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Abstract
We consider equilibrium solutions of the Smoluchowski equation for rodlike
nematic polymers with a Maier–Saupe excluded volume potential. The purpose
of this paper is to present a new and simplified proof of classical well-known
results: (1) all equilibria are axisymmetric and (2) modulo rotational symmetry,
the number and type of axisymmetric equilibria are characterized with respect to
the strength of the excluded volume potential. These results confirm the phase
diagram of equilibria obtained previously by numerical simulations (Faraoni
et al 1999 J. Rheol. 43 829–43, Forest et al 2004 Rheol. Acta 43 17–37, Larson
and Ottinger 1991 Macromolecules 24 6270–82).

Mathematics Subject Classification: 35Kxx, 70Kxx

1. Introduction

The isotropic–nematic (I–N) first-order phase transition in hard rod gases and liquids is a
classical topic, which was first explained theoretically by Onsager in terms of an excluded
volume potential [20]. Later Maier and Saupe re-examined the I–N transition with a
simpler potential that now bears their names [19]. The Maier–Saupe potential is a quartic
approximation of the Onsager potential, which affords sufficient degrees of freedom to capture
the hysteresis loop in an order parameter representation of isotropic and anisotropic equilibria.
Indeed, this idea is the kernel of Onsager’s insight.
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Doi and Edwards [7] employed a second-moment closure approximation of the
Smoluchowski equation for the probability density function (PDF) to further illustrate the
robustness of the I–N transition with coarse-grained models and an excluded-volume potential.
Since then, numerous numerical studies and semi-analytical studies have provided detailed
bifurcation diagrams for equilibrium solutions of the Smoluchowski equation as well as its
various closure approximations [1, 6, 15, 16, 21].

These references yield overwhelming evidence that all anisotropic equilibria of the
Smoluchowski equation are axisymmetric. In [10], the authors prove this result for all second-
moment closure models with a quartic, rotationally invariant, excluded-volume potential. The
rotational invariance of all equilibria is the key ingredient exploited by Onsager to prove
the I–N transition is a first-order. This O(3) symmetry of equilibria is made explicit for
the Smoluchowski equation in [14]. The parametrization of orientational degeneracy of
nematic equilibria is a prerequisite to rigorous analysis of selection criteria when full rotational
symmetry is broken by applied fields [11–13, 15]. The proof that all kinetic model equilibria
are axisymmetric remained open until quite recently, when Constantin, Kevrekidis and Titi,
and other groups [3–5, 9, 18], began to revisit Onsager’s seminal papers and provide modern
rigorous proofs about stationary solutions.

Two groups have recently proved that all anisotropic equilibrium solutions of the
Smoluchowski equation, or equivalently the Euler–Lagrange equation of the free energy
for rodlike nematic polymers with the Maier–Saupe excluded volume potential, must be
axisymmetric [8, 17]. Both proofs use elaborate estimates on a scalar integral equation
involving the eigenvalues (or equivalently order parameters) of the second moment of the
PDF. In this paper, we present a different and more transparent proof for the same result
independent of the work of [8, 17]. Our proof uses elementary calculus. We also give a new
proof on the existence and the number of nematic phases modulo orientational symmetry of
the PDF. Our method in proving the number of nematic phases is particularly interesting and
may be extended to solve many other problems. It predicts global properties of a function by
studying its local behaviour at a hypothetical point with certain properties.

2. All anisotropic equilibria of the Smoluchowski equation are axisymmetric

The governing equation for stiff rod nematic polymers interacting by excluded-volume effects,
absent of external fields and flow, is the Smoluchowski equation [7]:

∂ρ

∂t
= D

∂

∂u
·
(

1

kBT

∂V

∂u
ρ +

∂ρ

∂u

)
, (1)

where u is the unit vector representing the orientation of the rodlike nematic polymer, ∂/∂u
the orientational gradient operator [2], ρ(u, t) the PDF for the rodlike nematic polymers with
orientation u at time t , D the rotational diffusion constant, kB the Boltzmann constant and
T the absolute temperature. In (1), V (u, [ρ]) is the mean field excluded volume potential,
which depends on the PDF ρ(u, t). Thus, equation (1) is nonlinear in the moments of ρ.

We adopt the Maier–Saupe potential:

V (u, [ρ]) = −bkBT (u ⊗ u) : 〈u ⊗ u〉, (2)

where b = 3N/2 and N is the dimensionless concentration. b can be viewed as the strength
of the excluded volume potential. Here 〈u ⊗ u〉 denotes the second moment of the PDF or
the mean of the random variable u ⊗ u on the unit sphere weighted by the probability density
ρ(u, t):

〈u ⊗ u〉 =
∫

S

(u ⊗ u)ρ(u) du. (3)
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In equilibrium, the solution of the Smoluchowski equation is given by the Boltzmann
distribution:

ρ(u) = exp(−V (u, [ρ]))∫
S

exp(−V (u, [ρ])) du
. (4)

It is clear that the equilibrium is completely determined by the second moment tensor
〈u ⊗ u〉 should it be known. However, 〈u ⊗ u〉 depends on the PDF. Moreover, as we will
show, not all choices of 〈u⊗u〉 are allowed. Because 〈u⊗u〉 is symmetric and trace one, it can
be diagonalized by rotating the Cartesian coordinate system onto its principal axes. Without
loss of generality, we assume that the Cartesian system is chosen such that 〈u⊗u〉 is diagonal.
We denote u = (u1, u2, u3) in the coordinate system. By assumption,

〈u ⊗ u〉 =




1
3 + r1 0 0

0 1
3 + r2 0

0 0 1
3 + r3


 , (5)

where (r1, r2, r3) are given by

r1 = 〈u2
1〉 − 1

3 , r2 = 〈u2
2〉 − 1

3 , r3 = 〈u2
3〉 − 1

3 , (6)

and satisfy

0 � 1
3 + r1 < 1, 0 � 1

3 + r2 < 1, 0 � 1
3 + r3 < 1,

r1 + r2 + r3 = 〈u2
1 + u2

2 + u2
3〉 − 1 = 0.

(7)

The rk , as eigenvalues of the second moment of ρ, are therefore implicitly defined by the
PDF. For simplicity, we absorb kBT into b. The Maier–Saupe potential can be recast in these
coordinates,

V (u) = −b(r1u
2
1 + r2u

2
2 + r3u

2
3 + 1

3 ).

The equilibrium PDF is expressed as follows:

ρ(u) = exp[b(r1u
2
1 + r2u

2
2 + r3u

2
3)]∫

S
exp[b(r1u

2
1 + r2u

2
2 + r3u

2
3)] du

. (8)

In the analysis below, we treat b as a variable (it is either the normalized volume fraction
of rods or the reciprocal of temperature) and view the PDF and all averages (expectations) as
functions of b. Specifically, we define functions as follows:

R1(b) = 〈u2
1〉 − 1

3 , R2(b) = 〈u2
2〉 − 1

3 , R3(b) = 〈u2
3〉 − 1

3 ,

where the average is taken with respect to the PDF given in (8). If (r1, r2, r3) corresponds to
an equilibrium for b = b0, then functions R1(b), R2(b) and R3(b) must satisfy

R1(0) = 0, R2(0) = 0, R3(0) = 0,

R1(b0) = r1, R2(b0) = r2, R3(b0) = r3.
(9)

It is important to note that Rk(b) is a function of b while rk is a fixed value.
To simplify the presentation, we introduce some shorthand notation:

h1 = u2
1 − 〈u2

1〉, h2 = u2
2 − 〈u2

2〉, h3 = u2
3 − 〈u2

3〉. (10)

We note that h1, h2, h3 are random variables and functions of b. They satisfy the following
constraints:

h1 + h2 + h3 = 0 and 〈h1〉 = 〈h2〉 = 〈h3〉 = 0. (11)
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Any solution of (1) with three distinct eigenvalues of the second moment is called biaxial.
PDFs with two distinct eigenvalues of the second moment are called uniaxial (axisymmetric).
The isotropic state corresponds to r1 = r2 = r3 = 0.

Theorem 1. All anisotropic equilibria of the Smoluchowski equation with the Maier–Saupe
excluded volume potential are axisymmetric. The isotropic state is a non-degenerate
equilibrium for all non-zero strengths of the potential.

To prove this theorem, we need a lemma.

Lemma 1. Suppose r1 > r2. Then for b > 0, we have

〈h3(h1 − h2)〉 < 0,

where h1, h2, h3 are defined in (10).

Remark 1. 〈h3h1〉 = 〈(u2
3 − 〈u2

3〉)(u2
1 − 〈u2

1〉)〉 is the correlation of u2
3 and u2

1.

Remark 2. This lemma does not impose any condition on r3.

Remark 3. We can permute (r1, r2, r3) and apply this lemma to any pair of (r1, r2, r3).

For example, if r2 > r3, then we have

〈h1(h2 − h3)〉 < 0.

Proof of lemma 1. To prove this lemma, we first point out the fact that the function

g(r) =
∫ 2π

0 cos 2θ exp(r cos 2θ) dθ∫ 2π

0 exp(r cos 2θ) dθ
(12)

is an increasing function of r , which was proved in [4]. We rewrite 〈h3(h1 − h2)〉 as

〈h3(h1 − h2)〉 = 〈(u2
3 − 〈u2

3〉)(u2
1 − u2

2 + 〈u2
2〉 − 〈u2

1〉)〉
= 〈(u2

3 − 〈u2
3〉)(u2

1 − u2
2)〉.

We select the axis associated with u3 as the z-axis and establish a spherical coordinate
system (φ, θ) where φ is the polar angle and θ is the azimuthal angle. We express everything
in terms of (φ, θ):

u2
1 − u2

2 = sin2 φ cos2 θ − sin2 φ sin2 θ = sin2 φ cos 2θ,

u2
3 = cos2 φ.

The Maier–Saupe potential is

V (φ, θ) = −b(r1 sin2 φ cos2 θ + r2 sin2 φ sin2 θ + r3 cos2 φ)

= −b(a1 sin2 φ + a2 sin2 φ cos 2θ + r3 cos2 φ),

where

a1 = r1 + r2

2
, a2 = r1 − r2

2
> 0.

The probability density is

ρ(φ, θ) = exp[b(a1 sin2 φ + a2 sin2 φ cos 2θ + r3 cos2 φ)]∫ π

0

∫ 2π

0 exp[b(a1 sin2 φ + a2 sin2 φ cos 2θ + r3 cos2 φ)] dθ sin φ dφ
.

Notice that the probability density satisfies∫ 2π

0
cos 2θρ(φ, θ) dθ = g(ba2 sin2 φ)

∫ 2π

0
ρ(φ, θ) dθ,
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where function g(r) defined in (12) is an increasing function of r . Because b > 0 and a2 > 0,
g(ba2 sin2 φ) is an increasing function of sin2 φ.

Let cos2 φ0 = 〈u2
3〉 = 〈cos2 φ〉. Writing the average in terms of (φ, θ), we obtain

〈(u2
3 − 〈u2

3〉)(u2
1 − u2

2)〉

=
∫ π

0
(cos2 φ − cos2 φ0) sin2 φ

(∫ 2π

0
cos 2θρ(φ, θ) dθ

)
sin φ dφ

=
∫ π

0
(cos2 φ − cos2 φ0) sin2 φg(ba2 sin2 φ)

(∫ 2π

0
ρ(φ, θ) dθ

)
sin φ dφ

= 〈(cos2 φ − cos2 φ0) sin2 φg(ba2 sin2 φ)〉
= 〈(cos2 φ − cos2 φ0){sin2 φg(ba2 sin2 φ) − sin2 φ0g(ba2 sin2 φ0)}〉 < 0.

Here we used that g(ba2 sin2 φ) is an increasing function of sin2 φ and cos2 φ = 1−sin2 φ

is a decreasing function of sin2 φ. �

Proof of theorem 1. The PDF (8) depends on b. Its derivative with respect to b is given by

d

db
ρ(u) = [(r1u

2
1 + r2u

2
2 + r3u

2
3) − 〈r1u

2
1 + r2u

2
2 + r3u

2
3〉] · ρ(u)

= (r1h1 + r2h2 + r3h3) · ρ(u).

The derivative of Rk(b) with respect to b is given by

R′
k(b) = 〈u2

k(r1h1 + r2h2 + r3h3)〉 = 〈hk(r1h1 + r2h2 + r3h3)〉,
taking into account the fact 〈h1〉 = 〈h2〉 = 〈h3〉 = 0.

We prove the theorem by contradiction. Suppose there is a set of distinct (r1, r2, r3)

satisfying equation (6) with probability density (8) for b = b0 > 0. Without loss of generality,
we assume r1 > r2 > r3. Because r1 + r2 + r3 = 0, we have r1 > 0 and r3 < 0.

We consider the function

F(b) = r2R1(b) − r1R2(b).

Equation (9) implies that F(0) = F(b0) = 0. To establish the contradiction, we are going
to prove that

F ′(b) > 0 for b > 0.

Taking the derivative of F(b) with respect to b, we have

F ′(b) = r2R
′
1(b) − r1R

′
2(b)

= r2〈h1(r1h1 + r2h2 + r3h3)〉 − r1〈h2(r1h1 + r2h2 + r3h3)〉.
Using h1 = −(h2 + h3) and h2 = −(h1 + h3), we obtain

F ′(b) = r2〈h1[(r2 − r1)h2 + (r3 − r1)h3]〉 − r1〈h2[(r1 − r2)h1 + (r3 − r2)h3]〉
= r2(r2 − r1)〈h1h2〉 + r2(r3 − r1)〈h1h3〉 − r1(r1 − r2)〈h1h2〉 − r1(r3 − r2)〈h2h3〉.

Splitting the term of 〈h1h3〉 into two using the identity (r3 − r1) = (r3 − r2) + (r2 − r1),
combining two terms of 〈h1h2〉 and using r1 + r2 = −r3, we arrive at

F ′(b) = r2(r3 − r2)〈h1h3〉 + r2(r2 − r1)〈h1h3〉 − r3(r2 − r1)〈h1h2〉 − r1(r3 − r2)〈h2h3〉
= (r3 − r2)[r2〈h1h3〉 − r1〈h2h3〉] + (r2 − r1)[r2〈h1h3〉 − r3〈h1h2〉].

Applying the identity

α1β1 − α2β2 = 1
2 [(α1 − α2)(β1 + β2) + (α1 + α2)(β1 − β2)]
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and using r1 + r2 = −r3 and r2 + r3 = −r1, we finally obtain

F ′(b) = 1
2

{
(r3 − r2)[(r2 − r1)〈h3(h1 + h2)〉 + (r2 + r1)〈h3(h1 − h2)〉]

+(r2 − r1)[(r2 − r3)〈h1(h3 + h2)〉 + (r2 + r3)〈h1(h3 − h2)〉]
}

= 1
2

{
(r3 − r2)(r2 − r1)[〈h3(h1 + h2)〉 − 〈h1(h3 + h2)〉]

+(r3 − r2)(−r3)〈h3(h1 − h2)〉 + (r2 − r1)(−r1)〈h1(h3 − h2)〉
}

= 1
2

{
(r1 − r2)(r2 − r3)〈h2(h3 − h1)〉 + (r2 − r3)(−r3)〈h3(h2 − h1)〉

+ (r1 − r2)r1〈h1(h3 − h2)〉
}
.

In the above, all coefficients are positive, and lemma 1 dictates that all correlation terms
are positive as well. Therefore, we conclude that

F ′(b) > 0 for b > 0,

which clearly contradicts (9). Therefore, there cannot exist three distinct rk satisfying equation
(6) with PDF (8). That is, the equilibrium solutions of the Smoluchowski equation are
parametrized by three rk of which at least two must be equal.

3. Number of equilibria

Given that all equilibria are axisymmetric, we now investigate their multiplicity (modulo
rotational invariance). We select the axis of symmetry as the z-axis. We next establish a
corresponding spherical coordinate system. Let φ be the polar angle measured from the z-axis,
0 � φ � π . Let θ be the azimuthal angle, the angle on the xy-plane measured counterclockwise
from the x-axis, 0 � θ � 2π . We express u in terms of (φ, θ):

u = (u1, u2, u3) = (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)). (13)

Because of axisymmetry, (5) becomes

〈u ⊗ u〉 =




1
2 〈sin2(φ)〉 0 0

0 1
2 〈sin2(φ)〉 0

0 0 〈cos2(φ)〉


 , (14)

and the Maier–Saupe potential simplifies accordingly:

(u ⊗ u) : 〈u ⊗ u〉 = 1
2 sin2(φ)〈sin2(φ)〉 + cos2(φ)〈cos2(φ)〉

= 1
2 (3〈cos2(φ)〉 − 1) cos2(φ) − 1

2 (〈cos2(φ)〉 − 1
3 ) + 1

3 . (15)

Notice that the last two terms on the right side of (15) are constants, independent of φ.
Thus, the Maier–Saupe potential (up to a constant) is

V (φ) = −b 1
2 (3〈cos2(φ)〉 − 1) cos2(φ). (16)

Here we introduce a new variable following Constantin and Vukadinovic [5]:

r
def= b 1

2 (3〈cos2(φ)〉 − 1), (17)

where we note that 1
2 (3〈cos2(φ)〉 − 1) is the Flory order parameter.

We rewrite the potential as

V (φ) = −r cos2(φ), (18)

so that the Boltzmann distribution (4) in spherical coordinates has the form:

ρ(φ) = exp(r cos2(φ))

2π
∫ π

0 exp(r cos2(φ)) sin(φ) dφ
. (19)
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We emphasize that r has to satisfy equation (17) with PDF given by (19):

r = b
1

2

(
3

∫ π

0 cos2(φ) exp(r cos2(φ)) sin(φ) dφ∫ π

0 exp(r cos2(φ)) sin(φ) dφ
− 1

)
. (20)

Using w = cos(φ), (20) becomes

r = b
1

2

∫ 1
0 (3w2 − 1) exp(rw2) dw∫ 1

0 exp(rw2) dw
.

Integrating by parts and collecting terms to the left, we obtain

r(1 − bf (r)) = 0, (21)

where f (r) is given by

f (r)
def=

∫ 1
0 w2(1 − w2) exp(rw2) dw∫ 1

0 exp(rw2) dw
. (22)

The equilibrium equation (21) is a nonlinear integral equation for the scaled Flory order
parameter r . For each solution of equation (21), the corresponding equilibrium solution of
equation (1) is given by (19). Therefore, the number of equilibrium solutions equals the number
of solutions of (21). We first note that r = 0 solves (21) for all values of b. When r = 0, from
(18) it follows that r1 = r2 = r3 = 0 and

〈u ⊗ u〉 = 1
3I,

which translates back to the PDF as the isotropic solution ρ = 1/4π .
For b = 0, r = 0 is the only solution of (21). For b > 0, non-zero solutions of (21) must

satisfy

1

b
= f (r). (23)

Theorem 2. f (r) defined in (22) has the following properties.

(1) f (0) = 2
15 .

(2) 0 < f (r) < 1
4 .

(3) limr→−∞ f (r) = 0 and limr→+∞ f (r) = 0.

(4) There exists r∗ > 0, such that f ′(r∗) = 0, f ′(r) > 0 for r < r∗ and f ′(r) < 0 for r > r∗.

Proof of theorem 2. To prove this theorem, we first point out a fact of calculus of one variable.
Suppose f (r) satisfies the property that f ′(r0) = 0 implies f ′′(r0) < 0. If f (r) attains a

maximum at r∗, then we have

f ′(r) > 0 for r < r∗ and f ′(r) < 0 for r > r∗.

As we will see, this simple fact of calculus plays a very important role in the proof of
property (4) below. It enables us to predict the global behaviour of a function by studying
its local behaviour at a hypothetical point with certain properties. Now we prove the four
properties listed one by one.

(1) f (0) = ∫ 1
0 w2(1 − w2) dw = 1

3 − 1
5 = 2

15 .
(2) 0 < w2(1 − w2) < 1

4 for w ∈ (0, 1)\{
1√
2

}
lead to

0 < f (r) =
∫ 1

0 w2(1 − w2) exp(rw2) dw∫ 1
0 exp(rw2) dw

<
1

4
.
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(3) To prove limr→−∞ f (r) = 0, we consider for any r < 0 and 1 > ε > 0,∫ ε

0
exp(rw2) dw =

∫ ε

0
exp[r(ε − s)2] ds =

∫ ε

0
exp[rε2 − 2rεs + rs2] ds

� exp(rε2) ·
∫ ε

0
exp(−rs2) ds �

∫ 1

ε

exp(rw2) dw ·
∫ ε

0
exp(−rs2) ds.

Here we have used −2rεs + rs2 � −2rs2 + rs2 = −rs2.
Since limr→−∞

∫ ε

0 exp(−rs2) ds = ∞, we obtain the result below.
For any ε > 0, there exists an M such that r < −M implies∫ ε

0
exp(rw2) dw � 1

ε
·
∫ 1

ε

exp(rw2) dw.

It follows that

0 < f (r) �
ε2

∫ ε

0 exp(rw2) dw + (1/4)
∫ 1
ε

exp(rw2) dw∫ ε

0 exp(rw2) dw
< ε2 +

ε

4
.

Thus, we have limr→−∞ f (r) = 0.
limr→+∞ f (r) = 0 is proved in a similar way.
(4) Because limr→±∞ f (r) = 0 and f (r) > 0, f (r) attains a maximum at r∗. Using the

simple fact of calculus we pointed out above, we see that, to prove property (4), we only need
to prove that f ′(r0) = 0 implies f ′′(r0) < 0.

For the simplicity of presentation, we consider random variable W with probability density

ρ(ω) = exp(rw2)∫ 1
0 exp(rw2) dw

.

Then we have f (r) = 〈W 2(1 − W 2)〉. The derivative of ρ(w) with respect to r is

d

dr
ρ(w) = (w2 − 〈W 2〉) · ρ(w).

Taking derivatives of f (r) = 〈W 2(1 − W 2)〉, we have

f ′(r) = 〈W 2(1 − W 2)(W 2 − 〈W 2〉)〉
= 〈W 2(1 − W 2)W 2〉 − 〈W 2(1 − W 2)〉 · 〈W 2〉
= 〈{W 2(1 − W 2) − 〈W 2(1 − W 2)〉}W 2〉
= 〈{〈W 2(1 − W 2)〉 − W 2(1 − W 2)}(1 − W 2)〉,

f ′′(r) = 〈{〈W 2(1 − W 2)〉 − W 2(1 − W 2)}(1 − W 2)(W 2 − 〈W 2〉)〉
+

(
d

dr
〈W 2(1 − W 2)〉

)
· 〈(1 − W 2)〉

= 〈{〈W 2(1 − W 2)〉 − W 2(1 − W 2)}W 2(1 − W 2)〉
− 〈{〈W 2(1 − W 2)〉 − W 2(1 − W 2)}(1 − W 2)〉 · 〈W 2〉 + f ′(r) · (1 − 〈W 2〉)

= 〈W 2(1 − W 2)〉2 − 〈{W 2(1 − W 2)}2〉 + f ′(r) · (1 − 2〈W 2〉).
Here we have used

d

dr
〈W 2(1 − W 2)〉 = f ′(r)
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Figure 1. Graph of function f (r) defined in (22).

and

〈{〈W 2(1 − W 2)〉 − W 2(1 − W 2)}(1 − W 2)〉 = f ′(r).

Suppose f ′(r0) = 0. Then we have

f ′′(r0) = 〈W 2(1 − W 2)〉2 − 〈{W 2(1 − W 2)}2〉 = −var{W 2(1 − W 2)} < 0.

Then it follows that f ′(r) > 0 for r < r∗ and f ′(r) < 0 for r > r∗.
Finally we have

f ′(0) =
(∫ 1

0
w4(1 − w2) dw

)
−

(∫ 1

0
w2(1 − w2) dw

)
·
(∫ 1

0
w2 dw

)
= 4

315
> 0,

which implies r∗ > 0.

r∗ and f (r∗) can be estimated numerically using a nonlinear equation solver (such as the
bisection method) and a numerical integration method (such as Simpson’s method). Our
numerical results show

r∗ ≈ 2.178 287 9748, f (r∗) ≈ 0.148 555 599 922 54.

A plot of f (r) is shown in figure 1. �

Corollary. Let b∗ = 1/f (r∗) ≈ 6.731 486 3965.

(1) For b < b∗, (21) has one solution, r = 0.
(2) For b = b∗, (21) has two solutions, r = 0 and r = r∗.
(3) For b∗ < b < 15

2 , (21) has three solutions r = 0, r = r1 and r = r2 where 0 < r1 < r∗

and r2 > r∗.
(4) For b = 15

2 , (21) has two solutions r = 0 and r = r2 where r2 > r∗.

(5) For b > 15
2 , (21) has three solutions r = 0, r = r1 and r = r2 where r1 < 0 and r2 > r∗.

Remark. Our numerical value of b∗ is slightly different from the numerical value of 6.731 393
reported in [17].
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4. The 2D case

Our approach also works for the 2D Smoluchowski equation. In the proof given by Constantin
and Vukadinovic [5] for the 2D problem, the key step is to prove that the function

f (r) =
∫ 2π

0 cos2 φ exp(r cos φ) dφ∫ 2π

0 exp(r cos φ) dφ

is an increasing function of r . Constantin and Vukadinovic [5] proved that f (r) is strictly
increasing by viewing it as the solution of a differential equation. Here we use the simple fact
of calculus pointed out in the proof of theorem 2 above. Again, the main idea of our approach
is to predict the global behaviour of a function by studying its local behaviour.

We first prove that f (r) satisfies the property that f ′(r0) = 0 implies f ′′(r0) > 0.
We consider random variable 
 with probability density

ρ(φ) = exp(r cos φ)∫ 2π

0 exp(r cos φ) dφ
.

Then we have f (r) = 〈cos2 
〉. The derivative of ρ(φ) with respect to r is

d

dr
ρ(φ) = (cos φ − 〈cos 
〉) · ρ(φ).

Taking derivatives of f (r) = 〈cos2 
〉, we have

f ′(r) = 〈cos2 
(cos 
 − 〈cos 
〉)〉
= 〈(cos2 
 − 〈cos2 
〉) cos 
〉,

f ′′(r) = 〈(cos2 
 − 〈cos2 
〉) cos 
(cos 
 − 〈cos 
〉)〉 −
(

d

dr
〈cos2 
〉

)
· 〈cos 
〉

= 〈(cos2 
 − 〈cos2 
〉) cos2 
〉
− 〈(cos2 
 − 〈cos2 
〉) cos 
〉 · 〈cos 
〉 − f ′(r) · 〈cos 
〉

= 〈cos4 
〉 − 〈cos2 
〉2 − 2f ′(r) · 〈cos 
〉.
Here we have used

d

dr
〈cos2 
〉 = f ′(r)

and

〈(cos2 
 − 〈cos2 
〉) cos 
〉 = f ′(r).

Suppose f ′(r0) = 0. Then we have

f ′′(r0) = 〈cos4 
〉 − 〈cos2 
〉2 = var {cos2 
} > 0.

Now we show that f ′(r) > 0 for r > 0.
Because f ′(0) = 0 we obtain f ′′(0) > 0 , which means that f ′(r) > 0 for r ∈ (0, ε).
Let r0 = sup{q|q > 0 and f ′(r) > 0 in (0, q)}. If r0 = ∞, then it is true that f ′(r) > 0

for r > 0. If r0 < ∞, then we have f ′(r0) = 0 and consequently f ′′(r0) > 0. That means
f ′(r) < 0 for r ∈ (r0 − ε, r0), which contradicts the definition of r0.
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5. Conclusion

We have presented three new proofs for the type and number of the equilibrium solutions
of the Smoluchowski equation with Maier–Saupe excluded volume potential in 2D and 3D,
respectively. Although the conclusions are not new, the approach is new and systematic and
has potential applicability to other questions such as selection criteria for stationary solutions
of a Smoluchowski equation in the presence of axisymmetric external flow and/or external
fields coupled to an excluded-volume potential.
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