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Abstract

This paper introduces the normalized and signed gradient dynamical systems associated with a differentiable function. Ex-
tending recent results on nonsmooth stability analysis, we characterize their asymptotic convergence properties and identify
conditions that guarantee finite-time convergence. We discuss the application of the results to the design of multi-agent coor-
dination algorithms, paying special attention to their scalability properties. Finally, we consider network consensus problems
and show how the proposed nonsmooth gradient flows achieve the desired coordination task in finite time.
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1 Introduction

Problem statement. Let f : R
d → R, d ∈ N, be a

differentiable function. Consider the gradient flow

ẋ = − grad(f)(x) .

It is well known (see e.g. [15]) that the minima of f are
stable equilibria of this system, and that, if the level
sets of f are bounded, then the trajectories converge
asymptotically to the set of critical points of f . Gradi-
ent dynamical systems are employed in a wide range of
applications, including optimization, distributed paral-
lel computing, motion planning and control. In robotics,
potential field methods are used to autonomously nav-
igate a robot in a cluttered environment. Gradient al-
gorithms enjoy many important features: they are nat-
urally robust to perturbations and measurement errors,
amenable to asynchronous implementations, and admit
efficient numerical approximations.

In this note, we provide an answer to the following ques-
tion: how could one modify the gradient vector field
above so that the trajectories converge to the critical
points of the function in finite time? - as opposed to over
an infinite-time horizon. There are a number of settings
where finite-time convergence is a desirable property.
We study this problem with the aim of designing gra-
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dient coordination algorithms for multi-agent systems
that achieve the desired task in finite time.

Our answer to the question above is the flows

ẋ = −
grad(f)(x)

‖ grad(f)(x)‖2
,

ẋ = − sgn(grad(f)(x)),

where ‖·‖2 denotes the Euclidean distance and sgn(x) =
(sgn(x1), . . . , sgn(xd)). Using tools from nonsmooth sta-
bility analysis, we show in this note that, under some as-
sumptions on f , both systems are guaranteed to achieve
the set of critical points in finite time.

Literature review. Guidelines on how to design dy-
namical systems for optimization purposes, with a
special emphasis on gradient systems, are described
in [14]. The book [3] thoroughly discusses gradient de-
scent flows in distributed computation in settings with
fixed-communication topologies. Nonsmooth analysis
studies the notion and computational properties of the
generalized gradient [5]. Tools for establishing stability
and convergence properties of nonsmooth dynamical
systems are presented in [2, 12, 21]. Finite-time discon-
tinuous feedback stabilizers for a class of planar systems
are proposed in [20]. Finite-time stability of continuous
autonomous systems is rigorously studied in [4]. The
reference [6] develops finite-time stabilization strate-
gies based on time-varying feedback. Previous work on
motion coordination of multi-agent systems has pro-
posed cooperative algorithms based on gradient flows
to achieve tasks such as cohesiveness [13, 18, 23], con-
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sensus [19], and deployment [7, 9]. The distributed algo-
rithms in these works achieve the desired coordination
task asymptotically over an infinite-time horizon.

Statement of contributions. In this paper, we intro-
duce the normalized and signed gradient descent flows
associated to a differentiable function. We character-
ize their convergence properties via nonsmooth stability
analysis. We also identify general conditions under which
these flows reach in finite time the set of critical points
of the function. To do this, we extend recent results on
the stability and convergence properties of general nons-
mooth dynamical systems via locally Lipschitz and reg-
ular Lyapunov functions. In particular, we develop two
novel results involving second-order information on the
evolution of the Lyapunov function along system solu-
tions to establish finite-time convergence. The applica-
bility of these results is not restricted to gradient flows,
and they can indeed be used in other setups with dis-
continuous vector fields and locally Lipschitz functions.

We discuss the applicability of the results on nons-
mooth gradient flows to various design techniques for
distributed multi-agent coordination. Consider a coor-
dination algorithm defined via the gradient of an ag-
gregate objective function that encodes a desired task.
We analyze the coordination algorithms designed via
the normalized and signed versions of the gradient, and
characterize their scalability properties via the notion
of spatially distributed map. In particular, we show how
network consensus problems fit nicely into this scheme.
We propose two coordination algorithms based on the
Laplacian of the communication graph that are guaran-
teed to achieve consensus in finite time. The normalized
gradient descent of the Laplacian potential is not dis-
tributed over the communication graph and achieves
average-consensus, i.e., consensus at the average of the
initial agents’ states. The signed gradient descent of the
Laplacian potential is distributed over the communi-
cation graph and achieves average-max-min-consensus,
i.e., consensus at the average of the maximum and the
minimum values of the initial agents’ states. We also
consider networks with switching connected communi-
cation topologies.

Organization. Section 2 introduces differential equa-
tions with discontinuous right-hand sides and presents
various nonsmooth tools for stability analysis. In partic-
ular, we develop two novel results involving second-order
information and finite-time convergence. Section 3 intro-
duces the normalized and signed versions of the gradient
descent flow of a differentiable function and character-
izes their convergence properties. Conditions are given
under which these flows converge in finite time. Section 4
discusses the application of the results to coordination
algorithms for multi-agent systems paying special atten-
tion to distributed implementations and network con-
sensus problems. We gather our conclusions in Section 5.

Notation. The set of strictly positive natural (respec-
tively real) numbers is denoted by N (respectively R+).
For d ∈ N, let e1, . . . , ed be the standard orthonormal
basis of R

d. For x ∈ R
d, denote by ‖x‖1 and ‖x‖2 the

1-norm and the Euclidean norm of x, respectively. De-
note by v · w the inner product of v, w ∈ R

d, and by
v′ the transpose of v ∈ R

d. For x ∈ R
d, let sgn(x) =

(sgn(x1), . . . , sgn(xd)) ∈ R
d. Let 1 = (1, . . . , 1)′ ∈ R

d.
For S ∈ R

d, let co(S) denote its convex closure. Define
also diag((Rd)n) =

{
(p, . . . , p) ∈ (Rd)n | p ∈ R

d
}

for
n ∈ N. Given a positive semidefinite d× d-matrix A, let
H0(A) ⊂ R

d denote the eigenspace corresponding to the
eigenvalue 0 (if A is positive definite, set H0(A) = {0}).
We denote by πA : R

d → H0(A) the orthogonal projec-
tion onto H0(A). Let λ2(A) and λd(A) be the smallest
non-zero and greatest eigenvalue of A, respectively,
i.e. λ2(A) = min {λ | λ > 0 and λ eigenvalue of A} and
λd(A) = max {λ | λ eigenvalue of A}. It is easy to see

u′Au ≥ λ2(A) ‖u − πH0(A)(u)‖2
2, u ∈ R

d. (1)

2 Nonsmooth stability analysis

This section introduces differential equations with dis-
continuous right-hand sides and presents various non-
smooth tools to analyze their stability properties. We
present two novel results on the second-order evolution
of locally Lipschitz functions along the solutions of the
system and on finite-time convergence.

2.1 Differential equations with discontinuous right-
hand sides

For differential equations with discontinuous right-hand
sides we understand the solutions in terms of differential
inclusions following [12]. Let F : R

d → 2R
d

be a set-
valued map. Consider the differential inclusion

ẋ ∈ F (x) . (2)

A solution to this equation on an interval [t0, t1] ⊂ R

is defined as an absolutely continuous function x :
[t0, t1] → R

d such that ẋ(t) ∈ F (x(t)) for almost all
t ∈ [t0, t1]. Now, consider the differential equation

ẋ(t) = X(x(t)) , (3)

where X : R
d → R

d is measurable and essentially locally
bounded [12]. We understand the solution of (3) in the
Filippov sense. For each x ∈ R

d, consider the set

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(Bd(x, δ) \ S)} , (4)

where µ denotes the usual Lebesgue measure in R
d. A

Filippov solution of (3) on an interval [t0, t1] ⊂ R is
defined as a solution of the differential inclusion

ẋ ∈ K[X](x) . (5)

Since the set-valued map K[X] : R
d → 2R

d

is upper
semicontinuous with nonempty, compact, convex values
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and locally bounded, the existence of Filippov solutions
of (3) is guaranteed (cf. [12]). A set M is weakly invari-
ant (respectively strongly invariant) for (3) if for each
x0 ∈ M , M contains a maximal solution (respectively
all maximal solutions) of (3).

2.2 Stability analysis via nonsmooth Lyapunov func-
tions

Let f : R
d → R be a locally Lipschitz function. From

Rademacher’s Theorem [5], we know that locally Lips-
chitz functions are differentiable a.e. Let Ωf ⊂ R

d denote
the set of points where f fails to be differentiable. The
generalized gradient of f at x ∈ R

d (cf. [5]) is defined by

∂f(x) = co
{

lim
i→+∞

df(xi) | xi → x , xi 6∈ S ∪ Ωf

}
,

where S can be any set of zero measure. Note that if f
is continuously differentiable, then ∂f(x) = {df(x)}.

Given a locally Lipschitz function f , the set-valued Lie
derivative of f with respect to X at x (cf. [2, 7]) is

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that

ζ · v = a , ∀ζ ∈ ∂f(x)}.

For x ∈ R
d, L̃Xf(x) is a closed and bounded interval in

R, possibly empty. If f is continuously differentiable at

x, then L̃Xf(x) = {df · v | v ∈ K[X](x)}. If, in addition,

X is continuous at x, then L̃Xf(x) corresponds to the
singleton {LXf(x)}, the usual Lie derivative of f in the
direction of X at x. The next result, taken from [2], states
that the set-valued Lie derivative allows us to study the
evolution of a function along the Filippov solutions.

Theorem 1 Let x : [t0, t1] → R
d be a Filippov solution

of (3). Let f be a locally Lipschitz and regular function.
Then t 7→ f(x(t)) is absolutely continuous, d

dt

(
f(x(t))

)

exists a.e. and d
dt

(f(x(t))) ∈ L̃Xf(x(t)) a.e.

Sometimes, we can also look at second-order informa-
tion for the evolution of a function along the Filippov
solutions. This is what we prove in the next result.

Proposition 2 Let x : [t0, t1] → R
d be a Filippov solu-

tion of (3). Let f be a locally Lipschitz and regular func-

tion. Assume that L̃Xf : R
d → 2R is single-valued, i.e.,

it takes the form L̃Xf : R
d → R, and assume it is a Lips-

chitz and regular function. Then d2

dt2
(f(x(t))) exists a.e.

and d2

dt2
(f(x(t))) ∈ L̃X(L̃Xf)(x(t)) a.e.

PROOF. Applying Theorem 1 to the functions f

and L̃Xf , respectively, we deduce that (i) the map
t 7→ f(x(t)) is absolutely continuous, and d

dt

(
f(x(t))

)
=

L̃Xf(x(t)) a.e., and, (ii) the map t 7→ L̃Xf(x(t)) is abso-

lutely continuous, and d
dt

(
L̃Xf(x(t))

)
= L̃X(L̃Xf)(x(t))

a.e. Since t 7→ L̃Xf(x(t)) is continuous, the expression

f(x(t)) = f(x(t0)) +

∫ t

t0

d

dt
(f(x(s))) ds

= f(x(t0)) +

∫ t

t0

L̃Xf(x(s))ds.

and the second fundamental theorem of calculus implies
that t 7→ f(x(t)) is actually continuously differentiable,

and therefore d
dt

(f(x(t))) = L̃Xf(x(t)) for all t. Now,

using (ii), we conclude that t 7→ d
dt

(f(x(t))) is differen-

tiable a.e. and d2

dt2
(f(x(t))) ∈ L̃X(L̃Xf)(x(t)) a.e. •

The following result is a generalization of LaSalle prin-
ciple for differential equations of the form (3) with non-
smooth Lyapunov functions. The formulation is taken
from [2], and slightly generalizes [21].

Theorem 3 (LaSalle Invariance Principle): Let f :
R

d → R be a locally Lipschitz and regular function.
Let x0 ∈ S ⊂ R

d, with S compact and strongly invari-

ant for (3). Assume that either max L̃Xf(x) ≤ 0 or

L̃Xf(x) = ∅ for all x ∈ S. Let ZX,f = {x ∈ R
d | 0 ∈

L̃Xf(x)}. Then, any solution x : [t0,+∞) → R
d of (3)

starting from x0 converges to the largest weakly invari-
ant set M contained in ZX,f ∩ S. Moreover, if the set
M is a finite collection of points, then the limit of all
solutions starting at x0 exists and equals one of them.

The following result is taken from [7].

Proposition 4 (Finite-time convergence with first-
order information): Under the same assumptions of The-
orem 3, further assume that there exists a neighborhood

U of ZX,f ∩S in S such that max L̃Xf < −ε < 0 a.e. on
U \ (ZX,f ∩ S). Then, any solution x : [t0,+∞) → R

d

of (3) starting at x0 ∈ S reaches ZX,f ∩S in finite time.
Moreover, if U = S, then the convergence time is upper
bounded by f(x0)/ε.

Often times, first-order information is inconclusive to as-
sess finite-time convergence. The next result uses second-
order information to arrive at a satisfactory answer.

Theorem 5 (Finite-time convergence with second-
order information): Under the same assumptions of

Theorem 3, further assume that (i) x ∈ R
d 7→ L̃Xf(x)

is single-valued, Lipschitz and regular; and (ii) there
exists a neighborhood U of ZX,f ∩ S in S such that

max L̃X(L̃Xf) > ε > 0 a.e. on U \ (ZX,f ∩ S). Then,
any solution x : [t0,+∞) → R

d of (3) starting at x0 ∈ S
reaches ZX,f ∩S in finite time. Moreover, if U = S, then

the convergence time is upper bounded by −L̃Xf(x0)/ε.

PROOF. Since x ∈ R
d 7→ L̃Xf(x) is single-valued and

continuous, we have ZX,f = {x ∈ R
d | L̃Xf(x) = 0} and

that this set is closed. Moreover, the largest weakly in-
variant set M contained in ZX,f ∩S is precisely ZX,f ∩S
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itself. Let x : [t0,+∞) → R
d be a solution of (3) start-

ing from x0 ∈ S \ ZX,f . We reason by contradiction.
Assume there does not exist T such that x(T ) ∈ ZX,f .
By the LaSalle Invariance Principle, x(t) → ZX,f when
t → +∞, and therefore there exists t∗ ≥ t0 such that
x(t) ∈ U for all t ≥ t∗. Assumption (i) guarantees that
Proposition 2 can be applied. Combining this with as-
sumption (ii), we write for g(t) = d

dt

(
f(x(t))

)
,

g(t) = g(t∗) +

∫ t

t∗

d

ds
g(s)ds > g(t∗) + ε(t − t∗) , t > t∗.

Since x(t∗) 6∈ ZX,f by hypothesis, then g(t∗) < 0. Not-
ing that t 7→ g(t) is continuous, we deduce that there ex-

ists T < t∗−
g(t∗)

ε
such that g(T ) = 0, i.e., x(T ) ∈ ZX,f ,

which is a contradiction. The upper bound on the con-
vergence time can be deduced using similar arguments.•

Remark 6 Under the hypotheses of Theorem 5, one can
see that a rescaling of the differential equation (3) of the
form ẏ(t) = s · X(y(t)), with s ∈ R, results in a (finite)

convergence time upper bounded by −L̃Xf(x0)/(s · ε).

3 Nonsmooth gradient flows with finite-time
convergence

Here, we formally introduce the normalized and signed
gradient dynamical systems associated with a differen-
tiable function. We characterize their general asymptotic
convergence properties. Building on the novel results of
Section 2, we identify conditions on the differentiable
function under which convergence is reached in finite
time. Consider the following dynamical systems on R

d

ẋ = −
grad(f)(x)

‖ grad(f)(x)‖2
, (6a)

ẋ = − sgn(grad(f)(x)) . (6b)

Both equations have discontinuous right-hand sides.
Hence, we understand their solutions in the Filippov
sense. We now describe their associated set-valued maps.

Lemma 7 The Filippov set-valued maps associated with
the discontinuous vector fields (6a) and (6b) are

K
[ grad(f)

‖ grad(f)‖2

]
(x) =

co
{

lim
i→+∞

grad(f)(xi)

‖ grad(f)(xi)‖2

∣∣ xi → x, grad(f)(xi) 6= 0
}
,

K
[
sgn(grad(f))

]
(x) =

{
v ∈ R

d | vi = sgn(gradi(f)(x)) if gradi(f)(x) 6= 0 and

vi ∈ [−1, 1] if gradi(f)(x) = 0, for i ∈ {1, . . . , d}
}
.

Note K
[ grad(f)
‖ grad(f)‖2

]
(x) = grad(f)(x)

‖ grad(f)(x)‖2
if grad(f)(x) 6= 0.

The proof of this result follows from the definition (4) of
the operator K and the particular forms of (6a) and (6b).

For a differentiable function f , let Critical(f) ={
x ∈ R

d | grad(f)(x) = 0
}

denote the set of its critical
points. The next result establishes the general asymp-
totic properties of the flows in (6).

Proposition 8 Let f : R
d → R be a differentiable func-

tion. Let x0 ∈ S ⊂ R
d, with S compact and strongly in-

variant for (6a) (respectively, for (6b)). Then each solu-
tion of equation (6a) (respectively equation (6b)) starting
from x0 asymptotically converges to Critical(f).

PROOF. For equation (6a), if grad(f)(x) 6= 0, then

L̃ grad(f)
‖ grad(f)‖2

f(x) =
{ grad(f)(x)

‖ grad(f)(x)‖2
· grad(f)(x)

}

=
{
‖ grad(f)(x)‖2

}
.

If, instead, grad(f)(x) = 0, then L̃ grad(f)
‖ grad(f)‖2

f(x) = {0}.

Therefore, we deduce

L̃
− grad(f)

‖ grad(f)‖2

f(x) = −‖ grad(f)(x)‖2, for all x ∈ R
d.

Consequently, Z
− grad(f)

‖ grad(f)‖2
,f

= Critical(f) is closed, and

LaSalle Invariance Principle (cf. Theorem 3) implies that
each solution of (6a) starting from x0 asymptotically
converges to the largest weakly invariant set M con-
tained in Critical(f) ∩ S, which is Critical(f) ∩ S itself.

For equation (6b), we have a ∈ L̃sgn(grad(f))f(x) if and

only if there exists v ∈ K
[
sgn(grad(f))

]
(x) such that

a = v · grad(f)(x). From Lemma 7, we deduce that a =
sgn(grad1(f)(x)) ·grad1(f)(x)+ · · ·+sgn(gradn(f)(x)) ·
gradn(f)(x) = ‖ grad(f)(x)‖1. Therefore, we deduce

L̃− sgn(grad(f))f(x) = {−‖ grad(f)(x)‖1}.

Consequently, Z− sgn(grad(f)),f = Critical(f) is closed,
and LaSalle Invariance Principle implies that each solu-
tion of (6b) starting from x0 asymptotically converges
to the largest weakly invariant set M contained in
Critical(f) ∩ S, which is Critical(f) ∩ S itself. •

Let us now discuss the finite-time convergence properties
of the vector fields (6). Note that Proposition 4 cannot
be applied. Indeed,

max L̃
− grad(f)

‖ grad(f)‖2

f(x) = −‖ grad(f)(x)‖2 ,

max L̃− sgn(grad(f))f(x) = −‖ grad(f)(x)‖1 ,

and both infx∈U\Critical(f)∩S ‖ grad(f)(x)‖2 = 0 and
infx∈U\Critical(f)∩S ‖ grad(f)(x)‖1 = 0, for any neigh-
borhood U of Critical(f)∩S in S. Hence, the hypotheses
of Proposition 4 are not verified by either (6a) or (6b).

Under additional conditions, one can establish stronger
convergence properties of (6). We show this next.
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Theorem 9 Let f : R
d → R be a second-order differen-

tiable function. Let x0 ∈ S ⊂ R
d, with S compact and

strongly invariant for (6a) (respectively, for (6b)). As-
sume there exists a neighborhood V of Critical(f)∩ S in
S where either one of the following conditions hold:

(i) for all x ∈ V , the Hessian Hess(f)(x) is positive
definite; or

(ii) for all x ∈ V \ (Critical(f) ∩ S), the Hessian
Hess(f)(x) is positive semidefinite, the multiplicity
of the eigenvalue 0 is constant, and grad(f)(x) is
orthogonal to the eigenspace of Hess(f)(x) corre-
sponding to the eigenvalue 0.

Then each solution of (6a) (respectively (6b)) starting
from x0 converges in finite time to a critical point of f .
Furthermore, if V = S, then the convergence time of the
solutions of (6a) (respectively (6b)) starting from x0 is
upper bounded by

1

λ0
‖ grad(f)(x0)‖2

(
respectively

1

λ0
‖ grad(f)(x0)‖1

)
,

where λ0 = minx∈S λ2(Hess(f)(x)).

PROOF. Our strategy is to show that the hypotheses
of Theorem 5 are verified by both vector fields. From
Proposition 8, we know that each solution of (6a) (re-
spectively (6b)) starting from x0 converges Critical(f).
Let us take an open set U ⊂ S such that Critical(f)∩S ⊂
U ⊂ U ⊂ V . Since S is compact, then U is also com-
pact. By continuity, under either assumption (i) or as-
sumption (ii), the function λ2(Hess(f)) : U → R, x 7→
λ2(Hess(f)(x)), reaches its minimum on U , i.e, there ex-
ists λ0 > 0 such that λ2(Hess(f)(x)) ≥ λ0 for all x ∈ U .
Moreover, from (1), we have for all u ∈ R

d,

u′ Hess(f)(x)u ≥

≥ λ2(Hess(f)(x)) ‖u − πH0(Hess(f)(x))(u)‖2
2. (7)

For (6a), recall from the proof of Proposition 8, that the

function x ∈ R
d 7→ L̃ grad(f)

‖ grad(f)‖2

f(x) = ‖ grad(f)(x)‖2

is single-valued, locally Lipschitz and regular, and hy-
pothesis (i) in Theorem 5 is satisfied. Additionally,
Z
− grad(f)

‖ grad(f)‖2
,f

= Critical(f). Let us take x 6∈ Critical(f),

and let us compute L̃ grad(f)
‖ grad(f)‖2

(L̃ grad(f)
‖ grad(f)‖2

f)(x). Noting

∂(‖ grad(f)‖2)(x) =
{

Hess(f)(x)
grad(f)(x)

‖ grad(f)(x)‖2

}
,

we deduce

L̃ grad(f)
‖ grad(f)‖2

(L̃ grad(f)
‖ grad(f)‖2

f)(x) =

grad(f)(x)′

‖ grad(f)(x)‖2
Hess(f)(x)

grad(f)(x)

‖ grad(f)(x)‖2
. (8)

Let x ∈ U \ (Critical(f)∩S). Now, note that under any
of the two assumptions in the statement of the theorem,

we have πH0(Hess f(x))

( grad(f)(x)
‖ grad(f)(x)‖2

)
= 0. Therefore, us-

ing (7) in equation (8), we conclude

L̃ grad(f)
‖ grad(f)‖2

(L̃ grad(f)
‖ grad(f)‖2

f)(x) ≥

≥ λ2(Hess(f)(x))
∥∥∥

grad(f)(x)

‖ grad(f)(x)‖2

∥∥∥
2

2
=

= λ2(Hess(f)(x)) ≥ λ0 > 0,

for x ∈ U \ (Critical(f) ∩ S). Hence, hypothesis (ii) in
Theorem 5 is also verified, and we deduce that the set
Critical(f) is reached in finite time, which in particular
implies that the limit of any solution of equation (6a)
starting from x0 ∈ S exists and is reached in finite time.

For (6b), recall from the proof of Proposition 8,

that the function x ∈ R
d 7→ L̃sgn(grad(f))f(x) =

‖ grad(f)(x)‖1 is single-valued, locally Lipschitz and
regular, and hypothesis (i) in Theorem 5 is sat-
isfied. Additionally, Z− sgn(grad(f)),f = Critical(f).
Let us take x 6∈ Critical(f), and let us compute

L̃sgn(grad(f))(L̃sgn(grad(f))f)(x). By definition, a ∈

L̃sgn(grad(f))(L̃sgn(grad(f))f)(x) if and only if there exists

v ∈ K
[
sgn(grad(f))

]
(x) such that a = v · ζ, for any

ζ ∈ ∂(‖ grad(f)‖1)(x). Note that

∂(‖ grad(f)‖1)(x) ={
ζ ∈ R

d | ζ = Hess(f)(x) η, for some η ∈ R
d with

ηi = sgn(gradi(f)(x)) if gradi(f)(x) 6= 0 and

ηi ∈ [−1, 1] if gradi(f)(x) = 0, for i ∈ {1, . . . , d}
}
.

In particular, Hess(f)(x) v ∈ ∂(‖ grad(f)‖1)(x). Then

a = v′ Hess(f)(x) v.

Let us now decompose v as v = πH0(x)(v) + (v −
πH0(x)(v)), where πH0(x)(v) ∈ H0(x) and v−πH0(x)(v) ∈

H0(x)⊥. Because v ∈ K
[
sgn(grad(f))

]
(x), we de-

duce v · grad(f)(x) = ‖ grad(f)(x)‖1. Let x ∈
U \ (Critical(f)∩S). Under either assumption (i) or (ii),

‖ grad(f)(x)‖1 = v · grad(f)(x)

= (v − πH0(x)(v)) · grad(f)(x)

≤ ‖v − πH0(x)(v)‖2‖ grad(f)(x)‖2.

Using ‖u‖1 ≥ ‖u‖2 for any u ∈ R
d, we deduce from this

equation that ‖v−πH0(x)(v)‖2 ≥ 1. Therefore, using (7)

a = v′ Hess(f)(x) v ≥ λ2(Hess(f)(x)) ‖v−πH0(x)(v)‖2
2

≥ λ2(Hess(f)(x)) ≥ λ0 > 0,

for x ∈ U \ (Critical(f) ∩ S). Consequently, we

get max L̃sgn(grad(f))(L̃sgn(grad(f))f) > λ0 > 0 on
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U \(Critical(f)∩S). Hence, hypothesis (ii) in Theorem 5
is also verified, and we deduce that the set Critical(f) is
reached in finite time, which in particular implies that
the limit of any solution of equation (6b) starting from
x0 ∈ S exists and is reached in finite time.

The upper bounds on the convergence time of the solu-
tions of both flows also follow from Theorem 5. •

Corollary 10 Let f : R
d → R be a second-order dif-

ferentiable function. Let x0 ∈ S ⊂ R
d, with S compact

and strongly invariant for (6a) (respectively, for (6b)).
Assume that for each x ∈ Critical(f) ∩ S, the Hessian
Hess(f)(x) is positive definite. Then each solution of
equation (6a) (respectively equation (6b)) starting from
x0 converges in finite time to a minimum of f .

4 Applications to motion coordination

Here we discuss the application of the results on the
proposed nonsmooth gradient dynamical systems to the
design of multi-agent coordination algorithms. We start
by presenting the notion of proximity graphs and of spa-
tially distributed map. These concepts will allow us to
characterize the scalability properties of coordination al-
gorithms designed via the normalized and signed gradi-
ents of suitable objective functions. We end the section
illustrating our results in network consensus problems.

4.1 Proximity graphs and spatially-distributed maps

We introduce some concepts regarding proximity graphs
for point sets in R

d. We assume the reader is familiar
with the standard notions of graph theory as defined
in [11, Chapter 1]. Given a vector space V, let F(V) be
the collection of finite subsets of V. Accordingly, F(Rd) is
the collection of finite point sets in R

d; elements of F(Rd)
are of the form {p1, . . . , pm} ⊂ R

d, where p1, . . . , pm are
distinct points in R

d. Let G(Rd) be the set of undirected
graphs whose vertex set is an element of F(Rd). Finally,
let iF : (Rd)n → F(Rd) be the natural immersion, i.e.,
iF(P ) is the point set that contains only the distinct
points in P = (p1, . . . , pn) ∈ (Rd)n. The cardinality of
iF(p1, . . . , pn) is in general less than or equal to n.

A proximity graph function G : (Rd)n → G(Rd) asso-
ciates to a tuple P ∈ (Rd)n an undirected graph with
vertex set iF(P) and edge set EG(P ), where EG : (Rd)n →
F(Rd × R

d). The edge set of a proximity graph depends
on the location of its vertices. Examples include the com-
plete graph, the r-disk graph, the Euclidean Minimum
Spanning Three, the Delaunay graph, etc. see [9, 10, 16].
To each proximity graph G, one associates the set of
neighbors map NG : (Rd)n → (F(Rd))n, defined by

NG,i(P ) = {pj ∈ iF(P ) | j 6= i and (pi, pj) ∈ EG(P )} .

Any standard directed graph G with vertex set
{1, . . . , n} and edge set E ⊂ {1, . . . , n} × {1, . . . , n} can
be seen as a proximity graph where, for each P ∈ (Rd)n,
(pi, pj) ∈ EG(P ) if and only if (i, j) ∈ E. In this case,
NG,i(P ) = NG,i = {j ∈ {1, . . . , n} | (i, j) ∈ E}.

Given a set Y and a proximity graph function G, a map
T : (Rd)n → Y n is spatially distributed over G if there

exist a map T̃ : R
d×F(Rd) → Y , with the property that,

for all (p1, . . . , pn) ∈ (Rd)n and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,j(p1, . . . , pn)) ,

where Tj is the jth-component of T . In other words,
the jth component of a spatially distributed map at
(p1, . . . , pn) can be computed with the knowledge of the
vertex pj and the neighboring vertices in G(p1, . . . , pn).

4.2 Gradient-based coordination algorithms

There are a number of gradient-based coordination algo-
rithms proposed in the literature to optimize aggregate
objective functions encoding various network tasks. We
roughly distinguish between two classes: (i) algorithms
directly derived from the gradient of a network-wide ag-
gregate objective function (e.g., the deployment algo-
rithms in [9], the consensus algorithm in [19] and the
cohesiveness algorithms in [13, 18, 23]), and algorithms
where each agent follows the gradient of a meaningful lo-
cal objective function whose optimization helps the net-
work achieve the desired global task (e.g. the rendezvous
strategies in [1, 8, 17], and the interaction laws in [7]).

The general idea is as follows: consider a network com-
posed of n agents with sensing, computing, communica-
tion, and motion control capabilities. The state of the
ith agent, denoted pi ∈ R

d, might correspond, depend-
ing on the specific problem, to the location of the agent
in space, or to other physical quantities. The state pi

evolves according to a first-order continuous dynamics

ṗi(t) = ui. (9)

The control ui takes values in a bounded subset of R
d.

Additionally, the network communication topology is
described by a proximity graph G. Specifically, the ith
agent is capable of transmitting information to the jth
agent if and only if pj ∈ NG,pi

(P). Typical proximity
graphs are the r-disk graph (where two agents are neigh-
bors if they lie within a distance r ∈ R+ from each other)
or the visibility graph (where two agents are neighbors
if they are visible to each other), see [9].

The last ingredient is an aggregate objective functionH :
(Rd)n → R encoding the desired coordination task, i.e.,
such that its critical points correspond to the network
configurations where the coordination task is achieved.

Algorithms designed from the aggregate objec-
tive function. Assume the function H has the addi-
tional property that its gradient grad(H) : (Rd)n →
(Rd)n is spatially distributed over the proximity graph G.
One then can set up the gradient coordination algorithm

ṗi(t) = −
∂H

∂pi

(p1(t), . . . , pn(t)), i ∈ {1, . . . , n}, (10)

which is spatially distributed over G.
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Following (6), consider the normalized and signed ver-
sions of the gradient coordination algorithm (10)

ṗi(t) = −
∂H
∂pi

(p1(t), . . . , pn(t))

‖∂H
∂P

(p1(t), . . . , pn(t))‖2

, (11a)

ṗi(t) = − sgn
(∂H

∂pi

(p1(t), . . . , pn(t))
)

. (11b)

Although both vector fields enjoy similar convergence
properties (cf. Proposition 8), there is a fundamental
difference between them, as the following results states.

Proposition 11 Let G be a proximity graph other than
the complete graph. Let H : (Rd)n → R be such that
grad(H) : (Rd)n → (Rd)n is spatially distributed over G.
Then the coordination algorithm in (11a) is not spa-
tially distributed over G, and the coordination algorithm
in (11b) is spatially distributed over G.

PROOF. In the algorithm (11a), each agent must com-
pute the norm of grad(H), and therefore needs to know
in general all agents’ states. Since G is not complete, this
computation is not spatially distributed over it. On the
other hand, the algorithm (11b) is spatially distributed
over G because grad(H) is spatially distributed over G.•

Algorithms designed from local objective func-
tions. To derive a control law for each specific agent,
one assumes that its neighboring agents (with respect
to a given proximity graph) remains fixed. One then
identifies a local objective function, which is somehow
related with the global aggregate objective function H,
and devises a control law to optimize it. The optimiza-
tion of these local objective functions must help the net-
work achieve the desired global task. The specific control
strategy for each agent might be heuristically derived or
arise naturally from the gradient information of the local
objective function. In the latter case, the finite-time con-
vergence properties of the normalized and signed gradi-
ent flows (6a) and (6b) can be invaluable in characteriz-
ing the asymptotic convergence of the algorithm. In both
cases, the resulting algorithms are spatially distributed
with respect to the selected proximity graph.

4.3 Network consensus problems

Here we focus on consensus problems. Let G =
({1, . . . , n}, E) be an undirected graph with n vertices.
The graph Laplacian matrix LG associated with G (see,
for instance, [11]) is defined as LG = ∆G − AG, where
∆G is the degree matrix and AG is the adjacency matrix
of the graph. The Laplacian matrix has the following
relevant properties: it is symmetric, positive semidefi-
nite and has λ = 0 as an eigenvalue with eigenvector
1. More importantly, the graph G is connected if and
only if rank(LG) = n − 1, i.e., if the eigenvalue 0 has
multiplicity one. This is the reason why the eigenvalue
λ2(LG) = min {λ | λ > 0 and λ eigenvalue of LG} is
termed the algebraic connectivity of the graph G.

In this setup, the agents’ states pi, i ∈ {1, . . . , n}, evolve
in R, pi ∈ R. The variable pi does not necessarily refer

to physical variables such as spatial coordinates or ve-
locities. Two agents pi and pj are said to agree if and
only if pi = pj . A meaningful function that quantifies
the group disagreement in a network is the Laplacian
potential ΦG : R

n → R+ associated with G (see [19]),

ΦG(p1, . . . , pn) =
1

2
P ′LGP =

1

2

∑

(i,j)∈E

(pj − pi)
2,

with P = (p1, . . . , pn)′ ∈ R
n. It is clear that ΦG(p1, . . . , pn) =

0 if and only if all neighboring nodes in the graph G
agree. If G is connected, then all nodes agree and a con-
sensus is reached. Therefore, we want the network to
reach the critical points of ΦG. Assume G is connected.
The Laplacian potential is smooth, and its gradient is
grad(ΦG)(P ) = LGP , which is clearly spatially dis-
tributed over the proximity graph induced by G. The
gradient coordination algorithm (10) reads in this case

ṗi(t) = −
∂ΦG

∂pi

=
∑

j∈NG,i

(pj(t) − pi(t)), (12)

for i ∈ {1, . . . , n}, and asymptotically converges to the
critical points of ΦG, i.e., asymptotically achieves con-
sensus. Actually, since the system is linear, the conver-
gence is exponential with rate equal to the algebraic
connectivity of the graph. Additionally, the fact that
1 · (LGP ) = 0 implies that

∑n
i=1 pi is constant along

the solutions. Therefore, each solution of (12) is con-
vergent to a point of the form (p∗, . . . , p∗), with p∗ =
1
n

∑n
i=1 pi(0) (this is called average-consensus).

Now, consider the discontinuous differential equations
corresponding to (6), for i ∈ {1, . . . , n},

ṗi(t) =

∑
j∈NG,i

(pj(t) − pi(t))

‖LGP (t)‖2
, (13a)

ṗi(t) = sgn
( ∑

j∈NG,i

(pj(t) − pi(t))
)
. (13b)

Before analyzing the convergence properties of these
flows, we identify a conserved quantity for each of them.

Proposition 12 Define g1 : R
n → R, g2 : R

n → R by

g1(p1, . . . , pn) =

n∑

i=1

pi,

g2(p1, . . . , pn) = max
i∈{1,...,n}

{pi} + min
i∈{1,...,n}

{pi}.

Then g1 is constant along the solutions of (13a) and g2

is constant along the solutions of (13b).

PROOF. The function g1 is differentiable, with
grad(g1)(P ) = 1. For any P = (p1, . . . , pn) ∈ R

n,

L̃
−

grad(ΦG)

‖ grad(ΦG)‖2

g1(P ) = {0}. Therefore, from Theo-

rem 1, we conclude that g1 is constant along the so-
lutions of (13a). On the other hand, from [5, Propo-
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sition 2.3.12], one can deduce that g2 is locally Lip-
schitz and regular, with ∂g2(P ) = co

{
ej ∈ R

n | j ∈

{1, . . . , n} with pj = mini∈{1,...,n}{pi}
}

+ co
{
ek ∈

R
n | k ∈ {1, . . . , n} with pk = maxi∈{1,...,n}{pi}

}
. Let

a ∈ L̃− sgn(grad(ΦG))g2(P ). By definition, there exists

v ∈ K
[
− sgn(grad(ΦG))

]
(P ) with

a = v · ζ, for all ζ ∈ ∂g2(P ). (14)

If P 6∈ diag(Rn), then ∂g2(P ) = R
d, and, for (14) to

hold, necessarily v = (0, . . . , 0). Therefore, a = 0. If
P 6∈ diag(Rn), there exist j, k ∈ {1, . . . , n} with pj =
mini∈{1,...,n}{pi}, pk = maxi∈{1,...,n}{pi} such that

∑

i∈NG,j

(pi − pj) > 0,
∑

i∈NG,k

(pi − pk) < 0,

and hence, from Lemma 7, vj = 1 and vk = −1. There-
fore, we deduce a = v · (ej + ek) = 1 − 1 = 0. Note that

L̃− sgn(grad(ΦG))g2(P ) 6= ∅ because sgn(grad(ΦG)) ·ζ = 0

for all ζ ∈ ∂g2(P ), and hence 0 ∈ L̃− sgn(grad(ΦG))g2(P ).

Finally, we conclude L̃− sgn(grad(ΦG))g2(P ) = {0}, and
therefore g2 is constant along the solutions of (13b). •

The following theorem completely characterizes the
asymptotic convergence properties of the flows in (13).

Theorem 13 Let G = ({1, . . . , n}, E) be a con-
nected undirected graph. Then, the flows in (13)
achieve consensus in finite time. More specifically, for
P0 = ((p1)0, . . . , (pn)0) ∈ R

n,

(i) the solutions of (13a) starting from P0 converge in
finite time to (p∗, . . . , p∗), with p∗ = 1

n

∑n
i=1(pi)0

(average-consensus). The convergence time is upper
bounded by ‖LGP0‖2/λ2(LG);

(ii) the solutions of (13b) starting from P0 con-
verge in finite time to (p∗, . . . , p∗), with p∗ =
1
2

(
maxi∈{1,...,n}{(pi)0} + mini∈{1,...,n}{(pi)0}

)

(average-max-min-consensus). The convergence
time is upper bounded by ‖LGP0‖1/λ2(LG).

PROOF. Let Φ−1
G (≤ ΦG(P0)) = {(p1, . . . , pn) ∈

R
d | ΦG(p1, . . . , pn) ≤ ΦG(P0)}. Clearly, this set is

strongly invariant for both flows. Since LG is pos-
itive semidefinite, ΦG(p1, . . . , pn) ≥ λ2(LG) ‖P −
πH0(A)(P )‖2

2. Then, ‖P−πH0(A)(P )‖2
2 ≤ ΦG(P0)/λ2(LG)

for P ∈ Φ−1
G (≤ ΦG(P0)). Consider also the closed set

W1(P0) =
{
P ∈ R

n | P · 1 = P0 · 1
}
,

W (P0) =
{
P ∈ R

n | min
i{1,...,n}

{(pi)0} ≤

1

n
P · 1 ≤ max

i∈{1,...,n}
{(pi)0}

}
.

One can see that W (P0) is strongly invariant for (13a)
and for (13b). Now, define the set S = W (P0) ∩ Φ−1

G (≤

ΦG(P0)). From the previous discussion, we deduce that
S is strongly invariant for (13a) and (13b). Clearly, S
is closed. Furthermore, using P = πH0(LG)(P ) + P −

πH0(L)(P ), and noting πH0(LG)(P ) = P ·1
n

1, we deduce

‖P‖2 = ‖πH0(L)(P )‖2 + ‖P − πH0(L)(P )‖2

≤ max
{
| min
i{1,...,n}

{(pi)0}|, | max
i{1,...,n}

{(pi)0}|
}

+
ΦG(P0)

λ2(L)

for P ∈ S. Therefore, S is bounded, and hence com-
pact. Now, the Hessian Hess(ΦG)(P ) = LG is posi-
tive semidefinite at any P ∈ R

n, with the eigenvalue 0
having a constant multiplicity 1. Additionally, for P 6∈
Critical(ΦG), grad(ΦG)(P ) = LGP 6= 0 is orthogonal
to span{1}, the eigenspace of LG corresponding to the
eigenvalue 0. Therefore Proposition 12 and Theorem 9
with V = S imply (i) and (ii) in the statement. •

Fig. 1 illustrates the evolution of the differential equa-
tions (12), (13a) and (13b). As stated in Theorem 13,
the agents’ states evolving under (13a) achieve consen-
sus in finite time at 1

n

∑n
i=1(pi)0, and the agents’ states

evolving under (13b) achieve consensus in finite time at
1
2

(
maxi∈{1,...,n}{(pi)0} + mini∈{1,...,n}{(pi)0}

)
.

Networks with switching communication topolo-
gies. For networks with switching connected topologies,
one can derive a similar result to Theorem 13. Consider,
following [19], the next setup. Let Γn be the finite set of
connected undirected graphs with vertices {1, . . . , n},

Γn = {G = ({1, . . . , n}, E) | G connected and undirected} .

Let IΓn
⊂ N be an index set associated with the ele-

ments of Γn. A switching signal σ is a map σ : R+ → IΓn
.

For each time t ∈ R+, the switching signal σ establishes
the communication graph Gσ(t) ∈ Γn employed by the
network agents. Now, consider a network subject to the
switching communication topology defined by σ and ex-
ecuting one of the coordination algorithms introduced
above. In other words, consider the switching system

ṗi(t) = −
∂ΦGσ(t)

∂pi

=
∑

j∈NGσ(t),i

(pj(t) − pi(t)), (15)

for i ∈ {1, . . . , n}, and the switching systems

ṗi(t) =

∑
j∈NGσ(t),i

(pj(t) − pi(t))

‖LGσ(t)
P (t)‖2

, (16a)

ṗi(t) = sgn
( ∑

j∈NGσ(t),i

(pj(t) − pi(t))
)
. (16b)

The switching system (15) asymptotically achieves
average-consensus for an arbitrary switching signal σ.
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Fig. 1. Evolution of (12) (top left), (13a) (top right) and (13b) (bottom left) for 10 agents starting from a randomly gen-
erated initial configuration with pi ∈ [−7, 7], i ∈ {1, . . . , 10}. The evolution of the Laplacian potential (bottom right)
for each flow is plotted in solid, dashed and dotted lines, respectively. The graph G = ({1, . . . , 10}, E) has edge set
E = {(1, 4), (1, 10), (2, 10), (3, 6), (3, 9), (4, 8), (5, 6), (5, 9), (7, 10), (8, 9)}. The algebraic connectivity of G is λ2(LG) = 0.12.

Let G∗ ∈ Γn be such that

λ2(LG∗
)

λn(LG∗
)

= min
G∈Γn

{ λ2(LG)

λn(LG)

}
.

For the systems in (16), one can deduce the next result.

Corollary 14 Let σ : R+ → IΓn
be a switching signal.

Then, the flow (16a) achieves average-consensus in finite

time upper bounded by
λn(LG∗ )
λ2(LG∗ )

∥∥P (0)− 1
n

∑n
i=1(pi)0 1

∥∥
2
,

and the flow (16b) achieves average-max-min-consensus
in finite time equal to 1

2

(
maxi∈{1,...,n}{(pi)0} −

mini∈{1,...,n}{(pi)0}
)
.

PROOF. For the flow (16a), consider the candidate
Lyapunov function V1 : R

n → R

V1(P ) =
1

2

∥∥P −
1

n

n∑

i=1

pi 1
∥∥2

2
.

The first-order evolution of this function along the net-

work trajectories is determined by L̃
−

grad(ΦG)

‖ grad(ΦG)‖2

V1(P ) =

− P ′LGP
‖LGP‖2

, for each G ∈ Γn, which is single-valued, Lip-

schitz and regular. Additionally, for any G ∈ Γn,

L̃
−

grad(ΦG)

‖ grad(ΦG)‖2

V1(P )≤−
λ2(LG)

λn(LG)

∥∥P −
1

n

n∑

i=1

pi 1
∥∥

2
≤ 0.

The application of the LaSalle Invariance Principle en-
sures that the flow (16a) achieves average-consensus.
From the previous inequality and the definition of V1,

∥∥P (t) −
1

n

n∑

i=1

pi 1
∥∥

2
≤

∥∥P (0) −
1

n

n∑

i=1

pi 1
∥∥

2
−

λ2(LG∗
)

λn(LG∗
)
t,

which implies the result.

For the flow (16b), consider the candidate Lyapunov
function V2 : R

n → R

V2(P ) =
∥∥P −

1

2

(
max

i∈{1,...,n}
{pi} + min

i∈{1,...,n}
{pi}

)
1
∥∥
∞

=
1

2

(
max

i∈{1,...,n}
{pi} − min

i∈{1,...,n}
{pi}

)
.

This function is locally Lipschitz and regular. Let

a ∈ L̃− sgn(grad(ΦG))V2(P ). Then, there exists v ∈

K
[
− sgn(grad(ΦG))

]
(P ) such that a = v · ζ, for

all ζ ∈ ∂V2(P ). Take P with V2(P ) 6= 0. Let
j, k ∈ {1, . . . , n} such that pj = mini∈{1,...,n}{pi},

pk = maxi∈{1,...,n}{pi}. Then 1
2 (ek − ej) ∈ ∂V2(P ),

vj = 1 and vk = −1. Therefore a = −1. The result
follows from Proposition 4. •

Remark 15 Note that in the proof of Corollary 14, we
have explicitly computed the convergence time of the
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flow (13b) to achieve average-max-min-consensus to be

1

2

(
max

i∈{1,...,n}
{(pi)0} − min

i∈{1,...,n}
{(pi)0}

)
.

If the network agents had the capability to decide exactly
when convergence has been achieved (for instance, by run-
ning in parallel another consensus algorithm), this in-
formation and the consensus value would enable them to
compute maxi∈{1,...,n}{(pi)0} and mini∈{1,...,n}{(pi)0}.•

5 Conclusions

We have introduced the normalized and signed versions
of the gradient descent flow of a differentiable func-
tion. We have characterized the general asymptotic con-
vergence properties of these nonsmooth gradient flows,
and identified suitable conditions on the differentiable
function that guarantee that convergence to the critical
points is achieved in finite time. We have obtained these
results building on two novel nonsmooth analysis results
on finite-time convergence and second-order information
about the evolution of the Lyapunov function along the
solutions of the system. The applicability of these results
is not restricted to gradient flows, and they can indeed
be used in other setups involving discontinuous vector
fields, locally Lipschitz functions and finite-time conver-
gence. We have discussed the application of the results
to gradient coordination algorithms for multi-agent sys-
tems, and, in particular, to network consensus problems.

Future work will be devoted to explore (i) the use of the
upper bounds on the (finite) convergence time of the pro-
posed nonsmooth flows in assessing the (time) complex-
ity of a variety of distributed coordination algorithms
for robotic networks; (ii) the application of the results to
distributed sensor fusion algorithms based on consensus
(e.g. [22, 24]), coordination problems such as formation
control, deployment and rendezvous, and other problems
where gradient systems play an important role; (iii) the
identification of other nonsmooth spatially distributed
algorithms based on gradient information with similar
convergence properties.
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