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Summary. We propose a new approach for modeling extreme values that are measured in time and space. First
we assume that the observations follow a Generalized Extreme Value (GEV) distribution for which the location,
scale or shape parameters define the space-time structure. The temporal component is defined through a Dy-
namic Linear Model (DLM) or state space representation that allows to estimate the trend or seasonality of the
data in time. The spatial element is imposed through the evolution matrix of the DLM where we adopt a process
convolution form. We show how to produce temporal and spatial estimates of our model via customized Markov
Chain Monte Carlo (MCMC) simulation. We illustrate our methodology with extreme values of ozone levels pro-
duced daily in the metropolitan area of Mexico City and with rainfall extremes measured at the Caribbean coast
of Venezuela.

Some key words: Spatio-temporal process, Extreme values, GEV distribution, Process convolutions, MCMC,
ozone levels.

1. Introduction

Consider the time series presented in Figure 1 which corresponds to daily maxima of ozone concentrations
(in ppm) over the area of Merced in Mexico City for the period 1990-2002. This plot suggests that the
random fluctuations could be superimposed with a decreasing trend. The quantification of such a trend is
key for the validation of important environmental policy decisions. The analysis of a time series of maximum
values such as the one in Figure 1 would be naturally carried out by considering non-stationary processes
with time varying parameters. This is the focus of this paper. Suppose that, in addition to the data at one
specific location, we have data available at neighboring locations. The information from these data can be
pooled together to obtain a global description of the behavior of maxima over a region. In this paper, we
will show how the time-varying models developed for one location can be naturally extended to include a
spatial component.

The traditional approach for the analysis of extreme values is based on the use of the Generalized Extreme
Value (GEV) distribution. This is given by

H(z):exp{— [1+§(z;“>]+1/5} 1)

where p is a location parameter, o is a scale parameter and £ is a shape parameter. The + sign denotes
the positive part of the argument. This distribution encompasses the Fréchet (£ > 0), Weibull (£ < 0) and
Gumbel (¢ — 0) families. A clear account of the statistical modeling for extreme values using the GEV
distribution is presented in Coles (2001). Under the assumption of independence, conditional on y,o and &,
the likelihood of a sample of maxima, say z1,. .., 2, is readily available from (1). Thus, a Bayesian analysis
can be carried out by imposing a prior distribution on u, o and £ as in Coles and Tawn (1996).

An alternative approach to modeling extreme data is that of considering the distribution of exceedances
over a high threshold. Pickands (1975) obtained the Generalized Pareto Distribution, whilst Pickands (1971)
introduced a point process approach. These ideas have been extended and applied in Smith et al. (1997),
Smith (1989), Davison and Smith (1990) and more recently Assungdo et al. (2004). Gaetan and Grigoletto
(2004) present a model with dynamically varying parameters for the analysis of extremes of a univariate
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Fig. 1. Daily maxima of ozone concentration at station Merced in Mexico City from 1990 to 2002.

time series. Their model includes dynamic changes for scale/shape parameters and sequential updating with
Particle Filters. There is no space or space-time structure. Regarding the modeling of data at different
locations in space, Casson and Coles (1999) consider the spatial distribution of extremes using a threshold
model based on the point process approach. Gilleland et al. (2004) develop a hierarchical model based on
the Generalized Pareto Distribution. The present paper shares with the last two papers cited the fact that
the modeling is based on hierarchical structures that assume the existence of an underlying spatial model.
An alternative would be to consider models based on multivariate distributions for extremes. Families of
such distributions have been developed, in Ledford and Tawn (1996, 1997) and Heffernan and Tawn (2004)
by focusing on obtaining flexible asymptotic dependence properties. Dupuis (2005) considers an approach
based on copulas. So far, models based on multivariate distributions for extremes have been applied only to
a few spatial locations.

In this paper we focus on the use of the GEV distribution and allow the parameters to vary in time
and space. In Section 2 we propose some approaches for time series of extremes taken at one location
in space. We study the time varying behavior of the parameters that govern the distribution of the data
using Dynamic Linear Models as presented in West and Harrison (1997). We illustrate the possibilities of
capturing time varying trends. The use of a dynamic model allows for the detection of both short and long
range changes. We also consider the problem of relating trends to time varying covariates. By doing so we
are able to describe how the strength of the linear relationship changes with time. In section 3 we extend
the model to allow for spatial variation of the parameters. Our spatio-temporal model for extremes is based
on process convolutions using methods presented, for example, in Higdon (2002). This provides a reduction
of the parameter space that is effective in handling large number of locations. In the final section we present
a discussion of our results.

2. GEV distribution with parameters varying in time

Coles (2001) presents an approach to model changes across time in maxima using the GEV distribution.
These changes are defined through deterministic functions and may refer to trend or seasonality in the data.
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Consider a sequence of conditionally independent observations zi, zs, ..., 2, such that each observation
follows a GEV distribution with a time varying location parameter, i.e., z; ~ GEV (us,0,€). To obtain z;
we fix a time length or block of data and calculate the maximum of the observations obtained during the
i-th period of time or block. To model changes in time, Coles (2001) mentions several possibilities. For
example, y; = Bo + Pit, p: = Bo + B1 + Pat + B3t? or some other higher-order polynomial on ¢. Also, he
suggests the use of covariates with an expression of the form u; = Sy + f1X;. Non-stationary models can
also be formulated for the shape and/or scale parameters. For example, oy = exp(Bo + S1t); & = Bo + St
or & = fo + Pt + Pat®.

Alternatively, we propose the use of Dynamic Linear Models (DLMs), a very general class of time series
models, as in West and Harrison (1997) to model parameter changes across time for location, scale or shape.
For a time-varying location model, we assume that the data 21, 22, . . ., 2, defines a conditionally independent
sequence and z; ~ GEV (ut,0,€) so the cumulative distribution function of each z; is

—-1/¢
Hy(z) = exp{— [1+£<u)] }; t=1,...,m.
g +

This assumption is based on asymptotic results and so it can be considered as an approximation. Instead of
a deterministic function on yu;, we assume that

e = Ff+e; e ~N(O,V)
0 = Gibi—1 +wi; we~NO,W)

where 6; is state vector of dimensions k x 1; F} is a “regressor” of dimensions k x 1; G is a k x k evolution
matrix; V is the observational variance and W is a k x k evolution covariance matrix. This defines a DLM
(F},V,Gy, W). By using a DLM we obtain more flexibility in that trends are not constrained to having a
specific parametric form. We can assess the significance of short term changes together with long term ones.
Also, it is possible to quantify how the effects due to covariates change with time.

Posterior inference and structure under our new GEV distribution follows standard Markov chain Monte
Carlo (MCMC) methods (see, for example, Gamerman, 1997). We briefly describe the relevant full condi-
tional distributions. Define the vectors Z = (21,22, --,2m); = (W1, 2, - -, fm) and 0 = (01,605,...,6.,).
At each step of our MCMC algorithm, we draw,

e Each value of y; from p(u|z:, 60, V,W);t = 1,...,m via Metropolis-Hastings steps. Given the condi-
tional independence structure of the model, the conditioning on Z reduces to z;.

e The scale and shape parameters are simulated from p(c|Z,p,&) and p(€|Z, p,o) with individual
Metropolis-Hastings steps. The scale and shape parameters of the GEV distribution are assumed
constant in time.

e The observational variance V can be sampled from an Inverse Gamma distribution.

e The evolution covariance matrix W can be modeled with discount factors or as functions of the ob-
servational variance V. In the second case, the evolution can be sampled with an Inverse-Gamma, or
Inverse-Wishart distribution.

e Conditional on u, V and W, we sample the state vector € using the Forward Filtering Backward
Simulation (FFBS) algorithm as presented in Carter and Kohn (1994) or Frithwirth-Schnatter (1994).
Forward in time, we apply the recursive filtering equations (West and Harrison, 1997, Chapter 4), to
obtain p(8;|D;, V,W);t = 1,2, ..., m, the posterior distribution of #; given all the information available
up to time ¢ (D;). Backwards in time, we first simulate p(6,, | Dr,, V, W) and then, recursively we sample
the other 6; values from p(6;|0141, Dy, V., W) for t =m —1,...,1.

An implementation of this algorithm, together with the data analyzed in this paper are available from the
URL www.stat.unm.edu/~ghuerta/.

As an illustration of the proposed model we return to the data in Figure 1. To explore the existence of
possible trends we consider a particular case of time-varying GEV. This is given by a first order polynomial
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Fig. 2. Daily maxima of ozone concentration at Merced from 1990 to 2002, posterior means for (u:, 6;) and 90%
posterior probability interval for 6

DLM where F; = G; = 1,Vt, V is unknown and W; = 7V, Vi, 7 > 0, with a one dimensional state-parameter
0;. Such model is useful to represent changes in level of the location parameter ;. We complete the model
by considering the priors: (6p|Do) ~ N(mg,Co),V ~ IG(aw, By), T ~ IG(ar, ;). Additionally, we assume
that (o, &) are a priori independent where log(o) and & follow a Normal distribution, i.e. w(¢) ~ LN (my, s5)
and (&) ~ N(meg, s¢).

In Figure 2 we present the results of fitting this GEV- first order polynomial DLM. The figure shows
the data (points), posterior means for y; and 6; and the 90% posterior probability interval for 6;. The
decrease in levels across time is quite notorious. These estimates illustrate that our models are very flexible
in representing dynamic structure for extreme values.

As we have previously mentioned, the use of the distribution in (1) for extremes is based on asymptotics.
That is, z is assumed to be the maximum of n independent random variables and, after normalization, when
n tends to infinity, the GEV is obtained. In practice we have neither independence nor a very large number
of observations. To check the goodness of fit of the GEV model, the usual approach is to observe the ability
of the model to predict the empirical quantiles of the data. Our model produces time-varying quantiles, so,
there is only one observation available to obtain the empirical quantile at any given time. To overcome this
difficulty we consider two diagnostics. The first one is presented in Figure 3. We observe that most of the
data are contained within the (time-varying) intervals whose lower and upper bounds are the 5% and 95%
quantiles respectively.

An alternative diagnostic is the one based on the method proposed in Kim et al. (1998). Let u; =
Hy(z),Vt then, according to Rosenblatt (1952), if the model is properly specified then the sequence wuy
should be independent and distributed as a uniform in (0,1). Clearly, for our model we have a whole sample
of uy for each t. Kim et al. (1998) propose to do a qq-plot of ® '(2|u; — 0.5|), where ® is the cumulative
distribution function of a standard normal. The results from the analysis of the u; are presented in Figure 4.
We observe that, according to this diagnostic, the model is providing a fairly good fit of the data. In regards
to the tail behavior of Mexico City ozone extremes, a 95% posterior interval for the shape parameter £ is
(—0.189,—0.146), which corresponds to a Weibull family of distributions.

One of the most important questions about ozone daily maxima is to determine if there is a decreasing
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Fig. 3. Daily maxima of ozone concentrations. 95% and 5% quantiles for time-varying model.
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trend. For this purpose, we considered a second order polynomial (West and Harrison, 1997) DLM for p;.
This second order polynomial is defined by the equations,

pe = O+ €
0 = Oi—1+ Pi1 + 1y
Be = PBi—1+m

with the typical normal distribution assumptions for the error terms. In DLM notation this model is written
F, =(1,0), 6; = (6, 8),
11
Gi = (0 1) ’

€ ~ N(0,V) and w; = (v, mt) ~ N(0,Wy). 0; is the level and ;_; represents incremental growth for the
series u;. We considered a discount factor approach to model the evolution variance W;. A discount factor
measures the amount of information loss, between time ¢ — 1 and time ¢, for the state parameters of a DLM
(West and Harrison, 1997, Chp. 4). For the daily maxima of ozone and for a discount factor of 0.95, we
obtained a posterior estimate for J; that resembles the level estimated with the first order polynomial model.
However, the estimated incremental growth is practically constant in time with a value close to 0. This
implies that there is little evidence of significant short changes in level.

To assess the significance of a long range trend, we considered a regression model for p;, with a time
varying intercept but with a constant slope

pe = 0 +Bt—1)+e
0, = 01+ w

where €; ~ N(0,V), w; ~ N(0,7V),7 > 0, €; and w; are assumed independent and t = (l/T)(ZZ;1 t) so 8
represents the change level per unit of time. This new model on y; is not a DLM so the FFBS does not apply
directly to obtain posterior inferences on S and #;. However, notice that conditional on 8, u; — 6; defines
a standard regression model with constant slope and zero intercept. For a non-informative prior, p(8) 1,
the full conditional for 3 follows a normal distribution. Furthermore, conditional on 3, u; — 8(t — t) follows
a first order polynomial DLM and at this conditional step, FFBS applies to sample ;.

In the case of the daily maxima of ozone, Figure 5 shows the posterior distribution of the parameter f.
It is clear that there is plenty of posterior mass below zero. In fact, the posterior probability that 5 < 0 is
0.7902 and so there is some indication that daily maxima ozone levels have decreased.

As an additional example, we consider maxima monthly rainfall values from January 1961 to November
1999 taken at the Maiquetia station located at the Simén Bolivar Airport near Caracas, Venezuela. Coles
et al. (2003) present an analysis of these data, which are very relevant due to the catastrophic events
that occurred in the northern coast of Venezuela in December 1999. The rainfall values are shown on
Figure 6 (a). It has been suggested that the Monthly North Atlantic Oscillation (NAO) Index can help
explain rainfall precipitations across the Atlantic Ocean and could also explain rainfall phenomena nearby
the Venezuelan Atlantic coast (personal communication from Lelys Guenni). Based on this we consider the
NAO index as a covariate. The NAO index is the difference of normalized sea level air pressures between
Ponta Delgada, Azores and Reykjavik, Iceland. More information on the NAO index is available from the
URL tao.atmos.washington.edu/data sets/nao/. A time series plot of the NAO index is shown in Figure
6 (b). From a visual comparison of Figure 6 (a)-(b), there is no obvious relationship between the NAO index
values and maxima rainfall values at Maiquetia airport.

We considered a model where Y; ~ GEV (u, 0,£), Y; is the rainfall value at Maiquetia station at time ¢
and p; follows a dynamic regression with the monthly NAO index X;, as the only covariate:

pe = O+ B Xi + &
0 0i—1 + w1t
B: = Bi—1+wa.
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Fig. 7. Posterior median of dynamic regression coefficient 5, and 90% probability bands

The usual assumptions for €; and w;;4 = 1,2 are made and the evolution variances are defined via a unique
discount factor. For a discount factor of 0.98, Figure 6 (a) shows the posterior mean of y; over-imposed to
the rainfall data. We observe an increase that is compatible with the fact that a number of large maxima
are clustered in the last decade. Rainfall in Northern Venezuela is a very seasonal phenomenon, with a
dry and a wet season that are usually very distinguishable. We considered the need of adding a seasonal
component to the model but we found no periodical fluctuations in the series of u; to support this claim.
Also, we calculated the differences between the median of z; and the corresponding observation and we did
not observe any periodicities. Figure 7 shows the posterior median of 3; and 90% probability intervals for
each time point. We observe that after 1970 the coefficient is significantly positive. This indicates that there
is evidence of a significant linear association between the dynamics of the monthly maxima and the behavior
of the NAO index. The strength of such association changes with time. The posterior distribution of the
shape parameter £ (not shown) is mostly concentrated between .3 and .7. Very few samples fell outside the
interval (0,1). This is an indication that the distribution of the maxima is Fréchet and that it is unbounded
above.

3. GEV distribution with parameters varying in space and time

We can very naturally extend the model presented in the previous section to data in space and time. We base
our approach in process convolutions as in Higdon (2002). In fact, process convolutions provide a convenient

linear representation of Gaussian processes. Consider that at time ¢ we have a vector ¥ = (Y1,¢5- -+ Yny,t)’
for which observations were recorded at the sites s1, ..., S,,. A space-time formulation for y; is defined as,
vy = Ko+
Ty = Tyt
where K* is a n; x x matrix given by K}, = k(si —wj), t =1,...,m, where k is a given kernel. This model
is included within the class of DLMs used in previous sections for temporal modeling. We assume that the
observation error €; ~ N(0,021I,,) and the evolution error v; ~ N(0,021,), for t = 1,...,m. The prior for
the state vector zg is zg ~ N(0,021).
As mentioned above, the elements k(- — w;) are defined by a smoothing kernel where wy,...,w, are the

spatial sites or knots where the kernels are centered. Since the error terms are not spatially correlated, the
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spatial dependency of this model is completely defined by K. Some recommended kernels are Gaussian
k(s) o exp{—||s||?/2n*}; Ezponential k(s) o exp {—||s||/n?};, for some 5 > 0 and Spherical k(s)
(1—1s? /7“3)3 I[s < r], for a given r. Doing a convolution at wy,...,w, provides a finite approximation to
the continuous convolution. For the integral convolution it is possible to find an equivalence between the
kernels and the covariance function of the process. See Kern (2000) for more details.

In order to merge the spatial DLM with the analysis of the extreme values, assume that z5 s ~ GEV (5,4, 0, )

fors=1,...,5and t =1,...,m. The distribution function for z is
-1/¢
st — Ms,t
Hs (25,65 5, €, 0) =exp{— [1+§ <¥)] }
o +

For each t let py = (pa s, 2ty - - - pos,t)’- We now define a DLM on p; using the process convolution approach
described previously.

pe = K'0;+e;

0, = 01+
where the state vector 6; = (61,...,6:x), € = (€41, -v€t,6)'s Ve = (We1,...,V.) . Additionally, € ~
N(0,02Is) and vy ~ N(0,021,). Using a Gaussian kernel we have that the S x x matrix K’ is given by
K;; = exp(—d||s; —w,||?/2) where s; is the position of station i; w; is the center of the jth kernel j = 1,...,x

and d is a range parameter.

For the parameters in the first stage of the model we specify the prior distributions 7(c) ~ LN (s, $¢)
and m(£) ~ N(ug,se). For the parameters in the second stage, 8 ~ N(0,021,); 1/0% ~ Gamma(ac, B¢);
1/02 ~ Gamma(a,,p,) and 1/05 ~ Gamma(ayg, Bg). The log-likelihood for the first-stage model parameters
is

m S _ —1/¢
16) = —msmga_zz[ug(w)]

t=1 s=1 +
1 m S _
_(l+_)ZZIOg |:1+§(ys,t Ms,t)]
o t=1 s=1 4 +

Posterior inference and simulation for this space-time model follows a similar structure as for the GEV
time-varying model. The full conditional for u: s , 0 and £ are sampled each with a Metropolis-Hastings
step. We draw the state vector §; with Forward Filtering Backward Simulation. The full conditionals of ¢2;
02; op are sampled with Inverse Gamma distributions. Traditionally, for process convolutions, kernels are
centered around points on a regular grid and the range parameter is fixed as d = c¢, where where ¢ is the
distance between kernel and ¢ is a constant, usually between 1/2 and 2.

We consider the problem of modeling daily maxima of ozone in Mexico City during the year 1999. Daily
maxima are obtained from the Red Automética de Monitoreo Ambiental (RAMA) hourly measurements
that come from 19 monitoring stations. A spatio-temporal model for the actual hourly ozone observations
is developed in Huerta et al. (2004). That paper focuses on interpolation and short term forecasting of the
hourly ozone levels and not in extremes. The model is based on the amplitudes of daily fluctuations of ozone.
Such amplitudes are assumed to vary in space and time and depend on covariates that also vary in space
and time. In Figure 8 we present the RAMA stations along with the kernel positions selected to define the
process convolution on the location parameters. The results that we present in this paper are based on a
sixteen points grid. We fitted the model using a nine and a four points grid and observed no substantial
differences in the diagnostics and quantile estimates. Varying the choice of the parameters that define our
priors also produced fairly robust results.

In Figure 9 we show the data for four stations and the estimates of the posterior medians of the time-
varying GEV distributions. Since there are no replicate observations for any given day, it is hard to interpret
precisely the meaning of the median at time ¢. Nevertheless, we expect that the curve will split the cloud of
points, roughly, in two halves. To asses the validity of the model, we obtained the predictions for each one
of the locations after leaving them out, one at a time. For each station we performed a diagnostic based on
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kernel centers are denoted with w;. The grid points correspond to the locations used to obtain the values shown in
Figure 11. The continuous line corresponds to the boundaries of Mexico City.

the u; transformation, in analogy to the analysis presented in Section 2. As for the univariate case we did
a graphical analysis of the autocorrelations and the qqg-plots. The results for the four stations considered in
Figure 9 are presented in Figure 10. Overall the diagnostics were fairly acceptable. In addition, we noticed
that the fit that used all the data produced results that are very similar to those obtained after deleting any
one station.

The spatial and temporal variability of the results is shown in Figure 11. We observe a clear gradient
increasing in the NE-SW direction. This is consistent with the results in Huerta et al. (2004). The direction
of the gradient remains essentially unchanged in time, but the medians vary substantially from day to day.
An exploration of the posterior distribution of £ shows that the shape is clearly a negative parameter,
indicating that the distribution belongs to the Weibull family. A 95% posterior probability interval for £ is
(—0.219,—0.186). This implies that the density fitted to the data has a support that is bounded above. For
any station, the bound is time-varying and is given by ps; — o /€.

Coles et al. (1999) propose a summary of the extremal dependence of two random variables, (X,Y") by
transformation to variables, say, (U, V) with uniform marginals. This is given by

_log Pr(U <u,V <wu)
log Pr(U < u)

x(u) =

0<u<l.

This is an approximation to Pr(V > u|U > u). We define a time-varying version of this measure for a pair

of locations s and s’ using the predictive posterior distributions. Thus

log Pr(Us s < u,Us,s < u|D)
log Pr(Uy,s < u|D)

xt(u,s,8") =2 0<u<l. (2)
where Uy, = Hyr(2t,0),7 = 8,8 and D denotes all available data. If a sample from the joint posterior
distribution of the parameters is available, say, Mgg’f(i),a(i),i = 1,..., M, then (2) can be approximated

by computing the proportion of pairs (U, (i), Ut(,?') less than a fixed v and dividing this proportion by the

t,s
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Fig. 11. Posterior estimate of the 0.5 quantile of the space-time GEV distribution for a 50 x 50 resolution grid. Dots
correspond to the locations of the stations. The boundary of Mexico City is shown as a reference. The contour lines
correspond to fixed ozone levels in ppm.
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Fig. 12. Dependency between the maxima at AZC and TAL, XAC, TPN and TAH for ¢ = 200 and different values of w.

proportion of cases where Ut(;) < u. Figure 12 shows the graph of x200(u, s,s’) for s corresponding to the
location of station AZC and s’ to four other different stations. The fact that all curves tend to zero for u
close to 1, suggests that the model is producing asymptotic independence. Nevertheless, we observe that the
curves have behaviors that depend strongly on the locations of the stations, for a wide range of u values.
This indicates that, in practice, the model is able to capture different types of pairwise dependencies.

4. Discussion

We have presented a general framework for modeling extreme values that exhibit a time-varying behavior.
The models are based on the use of the GEV distribution and assume that the location parameter varies
with time according to a DLM. For the univariate case we presented four different models and two different
data sets. Our analysis reveals that the proposed dynamic approach provides a flexible way of capturing
short and long range trends as well as time-varying dependencies. The approach can be easily extended to
account for spatial variability by using process convolutions. The assumption of a GEV distribution for the
data is an approximation, but methods based on quantiles can be used to assess the goodness of fit of the
model. The use of the GEV distribution makes inference for quantiles straightforward, since the inverse of
the cdf is available in closed form. Within a MCMC approach all that is needed is the evaluation of such
inverse for each joint sample of the parameters. So, model checking statistics are easy to compute. The
asymptotic dependence induced by the model needs to be theoretically assessed. Empirical measures based
on Monte Carlo approximations indicate that the model is fairly flexible.

Many possible extensions are possible to models considered in this paper. As an alternative or in addition
to a time-varying location we can consider time-varying shape and scale. This will provide more flexibility
for the description of the extremal behaviors. For the scale we can consider an evolution like the one provided
by a DLM after transformation to the log scale. In the spatio-temporal case we can consider scale and shape
parameters that vary with location. We would like to mention that a station by station analysis of the ozone
maxima did not provide grounds for such an extension in the particular case of the data considered in this

paper.
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Finally it is possible to consider methods based on threshold models. This presents the challenge of
dealing with possible time-varying or location dependent thresholds. We would like to mention that for the
ozone data we fitted traditional threshold models station by station. We observed, for some stations, strong
sensitivity to the choice of the threshold. Also we observed that optimal choices of thresholds suggested
values that varied substantially for nearby stations.
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