcoming this identifiability problem involves placing 

order restrictions on the parameters for each of the regime-specific models.  In the 

present case, the nonlinearity of the models makes it difficult to rank the parameter 

vectors a priori.  However, recognizing that this constraint is functionally equivalent to 

ignoring the mirror image of the regime assignments, we designed our fitting algorithm to 

avoid this label switching problem by limiting the step sizes between iterations and by 

providing the algorithm with good initial estimates obtained in the following way.  First, 

a single Shepherd model was fit to the data using maximum likelihood.  Preliminary 

regime assignments were made based on whether residuals from this fits were positive or 

negative.  Finally, preliminary regime-specific Shepherd models were fit given these 

preliminary regime assignments.  The resulting parameters and regime states were used 

as our initial values for the MCMC run. 

As noted above, to keep the label switching problem to a minimum, relatively 

small jump sizes were used.  This, however, induces a substantial autocorrelation among 

samples.  To overcome this, we sampled 10x106 draws from the posterior and used a 

thinning rate of 0.0004 to construct our final posterior. 

 

 

 


