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Abstract
Molecular motors operate in an environment dominated by viscous friction and
thermal fluctuations. The chemical reaction in a motor may produce an active
force at the reaction site to directly move the motor forward. Alternatively a
molecular motor may generate a unidirectional motion by rectifying thermal
fluctuations using free energy barriers established in the chemical reaction. The
reaction cycle has many occupancy states, each having a different effect on the
motor motion. The average effect of the chemical reaction on the motor motion
can be characterized by the motor potential profile. The biggest advantage of
studying the motor potential profile is that it can be reconstructed from the time
series of motor positions measured in single-molecule experiments. In this
paper, we use the motor potential profile to express the Stokes efficiency as the
product of the chemical efficiency and the mechanical efficiency. We show that
both the chemical and mechanical efficiencies are bounded by 100% and, thus,
are properly defined efficiencies. We discuss implications of high efficiencies
for motor mechanisms: a mechanical efficiency close to 100% implies that
the motor potential profile is close to a constant slope; a chemical efficiency
close to 100% implies that (i) the chemical transitions are not slower than the
mechanical motion and (ii) the equilibrium constant of each chemical transition
is close to one.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Protein motors play a central role in many cell functions. For example, myosin drives muscle Q.1

contraction, kinesin drives intracellular vesicle transportation, and the V-ATPases regulate Q.2

intracellular acidity. Understanding the operating principles of protein motors is crucial to
comprehending intracellular protein transport and cell motility.
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Due to the small size of molecular motors, the motor motion is dominated by viscous
friction and thermal fluctuations [4]. As a result, molecular motors have several properties that
distinguish them from macroscopic motors. For molecular motors,

(1) the effect of inertia is negligible, or more precisely the timescale of inertia is much smaller
than the timescale of a reaction cycle;

(2) the instantaneous velocity, caused by thermal fluctuations, is several orders of magnitude
larger than the average velocity; and

(3) the kinetic energy of the motor corresponding to the average velocity is a tiny fraction of
the free energy consumption per reaction cycle.

In contrast, for macroscopic motors, the timescale of inertia is much larger than the timescale of
a reaction cycle; the instantaneous velocity is approximately the same as the average velocity;
and the kinetic energy of the motor corresponding to the average velocity is a very large multiple
of the free energy consumption per reaction cycle. Therefore, we should not simply extend
all results for macroscopic motors to molecular motors without examining them carefully. In
both macroscopic motors and molecular motors, a unidirectional motion can be generated by
producing an active force at the chemical reaction site and using the active force to drive the
motor forward. This mechanism of generating a unidirectional motion is called the power
stroke motor mechanism [42, 25]. However, in molecular motors, a unidirectional motion
can also be generated by a completely different mechanism. In the one-dimensional motion,
if thermal fluctuations in one direction are blocked, then the motor will be carried forward
by thermal fluctuations in the other direction. This mechanism of generating a unidirectional
motion is called the Brownian ratchet mechanism [29, 12, 23, 2, 32]. The information ratchet
discussed in [3] corresponds to the Brownian ratchet in this paper. In a Brownian ratchet,
the motor is moved forward by thermal fluctuations and there is no active force produced
at the chemical reaction site to drive the motor forward. Of course, the free energy for the
unidirectional motion comes from the chemical reaction, which establishes the energy barriers
blocking the backward fluctuations. In a Brownian ratchet, the kinetic energy flow from the
chemical reaction site to the motor motion is zero. Furthermore, for molecular motors, the
kinetic energy flow from the chemical reaction site to the motor motion may be negative or
may even exceed the free energy consumption of the motor [43]. Thus, the kinetic energy flow
in molecular motors is completely different from that in macroscopic motors. This indicates
that we should be especially careful when studying the efficiencies of molecular motors.

When a motor is working against a conservative force, the thermodynamic efficiency is
well defined as the energy conversion efficiency, which is the ratio of energy output to energy
input:

ηThermodynamics = Energy output per time

Energy input per time
.

Here the energy output is the potential energy increase in the external agent exerting the
conservative force on the motor. This definition is good for both macroscopic motors and
molecular motors. For a macroscopic motor working against the viscous friction, in the
definition of efficiency, we can simply replace the energy output by the work done on the
surrounding fluid (=the friction force times the displacement). This replacement is justified
for a macroscopic motor because in one reaction cycle the velocity fluctuation is small and
consequently the friction force is nearly uniform. Thus, a macroscopic motor does not see
any significant difference between working against the viscous friction and working against
a conservative force of the same magnitude. In [9, 43], the Stokes efficiency for a molecular
motor working against the viscous friction was defined and studied. For a molecular motor, the
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velocity fluctuation in one reaction cycle is several orders of magnitude larger than the average
velocity. There are at least two candidates for the numerator in the efficiency (to replace the
energy output in thermodynamic efficiency): (a) the work done on the surrounding fluid and
(b) the average friction force times the displacement. Unfortunately, the work done on the
surrounding fluid may be negative or may exceed the energy input [43]. The Stokes efficiency
is defined as [9, 43]

ηStokes = Average friction × displacement per time

Energy input per time
.

Notice that the numerator of the Stokes efficiency does not have a thermodynamic meaning.
In particular, it is not the heat put into the surrounding fluid via the motor motion. Therefore,
we cannot conclude that ηStokes � 100% from simple thermodynamic arguments. In [43], we
proved rigorously that ηStokes � 100% on the basis of the general mathematical framework for
modelling molecular motors, which we will describe in the next section.

The current experimental technologies allow us to measure forces and motions of a single
protein motor to the precision of piconewtons and nanometres [37, 17, 14]. Time series of
motor positions have been measured for various protein motors at various mechanical loads
and chemical concentrations [40, 16, 45, 5, 35]. In the past, only the average velocity and
randomness parameter of the motor were extracted from the measured time series of motor
positions [40, 36]. In [41], we proposed the concept of a motor force profile and used it to
represent the overall effect of the chemical reaction on the motor motion. Mathematically, the
motor force profile is a periodic function of the motor position. At each motor position, the
motor force profile is the average motor force over all chemical states at that position weighted
by the steady state probability densities. The integral of the motor force profile is called the
motor potential profile, which is a tilted periodic function. The most important property of
the motor potential profile is that it can be reconstructed from measured time series of motor
positions [41]. Thus, the potential profile is a measurable quantity that provides insight into
the motor mechanism. For a Brownian ratchet, the potential profile is a sequence of vertical
free energy drops rectifying forward fluctuations while the potential profile of a power stroke
motor is a gradually decreasing function of the motor position, generating an active force to
drive the motor. Brownian ratchet and power stroke motors are two extreme situations. The
potential profile of a motor may have both vertical free energy drops and downhill slopes.
There is no guarantee that the motor potential profile will be monotonic. So it may also have
vertical barriers and uphill slopes. The motor potential profile is the link between the chemical
reaction and the motor motion. We can conceptually divide the motor into two parts: first the
chemical reaction produces the potential profile; then the potential profile produces the motor
motion. In this paper, we consider the Stokes efficiency and use the motor potential profile to
decompose it as the product of the chemical efficiency and mechanical efficiency. The chemical
efficiency measures how efficiently the chemical reaction generates the motor potential profile.
The mechanical efficiency measures how efficiently the potential profile generates the motor
motion. We will show that the chemical efficiency and the mechanical efficiency are both
bounded by 100%. Thus, they are both properly defined efficiencies. For the overall Stokes
efficiency to be near 100%, both the chemical efficiency and the mechanical efficiency must
be near 100%. If the mechanical efficiency is near 100%, then the potential profile must be
close to a constant slope downhill. If the chemical efficiency is near 100%, then first the
chemical transitions are not rate limiting (i.e., the chemical transitions are not slower than the
mechanical motion over the transition region) and second the free energy change associated
with each transition is close to zero (i.e., the equilibrium constant of each chemical transition is
close to one). In this paper the ‘chemical transition’ means the ‘change of occupancy’. Below,
we will first introduce the mathematical formulation for describing molecular motors. Then
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we review the Stokes efficiency and the motor potential profile. After that we will decompose
the Stokes efficiency into the chemical efficiency and the mechanical efficiency and show that
both efficiencies are bounded by 100%. Finally we discuss the implications for the motor
mechanism if the chemical efficiency or the mechanical efficiency or both are near 100%.

2. Mathematical formulation of molecular motors

In general, a molecular motor has many degrees of freedom, of which one is associated
with the unidirectional motion of the motor. For example, a kinesin dimer walks along a
microtubule [39, 15, 40, 8], and the γ shaft of the FoF1 ATP synthase rotates with respect to
the α3β3 hexamer [1, 34, 24, 42, 22]. In studies of molecular motors, it is natural to follow the
motor along the dimension of its unidirectional motion [30, 18, 2, 12], and model the other
degrees of freedom in the mean field potential affecting the unidirectional motion.

We consider the one-dimensional motion of a small particle in a fluid environment subject
to a potential, V (x), where x is the coordinate along the dimension of the unidirectional motion.
The particle is subject to the force derived from the potential, the viscous drag force, and the
Brownian force. The drag force is the mean of the random force caused by the bombardments
of surrounding fluid molecules. The drag force always opposes the motion. The Brownian
force is the rest part of the random force. The mean of the Brownian force is zero. The
stochastic motion of the particle is governed by the Langevin equation with inertia (Newton ’s
second law):

m
dv

dt
= − ζv

︸︷︷︸

Drag
force

− V ′(x)
︸ ︷︷ ︸

Force from
potential

+
√

2kBT ζ
dW (t)

dt
︸ ︷︷ ︸

Brownian
force

(1)

where m is the mass and v the velocity of the particle. In the above, W (t) is the Weiner
process. The drag force on the particle, ζv, is proportional to the velocity, and ζ is called the
drag coefficient. The magnitude of the Brownian force is related to the drag coefficient, and
is given by

√
2kBT ζ . This is a result of the fluctuation-dissipation theorem [31]. Here kB is

the Boltzmann constant and T the absolute temperature [21].

2.1. Reduction to the Langevin equation without inertia

Molecular motors operate in an environment dominated by viscous friction and thermal
fluctuations. For molecular motors, equation (1) has two very different timescales: the very
short timescale for the motor ‘forgetting’ about its initial velocity and the relatively long
timescale for the motor motion driven by the potential. It is analytically and computationally
convenient and necessary to get rid of the short timescale (i.e., ignore the effect of inertia) and
approximate equation (1) using the Langevin equation without inertia. To give an intuitive
picture of the timescales and the approximation, let us consider a bead of radius r . The drag
coefficient and the mass of the bead are, respectively, given by [4]

ζ = 6πηr, m = 4
3πρr3

where ρ is the density of the bead and η the viscosity of the surrounding fluid. We consider the
quantity t0 = m

ζ
= 2ρ

9η r2. It has the dimension of time and it is proportional to the square of
the bead radius. Consequently, for a small bead, the timescale t0 is very small. For a latex bead
of 0.5 µm in water, we have ρ = 10−21 g nm−3, η = 0.01 P = 10−9 pN nm−2 s, r = 250 nm,
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and the timescale t0 is t0 = m
ζ

= 2ρ
9η r2 ≈ 14×10−9 s = 14 ps. This timescale is much smaller

than the timescale of motor reaction cycles. We rearrange terms in equation (1) to write it as

dv

dt
= − 1

t0

(

v −
[

− 1

ζ
V ′(x) +

√
2D

dW (t)

dt

])

(2)

where D = kB T
ζ

is the diffusion constant [4]. When t0 is very small the solution of (2) satisfies
approximately

v =
[

− 1

ζ
V ′(x) +

√
2D

dW (t)

dt

]

. (3)

The reduction from (2) to (3) in the limit of small t0 is called the Einstein–Smoluchowski
limit [33]. The reduction from (2) to (3) can be illustrated intuitively by considering a simple
model differential equation similar to (2):

dv

dt
= − 1

t0
(v − f (t)). (4)

The solution of (4) is given by

v(t) = f (t) + exp

(−t

t0

)

(v(0)− f (t)) +
∫ t

0
exp

(−(t − s)

t0

)

( f (s)− f (t)) ds. (5)

When t0 is very small and for t > 0, the solution of (4) satisfies approximately v(t) = f (t).
A more rigorous analysis of the reduction from (2) to (3) can be found in [33]. We write (3)
as a differential equation for x :

dx

dt
= − 1

ζ
[− f + V ′

S(x)] +
√

2D
dW (t)

dt
. (6)

Here we have replaced the potential V (x) by an external force f plus a periodic potential
VS(x), which may vary with S, the current chemical occupancy state of the reaction site. This
is for the convenience of the discussion below. Equation (6) is the Langevin equation without
inertia, governing the stochastic motion of a small particle driven by the external force f and
potential VS(x).

2.2. Modelling changes of occupancy

In molecular motors, the motion is not driven by a static potential. Rather, it is driven by
switching among a set of potentials, each corresponding to a chemical occupancy state. Thus,
in equation (6), the periodic potential VS(x) changes with the current chemical occupancy state
S of the motor system [30, 12]. It is important to point out that in this mathematical framework,
the overall chemical process in the motor system is divided into two kinds of chemical steps:
those chemical steps that involve changes of occupancy of catalytic sites and those that do
not. In this mathematical framework, all chemical steps involving changes of occupancy are
modelled as chemical transitions and are governed by a discrete Markov process. Chemical
steps that do not involve changes of occupancy are modelled as a continuous conformational
change on the potential curve of the corresponding occupancy state. For ATPase motors, the
ATP hydrolysis cycle at each catalytic site goes through four occupancy states [1, 6, 44, 7]:

Site + ATP
Binding←→ Site · ATP

Hydrolysis←→ Site · ADP · Pi

Pi Release←→ Site · ADP + Pi
ADP Release←→ Site + ADP + Pi.

The whole ATP hydrolysis cycle involves more than just the change of occupancy. For example,
‘an ATP diffusing into a catalytic site and being weakly bound’ involves a change of occupancy
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of the catalytic site and is modelled as a chemical transition (a jump in the discrete Markov
process). On the other hand, ‘the ATP going from being weakly bound to being tightly bound’
does not involve a change of occupancy and is modelled as a sliding down along the potential
curve corresponding to the ATP occupancy state.

Suppose the chemical reaction cycle has N occupancy states. The discrete Markov process
describing the stochastic evolution of the occupancy state can be symbolically written as

dS(t)

dt
= K (x) · S(t) (7)

where S(t) = {S1, S2, . . . , SN } represents the set of all occupancy states of the motor system,
and K (x) = {kS j(x)} is the transition matrix. For j �= S, kS j(x) = k j→S(x) is the rate
of transition from occupancy state j to state S. The diagonal elements of K (x) are defined
as kSS(x) = −∑

j �=S kS→ j(x). Notice that, in molecular motors, the chemical transition
is generally coupled to the mechanical motion. As a result, the transition rate k j→S(x) is a
function of the motor position. The stochastic evolution of a motor system (mechanical motion
and chemical transition) is governed by Langevin equation (6) coupled with discrete Markov
process (7).

In experiments, only average quantities (such as the average velocity and effective
diffusion) can be measured reliably. All average quantities can be calculated from the
probability density of the motor. Let us consider an ensemble of motors, each evolving in
time independently and stochastically according to equations (6) and (7). Let ρ�(x, t) be the
probability density for the motor being at position x and in occupancy state S at time t . The
time evolution of ρ�(x, t) is governed by the Fokker–Planck equation corresponding to (6) Q.3

and (7) [33, 13]:

∂ρS

∂ t
= D

∂

∂x













− f + V ′
S(x)

kBT
ρS

︸ ︷︷ ︸

Effectsofexternal
andmotorforces

+
∂ρS

∂x
︸︷︷︸

Brownian
motion













+
N
∑

j=1

k j→S(x)ρ j

︸ ︷︷ ︸

Chemical reactions

, S = 1, 2, . . . , N.

(8)

Equation (8) is a general mathematical framework for theoretical discussion of molecular
motors [30, 28, 11, 32, 10, 43, 26]. It is important to point out that although (8) is a linear
differential equation in terms of the probability density, it is nonlinear in terms of the vector
(ρS, VS, D, k j→S). In general, the motor system does not respond linearly to changes in
(VS, D, k j→S). So deciphering the motor mechanism is definitely not a linear problem.

2.3. Detailed balance and reaction diagrams

In modelling molecular motors, the transition rates in (8) cannot be arbitrarily specified. They
must satisfy detailed balance. Detailed balance is a condition on transition rates that ensures
that, if the system is brought to equilibrium, the probability density is given by the Boltzmann
distribution. Detailed balance is an equilibrium property while molecular motors operate in
the non-equilibrium mode. We impose detailed balance on the transition rates because, in the
mathematical framework described above, the transition rates do not ‘know’ whether or not the
system is in equilibrium. Indeed, the transition rates in equation (8) depend only on the motor
position. That is, at a given motor position, the transition rates are not affected if transition rates
at other locations are changed (for example, some transitions are blocked) to bring the system
to equilibrium. Specifically, detailed balance requires that the rates of transition between two
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states A and B satisfy
kA→B

kB→A
= exp

(

G A − G B

kBT

)

(9)

where G A and G B are the free energies of, respectively, states A and B . We have to be careful
in assigning free energy to a chemical state. To illustrate the subtlety, we consider a simple
situation where the motor has only one catalytic site, and, in each cycle, it goes through N
chemical states sequentially (N > 2):

· · · ↔ SN ↔ S1 ↔ S2 ↔ · · · ↔ SN−1 ↔ SN
︸ ︷︷ ︸

One reaction cycle

↔ S1 ↔ · · · (10)

We define Vj(x) as the free energy of the motor at position x in chemical state Sj when
the motor is in the particular reaction cycle specified in the diagram above. In the diagram,
the chemical state SN immediately to the left of the specified reaction cycle has free energy
VN (x)+ A and the chemical state S1 immediately to the right of the specified reaction cycle has
free energy V1(x)− A where A = −	G is called the chemical affinity [19, 20] and	G < 0
is the free energy drop in one reaction cycle. For example, for the ATP hydrolysis cycle at
physiological conditions, −	G ≈ 20kBT [38]. In the simple situation shown in diagram (10),
detailed balance requires the transition rates in (8) to satisfy

k j→ j+1(x)

k j+1→ j(x)
= exp

(

Vj(x)− Vj+1(x)

kBT

)

for 1 � j < N

kN→1(x)

k1→N (x)
= exp

(

VN (x)− V1(x) + A

kBT

)

.

(11)

The situation is most confusing when a cycle has only two chemical states as shown below:

(12)

For reaction diagram (12), the transition rate k1→2(x) in the mathematical framework described
above, for example, contains both k+

1→2, the transition from S1 forward to S2, and k−
1→2, the

transition from S1 backward to S2. For each transition, we can impose detailed balance:

k1→2(x) = k+
1→2(x) + k−

1→2(x),

k2→1(x) = k+
2→1(x) + k−

2→1(x),

k+
1→2(x)

k−
2→1(x)

= exp

(

V1(x)− V2(x)

kBT

)

,

k−
1→2(x)

k+
2→1(x)

= exp

(

V1(x)− V2(x)− A

kBT

)

.

Consequently, for the transition rates k1→2(x) and k2→1(x), we have
k1→2(x)

k2→1(x)
�= exp

(

V1(x)− V2(x)

kBT

)

. (13)

(Unfortunately) (13) is sometimes viewed as the breaking of detailed balance. This view is Q.4

a direct result of viewing the chemical reaction as a system jumping between two fixed states,
each state having a fixed free energy:

.
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In reality, the free energies of S1 and S2 depend on the number of reaction cycles that have
already been completed. Therefore, we believe, for the discussion of free energy, it is more
reasonable to view the chemical reaction as a system going along an infinite sequence of sets
of N states as shown in diagrams (10) and (12). This is especially important for avoiding
confusion when the reaction cycle has only two states.

3. Thermodynamic efficiency and Stokes efficiency

3.1. Thermodynamic efficiency

In single-molecule experiments, if a motor works against a conservative force from an external
agent (such as the force from a laser trap), then the energy input is the chemical free energy
consumed by the motor and the energy output is the potential energy increase in the external
agent that exerts the conservative force. In this case, the thermodynamic efficiency is well
defined as the energy conversion efficiency:

ηThermodynamics = − f v

Ar
(14)

where A = −	G is the chemical affinity, f the external force, v the average velocity, and
r the reaction rate (average number of reaction cycles per time). Here the external force is
defined as positive if it is in the same direction as the unloaded motor motion. So a load force
that opposes the motor motion is negative.

3.2. Stokes efficiency

In many single-molecule experiments it is only possible to load a molecular motor by
manipulating the viscous drag from the fluid medium. For example, Yasuda et al [45] measured
the rotational velocities of the F1 ATPase motor driving actin filaments of various sizes. In these
situations, there is no energy output to increase the potential energy of an external agent, and,
as a result, the thermodynamic efficiency does not apply. It is tempting to define an efficiency
as the heat generated via the motor motion divided by the chemical energy consumption.
However, an efficiency measure must be between zero and one. As we will see later, the heat
generated via the motor motion may be negative or may exceed the free energy consumption.
In [9, 43], the Stokes efficiency was defined to measure how efficiently the motor is utilizing
the chemical energy to generate a unidirectional motion in a viscous fluid medium:

ηStokes = ζv2

Ar + f v
(15)

where ζ is the drag coefficient. In [43], we proved rigorously that the Stokes efficiency is
between zero and one, and, thus, it is a properly defined efficiency. The proof in [43] was
based on the mathematical formulation (8) described in the previous section. In appendix A,
we will give another proof, which is independent of equation (8) but is valid only for a motor
system in the linear regime where it is not far from equilibrium.

3.3. Two examples

To illustrate the subtlety associated with the discussion of Stokes efficiency, we show two
examples. In the first example, the work done on the surrounding fluid via motor motion (the
heat generated via the motor motion) is negative. That is, the kinetic energy flows from the
fluid environment to the motor motion and then to the catalytic site. In the second example,



Chemical and mechanical efficiencies of molecular motors and implications for motor mechanisms 9

V1(x)

∆Q

A/2

P
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l, 
V

S
(x

)

Motor Position, x

2

5

V1(x)−A

V1(x)

∆Q

∆GSW

Motor Position, x

P
ot

en
tia

l, 
V

S
(x

)

1

2

3

4

V2(x)

V1(x)−A

(a) (b)

A/2

1

3

∆GSW

V2(x)

4

Figure 1. Two hypothetical motor systems. (a) A system in which the work done on the surrounding
fluid via motor motion is negative. (b) A system in which the work done on the surrounding fluid
via motor motion exceeds the free energy consumption of the motor.

the work done on the surrounding fluid via motor motion exceeds the free energy consumption
of the motor.

In figure 1(a), → → represents one half of one reaction cycle. The second half,
→ → , is identical to the first half except that it is shifted in the spatial direction by

half of the motor step and shifted in the free energy direction by half of the chemical affinity.
The motor system starts at . Potential V1(x) does not directly drive the motor forward.
Rather, for the motor to move forward, it has to diffuse uphill along potential V1(x) from to

. The kinetic energy for the motor to move from to comes from thermal fluctuations
(the heat in the surrounding fluid). In the process of to , the surrounding fluid does work
on the motor motion. In other words, the work done on the surrounding fluid via motor motion
is negative. Of course, it is impossible to extract heat repeatedly from the environment to do
work for free. The work done by the surrounding fluid on the motor motion and the uphill
fluctuation from to is rectified by the chemical transition from to . During the
chemical transition from to , the catalytic site of the motor may exchange heat with the
surrounding fluid. But no work is done via the motor motion during the chemical transition.
In → → , the heat generated via the motor motion is negative. A possible realization
of this hypothetical system is the case where positive ions diffuse through a membrane pore
against a voltage difference, driven by a concentration gradient. In this case, kinetic energy
(heat) is absorbed by ions to diffuse through the membrane pore against the voltage difference.
Once on the other side of the membrane, the heat absorption and the diffusion are rectified by
the concentration difference.

In figure 1(b), → → represents one half of one reaction cycle. The motor system
starts at . For the motor to move forward, it has to make an uphill chemical transition from

to (a change of occupancy that will switch the motor system from potential V1(x) to
potential V2(x)). No work is done via the motor motion during the chemical transition. Once
on potential V2(x), the motor is driven by V2(x) from to . In the process of downhill
sliding from to , kinetic energy flows from potential V2(x) to the motor motion then
as heat to the surrounding fluid. In this process, the amount of heat generated via the motor
motion is determined by the positions of and on potential V2(x), and is independent of
the free energy difference between and . If we shift V1(x) vertically relative to V2(x),
it will change 	GSW, the free energy difference associated with the transition from to .
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But the vertical shifting will not change 	Q, the amount of heat generated via the motor
motion in the sliding from to . When 	GSW is negative, as shown in figure 1(b),	Q is
larger than A/2, the free energy consumed in → → . A possible realization of this
hypothetical system is the case where positive ions are driven through a membrane pore by a
voltage difference against a concentration gradient. In this case, energy flows from the voltage
difference to the ion motion then as heat to the environment. Because the ion motion also
builds up a concentration gradient, the free energy consumed is less than the heat generated
via the ion motion. Another possible realization of figure 1(b) is the F1 ATPase motor. The
power stroke driven by the ATP binding transition from weak binding to strong binding does a
fixed amount of work on the surrounding fluid via motor motion [45, 25]. This fixed amount of
work is not affected by the ATP concentration in solution. The ATP concentration in solution
affects the frequency of the power stroke and the free energy change of the hydrolysis cycle.
When the ATP concentration is low, the amount of work done via motor motion exceeds the
free energy consumption.

4. Motor potential profile

In single-molecule experiments, time series of motor positions are recorded [40, 45, 46].
However, these time series have not been fully utilized. In the past, only a value of the average
velocity and sometimes a value of the randomness parameter were extracted from each time
series [40, 36]. These time series actually contain much more information. At least, we can
reconstruct the motor potential profile (a function of motor position, defined below) from each
time series.

At each position, besides the passive viscous drag on the motor, the motor is subject to
two other forces: the motor force corresponding to the current occupancy state, V ′

S(x), and the
Brownian force from the surrounding fluid,

√
2kBT ζ dW (t)

dt . The Brownian force is stochastic.
The motor force, in general, is also stochastic. This is because even if the motor position is
given, the current chemical occupancy state is unknown and its evolution is stochastic. In
theory, the sum of these two forces and the current chemical state can be observed. Then, at
each motor position and in each chemical state, we can average the total force over time to
get rid of the Brownian force. So in theory, the motor force as a function of position for each
chemical occupancy state can be recovered from the full accurate observation of both motor
position and chemical occupancy state. However, the current experimental technologies have
not yet allowed us to record both the motor position and the chemical occupancy state. It is
still an open problem how much information about the motor system we can deduce from the
time series of motor positions. For the time being, we believe it is unrealistic to reconstruct all
N potential curves corresponding to the N chemical occupancy states. From the time series of
motor positions, in principle, we can calculate the total force on the motor at each position (this
is not the actual method that we are going to use to reconstruct the motor potential profile).
The total force is stochastic. At each motor position, we can average the total force over time
to get rid of the Brownian force. The result is the average motor force as a function of position,
which is periodic and is called the motor force profile. The integral of the motor force profile
is a tilted periodic function, and is called the motor potential profile. Here, in averaging over
time at each position, implicitly we are averaging over all chemical states weighted by steady
state probabilities of these states at each position.

4.1. Mathematical definition of the motor potential profile

Let us define the motor force/potential profile in the mathematical framework (8). We consider
the case where the external force is zero: f = 0. At the steady state, summing all N component
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equations in system (8), we have

0 = D
∂

∂x

(

ψ ′(x)
kBT

ρ +
∂ρ

∂x

)

(16)

whereρ(x) = ∑N
S=1 ρS(x) is the steady state probability density for the motor being at position

x (regardless of the chemical occupancy state). In (16), all reaction terms cancel with each
other because the transition matrix satisfies the property kSS(x) = −∑

j �=S kS→ j(x). The
motor potential profile, ψ(x), is defined as

ψ ′(x) = 1

ρ(x)

N
∑

S=1

V ′
S(x)ρS(x). (17)

In [30], an effective potential for a two-state model was considered in a similar way.
Equation (16) shows that the steady state probability density ρ(x) behaves as if the motor
were driven by the potential ψ(x). In this sense, the motor potential profile represents the
overall effect of the chemical reaction on the motor motion. Because ψ ′(x) is periodic with
period L (usually the motor step size), we can writeψ(x) asψ(x) = φ(x)− 	ψ

L x where φ(x)
is a periodic function. 	ψ = ψ(0) − ψ(L) > 0 can be viewed as the potential energy made
available in the chemical reaction per motor step for driving the motor motion.

4.2. Extracting the motor potential profile from data

Equation (17) does not provide us with a direct way of calculating the potential profile ψ(x)
from experimental data. Let us look at how the motor potential profile can be reconstructed
from the time series of motor positions. In equation (16), the steady state probability flux is

J = −D

(

ψ ′(x)
kBT

ρ +
∂ρ

∂x

)

. (18)

The probability flux is related to the average velocity as J = v
L . So J is calculated from

average velocity, which can be measured reliably from the time series. In terms of J and ρ(x),
we express the motor potential profile as

ψ(x)

kBT
= − log(ρ(x))− J

D

∫ x

0

1

ρ(s)
ds + C.

Thus, to reconstructψ(x), we only need to recover ρ(x) from the time series. Mathematically,
recovering ρ(x) from the time series can be done in a much more reliable way than by
differentiating the time path to calculate the stochastic force. Still it is a numerical challenge
to recover ρ(x) reliably, especially when only a limited number of experimental data are
available. This numerical issue will be addressed in a separate paper.

5. Chemical and mechanical efficiencies

The motor potential profileψ(x) serves as a link between the chemical reaction and the motor
motion. 	ψ = ψ(0) − ψ(L) can be viewed as the potential energy made available in the
chemical reaction per motor step for driving the motor motion. 	ψ is generated by the chemical
reaction and is used to drive the motor motion. We would like to investigate how efficiently
	ψ is generated in the chemical reaction and how efficiently 	ψ is utilized in driving the
motor motion. For that purpose, we write the Stokes efficiency as the product of two terms.
Here we consider the case where the external force is zero, f = 0:

ηStokes = ζv2

Ar
= ηChemical · ηMechanical (19)
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Figure 2. A hypothetical motor system used to study the behaviours of the chemical efficiency and
the mechanical efficiency.

where ηChemical and ηMechanical are defined as

ηChemical =
(

	ψ

Ar L
v

)

, ηMechanical =
(

ζvL

	ψ

)

. (20)

In the definition of ηChemical, the numerator is 	ψ and the denominator is Ar L
v

, which is the
free energy consumed per motor step. ηChemical measures how efficiently 	ψ is generated in
the chemical reaction per motor step, so we call it the chemical efficiency of the motor. In
ηMechanical, the denominator is 	ψ and the numerator is ζvL, which is proportional to the
average velocity, the mechanical performance of the motor. In this sense, ηMechanical measures
how efficiently 	ψ is utilized to drive the motor through the viscous media (against viscous
friction). So we call it the mechanical efficiency of the motor. However, for these to be
properly defined efficiencies, they must be bounded by 100%. In appendix B, we show that
both the chemical efficiency and the mechanical efficiency defined above are indeed bounded
by 100%.

Now we study the behaviour of these two efficiencies in a hypothetical motor system. In
particular, we investigate what factors are responsible for reducing the overall Stokes efficiency
from 100%. We consider the system shown in figure 2.

In figure 2, a motor is driven by switching along an infinite sequence of sets of two
potentials. → → represents one half of a reaction cycle. In → → , the
displacement is L

2 and the free energy consumption is A
2 . The two potentials are selected as

V1(x) = E









−8x

7L
for 0 � x � 7L

8

−8(L − x)

L
for 7L

8 � x � L,
V1(x + L) = V1(x)

V2(x) = V1

(

x − L

2

)

− A

2
.

We use the parameters E = 30kBT , L = 16 nm, and D = 4000 nm2 s−1. Here we study a
tightly coupled motor in which the transition between V1(x) and V2(x) is restricted to the region
[ 6L

8 ,
7L
8 ]. The activation energy barrier for the transition to is 	GSW = 4

7 E − A
2 . In
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Figure 3. The chemical efficiency and the mechanical efficiency (a) as functions of the transition
rate and (b) as functions of the activation energy barrier of the transition.

simulations below, the chemical affinity A is determined by setting the energy barrier	GSW.
We use the transition rates

k1→2 = k0 exp

(−	GSW

kBT

)

, k2→1 = k0

which satisfies detailed balance (11). We first set 	GSW = 0 and study the effect of k0 on the
chemical and mechanical efficiencies.

Case 1: 	GSW = 0 and k0 is varied

Figure 3(a) shows the two efficiencies as functions of k0. It is clear that as k0 is decreased, both
efficiencies are reduced, especially the mechanical efficiency. This is not surprising. Since
the reaction and the motion are tightly coupled, a motor step depends on the completion of a
reaction cycle. When the reaction rate is decreased, the motor waits a long time at for the
transition to to occur. As a result, the average velocity is reduced. The long waiting time
at makes the probability accumulate near , which leads to a bump near in the motor
potential profile. As we analyse in appendix B, when a motor potential profile deviates from
a constant slope, the mechanical efficiency is reduced. The accumulation of the probability
near also brings the negative slope region into the average in the motor potential profile.
Consequently	ψ is reduced and so is the chemical efficiency. Therefore, slow reaction rates
reduce both the chemical component and the mechanical component of the Stokes efficiency.

Now we fix k0 at a large value and study the effect of 	GSW on the two efficiencies.

Case 2: k0 = 106 and	GSW is varied

Figure 3(b) shows the two efficiencies as functions of 	GSW. When 	GSW is negative,
the transition to is energetically favourable; at the end of each motor step, the system
quickly jumps to the next potential and starts the next motor step; and the delay between steps
is minimal. As a result, the average velocity is optimal, no probability is accumulated near ,
and the motor potential profile is close to having a constant slope. So the mechanical efficiency
is close to 100%. However, a negative 	GSW also increases the free energy consumed per
motor step, but it does not increase 	ψ . This can be seen from the definition of ψ(x). The
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derivative ofψ(x) is an average of the derivatives of V1(x) and V2(x), which does not increase
if the free energy drop from to is made bigger and bigger. Consequently, when 	GSW

is negative and its magnitude is increased, the chemical efficiency is reduced. When 	GSW

is positive, the transition to is energetically unfavourable; at the end of each motor
step, the system waits a long time near for the transition to to occur before the next
motor step can start; and the delay between steps increases as the free energy barrier 	GSW

increases. So, the average velocity is significantly reduced, the probability is accumulated near
, and the motor potential profile deviates from a constant slope. As a result, the mechanical

efficiency is reduced significantly when	GSW is positive and is increased. The accumulation
of probability near also brings the negative slopes of V1(x) and V2(x) into the average in the
motor potential profile, which will reduce	ψ . Thus, unfavourable reaction steps will reduce
the chemical efficiency. This decrease in the chemical efficiency is less prominent because
the unfavourable reaction steps, in general, will also reduce the free energy consumption, the
denominator in the chemical efficiency.

In summary, the Stokes efficiency is reduced in both the positive region and the negative
region of the transition free energy difference 	GSW. Therefore, the optimal situation is
achieved if the equilibrium constant associated with each occupancy change is about one.

6. Conclusions

Molecular motors convert chemical energy to generate unidirectional motion against
conservative force and/or viscous friction while operating in an isothermal environment
dominated by viscous friction and thermal fluctuations. Because of the small size, molecular
motors have several properties that distinguish them from macroscopic motors. For molecular
motors,

(i) the effect of inertia is negligible, or more precisely the timescale of inertia is much smaller
than the timescale of a reaction cycle;

(ii) the instantaneous velocity, caused by thermal fluctuations, is several orders of magnitude
larger than the average velocity; and

(iii) the kinetic energy of the motor corresponding to the average velocity is a small fraction
of the free energy consumption per reaction cycle.

For example, for a kinesin dimer pulling a bead of 1 µm with an average velocity of
1000 µm s−1, the kinetic energy of the bead corresponding to the average velocity is less
than 1.3 × 10−7kBT . The free energy consumed in each hydrolysis cycle of the kinesin dimer
is about 20kBT . The chemical reaction in a molecular motor may produce an active force at
the reaction site to directly move the motor forward (a power stroke motor). Alternatively
a molecular motor may generate a unidirectional motion by rectifying thermal fluctuations
using the free energy barriers produced in the chemical reaction (a Brownian ratchet). The
chemical reaction cycle has many occupancy states. For example, the ATP hydrolysis cycle
at a catalytic site has four occupancy states. In general, each occupancy state may have a
different effect on the motor motion. Since the current experimental technologies have not yet
allowed us to record both motor position and chemical occupancy state, it is not realistic to
recover details about the effect of each individual occupancy state on the motor motion. We
use the motor potential profile to characterize the average effect of the chemical reaction on
the motor motion. The most important feather of the motor potential profile is that it can be Q.5

reconstructed from the time series of motor positions measured in single-molecule experiments.
Here the small size of molecular motors plays a very interesting role. On one hand, the effort
of deciphering the motor mechanism is, in many respects, hindered by the small size. On the
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other hand, the small size eliminates the effect of inertia and makes it possible to uncover the
motor force profile from time series. In contrast, for macroscopic motors, the effect of inertia
lasts over many reaction cycles. As a result, it is virtually impossible to determine the force
profile of a macroscopic motor from recorded motor positions. In this paper, we use the motor
potential profile to decompose the Stokes efficiency as the product of the chemical efficiency
and the mechanical efficiency. Under the mathematical framework for modelling molecular
motors, we show that both the chemical and mechanical efficiencies are bounded by 100%,and,
thus, are properly defined efficiencies. Using a hypothetical motor system, we investigate the
behaviour of these two efficiencies for different reaction rates and for different activation free
energy barriers of chemical transitions. The mechanical efficiency is completely determined
by the shape of the motor potential profile. If the mechanical efficiency is close to 100%,
then the motor potential profile must be close to a constant slope. The chemical efficiency
depends on the reaction kinetics. If the chemical efficiency is close to 100%, then it places
two conditions on the motor system: (i) the chemical transitions are not rate limiting and (ii)
the free energy change associated with each chemical transition is close to zero. Condition (i)
concerns both the chemical reaction and the mechanical motion and can be achieved by slowing
down the mechanical motion. Condition (ii) concerns only the chemical reaction. Condition
(ii) implies that in an optimal situation, the equilibrium constant associated with each change
of occupancy should be close to one. In the F1 ATPase, the equilibrium constant associated
with the hydrolysis (ATP ↔ ADP Pi) inside the catalytic site is, indeed, close to one [6].
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Appendix A. Stokes efficiency for a system near equilibrium

In this appendix, we show that for a motor system in the linear regime where it is not far from
equilibrium, ηStokes � 1 can be argued to be independent of mathematical formulation (8). It
is important to point out that this argument is valid only for systems near equilibrium. We use
an approach similar to that used in [27].

The average velocity and reaction rate are functions of the external force, f , and the
chemical affinity, A = −	G:

v = v( f, A), r = r( f, A).

In the absence of chemical free energy and the external force, the system is at equilibrium:

v(0, 0) = r(0, 0) = 0.

When the system is close to equilibrium, we can expand v and r to linear terms:

v( f, A) = λ11 f + λ12 A, r( f, A) = λ21 f + λ22 A. (21)

In the linear regime, the Onsager relation holds [19]: λ21 = λ12. Substituting into (14) and
using the fact that the thermodynamic efficiency is always bounded by 1, we have

λ11 f 2 + 2λ12 f A + λ22 A2 � 0 for all values of f and A,

which leads to λ2
12 � λ11λ22. In the absence of chemical free energy (A� = 0), (21) relates Q.6

the velocity to the external force as v = λ11 f . Thus, we identify ζ = 1/λ11��. Substituting
into the Stokes efficiency (15), we obtain

ηStokes = ζv2

Ar + f v
= λ11 f 2 + 2λ12 f A + (λ2

12/λ11)A2

λ11 f 2 + 2λ12 f A + λ22 A2
� 1.

Therefore, in the linear regime, the Stokes efficiency is bounded by 100%.
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Appendix B. Chemical and mechanical efficiencies are bounded by 100%

In this appendix, we show that the chemical efficiency and the mechanical efficiency defined
in (20) are bounded by 100%.

We first show that the chemical efficiency is bounded by 100%. For that purpose, we need
to show that	ψ v

L � Ar . We rewrite the steady state of equation (8) in the conservative form

0 = −J ′
S + IS−1→S − IS→S+1, S = 1, 2, . . . , N (22)

where

JS = −D

(

V ′
S

kBT
ρS + ρ ′

S

)

= −DρS F ′
S, FS = VS

kBT
+ log(ρS)

IS→S+1 = ρSkS→S+1 − ρS+1kS+1→S.

(23)

Here JS is the probability flux in the motion direction for chemical state S and IS→S+1 is the
probability flux density in the reaction direction from state S to state S + 1. The transition rates
kS→S+1 and kS+1→S satisfy detailed balance (11). From the definition ofψ(x) in (17), we have

	ψ = ψ(0)− ψ(L) = −
∫ L

0

1

ρ

N
∑

S=1

V ′
SρS dx. (24)

Using the relation V ′
SρS = − kB T

D (JS + Dρ ′
S) derived from (23), we get

	ψ = kBT

D

∫ L

0

1

ρ

N
∑

S=1

(JS + Dρ ′
S) dx = kBT

D

∫ L

0

1

ρ

N
∑

S=1

JS dx. (25)

The average velocity is related to the probability fluxes as v
L = ∑N

S=1 JS . In particular, the sum
of probability fluxes over all states is independent of x . Multiplying (25) by v

L , using (23) to
give JS = −√

ρS · √ρS DF ′
S , and applying the Cauchy–Schwarz inequality in the summation,

we obtain

	ψ
v

L
= kBT

D

∫ L

0

1

ρ

[

N
∑

S=1

JS

]2

dx = kBT

D

∫ L

0

1

ρ

[

N
∑

S=1

−√
ρS · √ρS DF ′

S

]2

dx

� kBT

D

∫ L

0

1

ρ

[

N
∑

S=1

ρS

][

N
∑

S=1

ρS D2 (F ′
S

)2

]

dx = −kBT
∫ L

0

N
∑

S=1

JS F ′
S dx. (26)

Integrating by parts and using (22) yields

	ψ
v

L
� kBT

∫ L

0

N
∑

S=1

FS (IS−1→S − IS→S+1) dx . (27)

Because the chemical reaction is periodic, we have

I0→1 = IN→N+1, VN+1 = V1 − A, FN+1 = F1 − A

kBT
. (28)

Applying summation by parts in (27) and using the periodic condition (28), we arrive at

	ψ
v

L
� kBT

∫ L

0

N
∑

S=1

IS→S+1 (FS+1 − FS) dx + A
∫ L

0
IN→N+1 dθ. (29)

In (29), the integrand in the first integral on the right-hand side has the form

IS→S+1 (FS+1 − FS) = ρSkS→S+1(1 − H ) log(H ), H = ρS+1

ρS
exp

(

VS+1 − VS

kBT

)

.
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Function (1 − H ) log(H ) is always non-positive for any value of H . The second integral
in (29) is the chemical reaction rate r . Thus, (29) leads immediately to 	ψ v

L � Ar .
Now we show that the mechanical efficiency is bounded by 100%. For that purpose, we

need to show that ζ v L
	ψ

� 1. In (16), the steady state probability density satisfies

ρ ′(x) +
ψ ′(x)
kBT

ρ(x) = −v
L D

.

Multiplying by the integration factor and integrating from s to s + L, we get

exp

(

ψ(s)−	ψ

kBT

)

ρ(s)− exp

(

ψ(s)

kBT

)

ρ(s) = − v

L D

∫ L

0
exp

(

ψ(s + x)

kBT

)

dx .

Dividing by exp(ψ(s)kBT ) and integrating with respect to s from 0 to L yields
[

1 − exp

(−	ψ
kBT

)]

= v

L D

∫ L

0

∫ L

0
exp

(

ψ(s + x)− ψ(s)

kBT

)

dx ds.

Using ψ(x) = φ(x)−	ψ x
L and using the change of variables x̂ = x

L and ŝ = s
L , we have

ζvL

	ψ
=

∫ 1
0 exp

(

−	ψ
kB T x̂

)

dx̂
∫ 1

0 exp
(

−	ψ
kB T x̂

)

h(x̂) dx̂
,

h(x̂) =
∫ 1

0
exp

(

φ(ŝ L + x̂ L)− φ(ŝ L)

kBT

)

dŝ.

(30)

Because exp(y) is a convex function, applying Jensen’s inequality to h(x̂), we obtain

h(x̂) � exp

(∫ 1

0

φ(ŝ L + x̂ L)− φ(ŝ L)

kBT
dŝ

)

= 1

which, when combined with (30), leads immediately to ζ v L
	ψ

� 1.
If φ(x) = 0 (i.e., ψ(x) is a constant slope), then we have h(x̂) = 1 and the mechanical

efficiency satisfies ηMechanical = ζ v L
	ψ

= 1. Conversely, if the mechanical efficiency is close
to 100%, then the motor potential profile ψ(x) must be close to a constant slope measured in
units of kBT .
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