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Abstract

Increased national concern over the possibility of sudden and wide-spread outbreak of infec-

tious disease motivates the modeling of pathogen transmission for various characterizations of

the underlying population structure. A critical, but often overlooked, component to preparation

of this sort is the development of a methodology for defining optimal treatment policies to be

deployed in the event of such an outbreak. In realistic scenarios, such a policy must weigh the

costs of available treatments (e.g. vaccination or quarantine) against the current state of the epi-

demic, in terms of numbers of susceptible and infected individuals, and current estimates of the

parameters of the transmission model. We present a decision-theoretic framework for adaptive

management of epidemiological interventions. We derive an expression for the optimal adaptive

policy conditional upon current information about the epidemic, evaluation of which is com-

puted using stochastic dynamic programming. We present simulation studies to demonstrate

the advantages, in terms of reduced expected loss and more efficient resource management, of

the optimal adaptive policy over the optimal non-adaptive policy.



1 Introduction

The use of mathematical modeling in the study of emerging infectious disease has yielded tremen-

dous insight into the governing dynamics of disease transmission [1, 16, 22]. However, relatively

little research has been devoted to incorporating a conceptual understanding of disease transmission

into a pragmatic policy tool. Due to the nonlinear and stochastic nature of modern epidemiolog-

ical models, optimal control theory can only be applied in relatively simple cases [11, 23]. The

increased concern over widespread outbreak of diseases such as bioterrorist smallpox, pandemic

influenza, and foot-and-mouth disease, has recently led to several new approaches for deducing

optimal vaccination strategies, based on explicit network-type models of the underlying population

structure [2, 8, 9, 21].

Methods such as these are concerned with rapid, strategically distributed vaccination. Many

scenarios exist, however, where this may not be possible, such as those in which a vaccine is not

immediately available, or when some aspect of the transmission model is unknown (e.g. population

structure or transmission rate). In these situations, an adaptive policy that can incorporate new

information as it becomes available would be desirable. Additionally, fixed-proportion strategies

such as those previously described may not take into account the natural tendency of an epidemic

to die out once the number of infected individuals per susceptible individual falls below a critical

threshold (i.e. R0 < 1) [1]. In other words, having treated an epidemic for some time, reduced

intervention efforts may reduce the total cost and conserve resources, while still arriving at an

identical end-state.

A general strategy for epidemiological intervention must also consider multiple possible forms

of treatment, of which vaccination is but one. Meltzer et al describe a smallpox-prevention model

that allows for both quarantine and vaccination, though their approach is neither adaptive nor
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optimal [15]. The availability of alternative treatments necessitates a policy framework capable of

weighing the tradeoffs between treatments. Bauch and Earn describe a game theoretic strategy in

the context of diseases for which vaccination is optional, and has an associated mortality risk [3].

In a more general intervention strategy, with multiple treatment types, the decision to vaccinate

will depend on a complex relationship between the cost of vaccination, the rate of recovery, the

cost of maintaining an infected individual, the cost of quarantining an infected, and the rate of

transmission, viz., all parameters characterizing the dynamics of the disease.

In this paper, we present a decision-theoretic framework for minimizing the total cost associated

with an epidemiological intervention while allowing for complex tradeoffs between costs of treatment

and disease dynamics. Assuming the parameters of the disease model to be known, we describe an

efficient Monte Carlo algorithm for exploring the expected cost surface, minimization over which

produces the optimal intervention strategy. Simulations demonstrate the advantages of an adaptive

strategy over a non-adaptive (fixed) strategy, in terms of reduced expected cost, and more efficient

use of vaccine resources. The latter is noteworthy, as it has been suggested that mismanagement

of vaccines (e.g. over-vaccination) can lead to increased virulence [5, 6, 7, 19].

2 Methods

We begin by describing the underlying disease dynamics using a standard S–I–R transmission

model for a closed population of initial size N , where S(t), I(t), R(t) represent the numbers of

susceptible, infected, and recovered individuals at time t respectively (with S(t) + I(t) + R(t) =

N for all t). We assume a negative binomial transmission function with rate of transmission b,

overdispersion parameter k, and rate of recovery ν, where ν accounts for both recovery from the

infected state and disease-induced mortality [14]. The continuous time formulation of this model
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is described by the set of differential equations

dS

dt
= −kS log

(

1 +
bI

k

)

(1)

dI

dt
= kS log

(

1 +
bI

k

)

− νI (2)

dR

dt
= νI. (3)

We assume recovered individuals attain permanent immunity against subsequent infection, though

this assumption may be relaxed within the framework we are describing The negative binomial

transmission function accounts for social/network effects in the population structure via the overdis-

persion parameter k. Small values of k correspond to more localized interactions, whereas for large

k the nature of the interactions approaches a mass action model. Keeling has suggested that gen-

eralized mass action models such as this achieve a good trade off between model complexity and

realistic modeling of social interactions [10].

By holding the number of infected individuals (I(t)) constant, we can integrate (1) over a unit

time interval to obtain a convenient discretization of the disease transmission process,

S(t + 1) =

(

k

k + bI(t)

)k

S(t). (4)

Thus, the complete discrete time stochastic disease model is defined by two binomial random

variables: ĩ(t) and r̃(t), representing the numbers of newly infected and newly recovered individuals

at time t, where

ĩ(t) ∼ B

(

S(t), 1 −

(

k

k + bI(t)

)k
)

(5)

r̃(t) ∼ B
(

I(t), 1 − e−ν
)

. (6)

The values ĩ(t) and r̃(t) will correspond to the numbers of newly infected and newly recovered

individuals arising between time steps t and t + 1. Our simulation studies indicate that discrete
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time simulations of this form provide reasonable approximations to the exact numerical solution

to the system of differential equations. The reason underlying our preference for the stochastic

formulation will be made evident below.

We define αt = (αv,t, αr,t) to be the epidemiological intervention at time t consisting of two

decisions: αv,t, the fraction of susceptible individuals to be vaccinated; and αr,t, the fraction infected

individuals to be removed from the population of infected individuals (as by curing, culling or

quarantine). The sequence of decisions {αt}
∞
t=0 collectively defines the intervention strategy. If αt

is constrained to a single value αf for all t, we will refer to αf as a fixed intervention strategy.

Alternatively, if αt is allowed to vary with the current state of the epidemic, we refer to {αt} as

an adaptive intervention strategy (implicitly depending upon S(t) = s and I(t) = i). We assume

that vaccination guarantees permanent immunity to infection, and that removed individuals are no

longer infectious. We define the cost per vaccination to be cv, the cost per removal to be cr, and

the cost per remaining infected for one time interval to be ci.

For any chosen valuation of these costs, we can recursively express the total cost of an interven-

tion strategy, conditional on the current state of the epidemic S(t) = s and I(t) = i (and, implicitly,

the parameters of the disease model), as

C(αt, s, i) = cvαv,ts + crαr,ti + ci(1 − αr,t)i (7)

+E{C(αt+1, s
′, i′)},

where the state of the disease at time t + 1 is

s′ = (1 − αv,t)s − ĩ, and (8)

i′ = (1 − αr,t)i + ĩ − r̃. (9)

The expectation term in (7) accounts for the stochastic nature of ĩ(t) and r̃(t). The combination of

4



this random component and the nonlinear dynamics of the epidemic prevent a closed form solution

for the total cost. Note that αt is actually a function of the current state of the epidemic at

time t, but for notational convenience we index the decision by t. Thus (7) should be regarded as

time-independent when conditioned on the current values of S(t) and I(t).

The optimal intervention (adaptive or fixed) is therefore the sequence {αt} that minimizes

(7). Along the boundary case of I(t) = 0, the minimum cost of intervention is 0 and the solution

is trivially αt = (0, 0) for any such t. For all other values, we employ a stochastic dynamic

programming algorithm, augmented by a policy iteration step [4, 12]. Policy iteration is a method

for converting a time-independent consistency equation such as (7) into a convergent sequence of

consistency equations whose limit is the solution to the original equation. The theory states that

by defining

C0(s, i) = cvαvs + crαri + ci(1 − αr)i (10)

+E{C0((1 − αv)s − ĩ, (1 − αr)i + ĩ − r̃)},

for a fixed initial value of α (e.g. α = (0, 0)), then by successively minimizing the sequence of

equations given by

Cn(s, i) = min
{αt}

cvαvs + crαri + ci(1 − αr)i (11)

+E{Cn−1((1 − αv)s − ĩ, (1 − αr)i + ĩ − r̃)},

the solutions will converge to the desired solution under very general conditions.

Each minimization step is accomplished via stochastic dynamic programming. Since the ex-

pectation term is evaluated through Monte Carlo simulation from the appropriate distributions

on ĩ and r̃, the solutions to the sequence of equations do not converge to a single minimum cost

matrix Cmin(s, i), but rather to a stationary distribution on minimum cost matrices. Note that
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for the case of a fixed policy, this procedure amounts repeated forward simulation of the epidemic

given initial conditions (S(0) = s, I(0) = i) under each intervention policy αf . In this case, we can

increase efficiency by evaluating the expected cost once for each point on a fixed grid of αf values,

and employing a loess smoother to fit a smooth surface through these points. The optimal fixed

policy can be found through minimization of this surface. This procedure, known as curve-fitting

Monte Carlo (CFMC), has been shown to improve the stability of optimizations while reducing the

computational burden [17, 18, 20]. For the case of adaptive interventions, the sequential nature

of the algorithm bears similarities to a Gibbs sampler for generating draws from a stationary dis-

tribution of optimal policies. After discarding a suitable number of pre-convergence iterations, we

compute the minimum expected costs and associated policy decisions for each initial condition as

the average over post-convergence iterations. We measured convergence using mean squared error

between successive solution matrices. A variety of simulation studies (not shown) indicated that

convergence was achieved rapidly, often after fewer than 10 iterations.

3 Results

We first simulate an emerging infectious disease for a closed population of N = 500 individuals.

Disease model parameters were defined to be (b, k, ν) = (0.01, 0.01, 0.05). This choice of parameter

values corresponds to a population in which encounters between individuals are highly aggregated.

The pathogen in this case is such that the rate of transmission and rate of recovery are fairly

low. Assuming the initial number of infected individuals to be 20, the probability of infection at

t = 0 for the remaining 480 susceptible individuals is only 0.03. The probability of an infected

individual recovering is 0.05. Thus, at the onset of the epidemic, the initial risk of infection is still

low, but climbs rapidly with the number of infected individuals, each of which remains infectious
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for an expected 20 days. By assuming the costs per untreated infected individual, vaccination,

and removal to be (ci, cv, cr) = (1, 16, 20), we infer the optimal fixed and adaptive intervention

strategies using the Monte Carlo algorithm described above. For the fixed strategy, the expected

cost surface is minimized at αf = (0, 1) (figure 1), indicating a policy of immediate removal of

infected individuals. For the adaptive case, the strategy is mixed, involving a period of vaccination,

followed by a period of removals (figure 2). For this simulation, the separation between vaccination

and removal, occurs almost exactly along the R0 boundary, beneath which the size of the epidemic

will continue to decrease naturally. The simulated disease dynamics under nonintervention, optimal

fixed, and optimal adaptive policies, and comparison of total accrued costs appear in figure 3 and

figure 4. Here the adaptive policy leads to a substantial decrease in total expected cost.

Next, we consider another epidemic in the same a closed population of N = 500 with disease

model parameters (b, k, ν) = (0.5, 0.05, 0.1). The natural dynamics of this epidemic are such that

contact between individuals are less aggregated than for the first simulation, and the emerging

disease more highly infectious and with a faster rate of recovery. We now assume the costs per

untreated infected individual, vaccination, and removal to be (ci, cv, cr) = (1, 11, 15). Assuming

20 initial infected individuals, we proceed as above. Minimization over the expected cost surface

indicated the optimal fixed strategy to be αf = (0.53, 0) (figure 5). The adaptive strategy for

the same epidemiological scenario appears in figure figure 6. In this case, the adaptive strategy

involves little or no removal of infected individuals, but a decreasing schedule of vaccination as the

risk of infection decreases. Simulated disease dynamics under nonintervention, optimal fixed, and

optimal adaptive strategies, and comparison of total accrued costs appear in figure 7 and figure

8. In this scenario, the decrease in total cost associated with the adaptive strategy is not nearly

as substantial as for the first simulation, however, we note the substantial decrease in the total
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number of vaccinations required to halt the spread of the epidemic.

4 Discussion

Our simulation studies demonstrate quantitative differences between fixed and adaptive intervention

strategies. For cases such as the first simulation, in which the adaptive policy results in a strict

reduction in accrued costs compared to the fixed policy, the advantages of the adaptive policy are

obvious. The savings incurred under the adaptive policy are due the ability of the adaptive strategy

to “learn” the point at which the epidemic has crossed a critical threshold, beyond which additional

interventive effort does not contribute significantly to the diminishing size of the epidemic. This

threshold, referred to as R0 in the disease literature, is defined as the expected number of new

infections per infected individual. For R0 < 1, dI
dt

< 0, and the epidemic will have a natural

tendency to die out, though the rate at which this occurs will still depend on the model parameters.

An adaptive policy can account for this through reduced vaccinations in favor of removals in the

region R0 < 1 (figure 2). A pragmatic alternative to the fixed strategies we have described here

would be a semi-adaptive fixed strategy, in which the fixed policy αf is discontinued at some non-

terminal (i.e. I(t) 6= 0) state. This would require calculation of the optimal stopping point for each

αf , and could be incorporated into the framework we have described.

In cases such as the second simulation, in which the expected costs under the fixed and adaptive

policy are approximately equal, there remain qualitative differences between results, which are

best interpreted through contextualization of the epidemic. There are many situations in which

it may be desirable to conserve the amount of vaccine available. There are other situations in

which unnecessary removal of infected individuals should be avoided (e.g. if removal corresponds

to culling as opposed to quarantine). In the second simulation, the fixed policy continues to

8



vaccinate remaining susceptible individuals, even after risk of infection is very low, unnecessarily

depleting resources. If we liken this simulation to an emerging flu epidemic, for which natural

recovery corresponds to an infected individual’s return to a healthy state, the adaptive strategy

may be preferable to the fixed. Adaptive intervention policies, through a strategic combination of

vaccination and removal, tend to avoid the scenarios of over-vaccination or over-removal.

There is an important choice to be made in assigning values to cv, cr, and ci. A monetary

valuation scheme is the most straightforward, but it may be difficult to construct such a scheme

that represents all aspects of the decision. One alternative would be a valuation in which each cost

is chosen to represent a probability of mortality. In this way, the cost to be minimized is the total

loss of life for the epidemic under a given intervention strategy. By assuming ν = µ + ρ where µ is

the rate of disease-induced mortality and ρ is the rate of natural recovery from the infected state,

we can set ci = (1 − e−ν) µ
µ+ρ

, so that ci(1 − αr)i from (7) is the number of infected individuals

that die in a unit of time. Similarly, situations exist where it is reasonable to assign a probability

of mortality to vaccination, as in the case of smallpox, and to removal, as in the case of culling

livestock for foot-and-mouth disease.

An interesting extension to our adaptive policy model would involve applying a monetary con-

straint to a loss-of-life cost function. Assume pi, pv, and pr are the probabilities of mortality

associated with untreated infected individuals, vaccination, and removal as just described, and

that d is the monetary resources available for the intervention. Now the optimal intervention will

be the one that minimizes the total loss-of-life subject to the total spending constraint d:

C(s, i, d) = min
{αt}

pi(1 − αr,t)i + pvαv,ts + prαr,ti (12)

+E{C((s′, i′, d − ci(1 − αr,t)i − cvαv,ts − crαr,ti)}. (13)

9



Modifying the existing stochastic dynamic programming algorithm to allow for this type of con-

straint is straightforward, however, the resulting increase in dimensionality of the solution space

reduces the speed of the algorithm.

The simulations presented in this paper were designed to represent interesting epidemics, be-

cause our goal was to explore the implications of different types of epidemiological interventions for

different epidemiological scenarios. Indeed, as May put it, “[t]he virtue of mathematics in such a

context is that it forces clarity and precision upon the conjecture, thus enabling meaningful com-

parison between the consequences of basic assumptions and the empirical facts” [13]. In operational

situations, a great deal of uncertainty may surround estimates of disease model parameters, and

that uncertainty should be reflected in the policy decision. A simulation-based framework for de-

riving optimal intervention strategies can be easily integrated into a Bayesian MCMC estimation

procedure, for which the results are draws from posterior distributions on the relevant parameters.

The unification of policy optimization and inference procedures for emerging infectious disease

models remains an important goal of mathematical biology.
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A Figures
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Figure 1: Expected cost surface for fixed intervention policies for simulation 1. Minimum cost is

achieved at αf = (0, 1).
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Figure 2: (a) Fraction of susceptible individuals to vaccinate and (b) fraction of infected individuals

to remove under the adaptive intervention policy for simulation 1. The color spectrum ranges from

white (0%) to red (100%). The region beneath the curve (s < νi

k log( k+bi

k
)
) corresponds to R0 < 1.
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Figure 3: Comparison of disease dynamics under (a) fixed and (b) adaptive intervention policies

for simulation 1.
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Figure 4: (a) Natural disease dynamics under a nonintervention policy, and (b) comparison of total

accrued costs under nonintervention, fixed, and adaptive policies for simulation 1.
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Figure 5: Expected cost surface for fixed intervention policies for a simulation 2. Minimum cost is

achieved at αf = (0.53, 0).
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Figure 6: (a) Fraction of susceptible individuals to vaccinate and (b) fraction of infected individuals

to remove under the adaptive intervention policy for simulation 2. The color spectrum ranges from

white (0%) to red (100%). The region beneath the curve (s < νi

k log( k+bi

k
)
) corresponds to R0 < 1.
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Figure 7: Comparison of disease dynamics under (a) fixed and (b) adaptive intervention policies

for simulation 2.
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Figure 8: (a) Natural disease dynamics under a nonintervention policy, and (b) comparison of total

accrued costs under nonintervention, fixed, and adaptive policies for simulation 2.
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