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Abstract

Motivated by recent research of aging in E. coli, we explore the effects of aging

on bacterial fitness. The disposable soma theory of aging was developed to explain

how differences in lifespans and aging rates could be linked to life history trade-offs.

Although generally applied for multicellular organisms, it is also useful for exploring life

history strategies of single celled organisms such as bacteria. Starting from the Euler-

Lotka equation, we propose a mathematical model to explore how a finite lifespan

effects fitness of bacteria. We find that that there is surprisingly little loss of fitness

when the bacterium has limited opportunities to reproduce. Instead, the fitness gained

each time the bacteria reproduces decreases rapidly, and investing resources to survive

to reproduce the first few times is likely more advantageous than investing additional

resources to try to maintain cell integrity longer.
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1 Introduction

Living organisms exhibit an astonishing variety of lifespans and life histories. A giant sequoia

tree can live for thousands of years, producing only a few offspring over its lifetime, while

a dandilion survives only for a season, but produces thousands of seeds, often resulting in

hundreds of new plants the next year. Among a single genus, such as rockfish (Sebastes),

species exhibit lifespans ranging anywhere from 10 to 200 years (Love et al., 2002).

Even bacteria appear to age. New research by Stewart et al. (Stewart et al., 2005)

indicates that even Escherichia coli which appear to divide symmetrically actually divide

into one “old” and one “young” cell. Current theories of aging seek to combine principles

of evolution with theories from microbiology about how damage that accumulates in a cell

makes it unable to function. One such theory is called the disposable soma theory of aging

(Kirkwood, 1981, Finch and Kirkwood, 2000, Drenos and Kirkwood, 2005). This model

predicts that an organism will allocate resources for reproduction and maintainace of the

soma in such a way that maximizes the dispersal of its genes. We expect that the optimal

allocation strategy will not be one that allows an organism to maintain the soma indefinitely.

This is because organisms have a finite amount of energy to use for all life functions; if they

use all of the energy for maintenance of the soma, then there might not be enough energy

to reproduce, and vice versa.

This theory also predicts how natural mortality is expected to influence the life span and

reproductive schedule of an organism. For instance, if an organism experiences high natural

mortality, then its resources are better invested in offspring than soma. Higher natural

mortality also results earlier maturation, so they will be less likely to die before having an

opportunity to reproduce. Organisms with lower natural mortality instead maintain the

soma for longer, produce offspring less frequently, and experience longer lives.
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2 Fitness Models of Bacteria

Single celled organisms, or other organisms where the soma and the germ line are not sepa-

rate, were once expected to be immortal (Williams, 1957). The distinction between organ-

isms that age and those that do not has more recently been hypothesized to depend upon

asymmetry in reproduction (Partridge and Barton, 1993). Recent research by Stewart et

al. (Stewart et al., 2005) indicates that even bacteria that appear to divide symmetrically,

such as E. Coli, actually produce functionally asymmetric cells during cell division. They

consider one of the cells to be an aging parent cell that produces offspring that are “rejuve-

nated” and find evidence evidence that these older cells reproduce more and more slowly as

they age, and may even stop reproducing after a certain number of divisions (Stewart et al.,

2005). Quantitative models can be useful for exploring how evolutionary trade-offs shape

aging and senescence in these simple organisms. Here we explore the effect of finite lifespan

on bacterial fitness when doubling rate and environment are constant.

We explore the effects of life history choices on our selected fitness measure, the intrinsic

rate of natural increase, denoted by r, in populations with age dependent reproduction and

mortality schedules, living in a constant environment using the Euler-Lotka equation:

1 =

∫ ∞

0

e−rxlxbxdx. (1)

Here the probability of surviving to age x is denoted as lx and the number of offspring born

to an individual of age x is bx.

Kirkwood (Kirkwood, 1981) first proposed a simple model of bacterial fitness for cells

that divide perfectly symmetrically, based upon (1), with appropriate choices of bx and lx for

a clonally reproducing population. One simple choice for lx is an exponentially decreasing

survival probability, lx = e−mx, where m is the mortality rate. The birth rate will be related

to the doubling time, T . If an individual bacteria survives to time T , it divides, and two
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identical offspring result. At the end of this time period the original bacteria is essentially

“dead” and the daughter cells remain. An appropriate “birth” rate would therefore be

bx = 2δ(x − T ), where δ(x − T ) is the Dirac delta function1. With these expressions for lx

and bx (1) becomes:

2e−(m+r)T = 1. (2)

Figure 1 shows this functional relationship between r, m and T graphically. As m and T

increase, r decreases. As T → 0, r →∞, regardless of the value of m. As m and T increase,

r decreases.

Figure 1: The intrinsic rate of natural increase, r, as a function of the doubling time, T , and the mortality,
m.

We denote the fraction of resources allocated for growth and reproduction by ρ, and

the fraction alloted for maintenance and survival by 1− ρ. Following Kirkwood (Kirkwood,

1The Dirac delta function is defined as a unit impulse at some point x0 such that:

δ(x− x0) = 0, x 6= x0∫ ∞

−∞
δ(x− x0)dx = 1,

and given an arbitrary function f(x): ∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0).
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1981), we can parameterize the mortality, m, and doubling time, T , in terms of ρ as:

T (ρ) =
T0

ρ
(3)

m(ρ) =
m0

1− ρ
. (4)

Here, T0 can be thought of as the minimum possible time it would take for the bacteria to

reproduce if it allocated all of it’s resources to growth; m0 is the minimum mortality of the

bacteria if all resources are allocated for survival. Solving for r in (2) with the expressions

for T and m in (3-4) yields:

r =
ρ

T0

ln 2− m0

1− ρ
. (5)

Maximizing (5) with respect to ρ gives the optimal resource allocation, ρ∗:

ρ∗ = 1−
(

T0m0

ln 2

) 1
2

, (6)

and the corresponding value of rmax,

rmax =
1

T0

(
ln 2− 2(m0T0 ln 2)

1
2

)
. (7)

If T0 and m0 are constants, r(ρ) will follow curves similar to those depicted in Figure 2.

We can see from Eqn. (6) and Figure 2 that the optimal strategy will never be to dedicate

all resources to reproduction, i.e. ρ∗ < 1. In an environment with low mortality, it can

be optimal to invest most resources in reproduction, as shown in Figure 2a, even if the

generation time is relatively long (lowest curve). However, if the mortality is high and/or

the doubling time is long, the optimal resource allocation may be to use more resources for

survival (Figure 2b).
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(a)

(b)

Figure 2: r as a function of ρ for four values of T0 = (2, 0.25, 0.1, 0.06) for (a) m0 = 0.015 (b) m0 = 0.9.
High values of T0 correspond to the lowest curves in each plot, and small T0 to higher curves.

3 The Implications of Bacterial Aging

We now explore how the intrinsic rate of natural increase for the aging bacteria, denoted by

r̃, is impacted by a finite lifespan. Starting from the Euler-Lotka Eqn. (1) we first modify

the birth rate, bx, to take into account a functional asymmetry in cell division. The cell is

able to divide and produce a single offspring in a given fixed doubling time T , then can live

to divide again later. We define cellular “age”, a = 1, 2, . . . , amax, as the number of times

the cell has doubled, where amax is the maximum number of times it can split (in analogy

with the Hayflick limit (Arking, 1998, Finch and Kirkwood, 2000)). The birth rate is then

a sum of delta functions spaced a distance T apart:

bx =
amax∑
a=1

δ(x− aT ). (8)
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This, together with the previous expression for lx, inserted into (1) gives:

1 =

∫ ∞

0

e−r̃xe−mx

amax∑
a=1

δ(x− aT )dx

=
amax∑
a=1

e−(r̃+m)aT . (9)

Evaluating the sum in Eqn. (9) results in

e(r̃+m)T = 2− e−(r̃+m)Tamax . (10)

This equation has two solutions for amax ≥ 1. The trivial solution exists when r̃ = −m.

All other solutions depend upon the maximum age, amax, the mortality rate, m, and the

doubling time, T (see Figure 3). The value of r̃ varies considerably depending upon the

combination of these three parameters. Variation of T and amax seem to have the most

impact upon r̃, as shown in Figure 3a, whereas variations in m act to shift r̃ up or down

a fixed amount when T is held constant (Figure 3b). Variation in amax has a much larger

impact upon r when the value of amax is small. When amax →∞, Eqn. (10) reduces to Eqn.

(2), and r̃ → r. In other words, infinite reproductive lifespan and perfectly symmetrical cell

division are equivalent.

Since as amax increases r̃ → r, we can approximate the second solution of Eqn. (10) in

terms of r for large values of amax using Newton’s method:

r̃ ≈ r − 1

T

2−amax

ln 2 + amax2−amax
. (11)

As can be seen in Figure 4, this approximation is remarkably good, over a wide range of

values of amax. It also gives us some idea of the values of amax that are “large”. Where the

approximation is valid, amax must be large enough to make the difference in fitness between
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(a)

(b)

Figure 3: r̃ vs amax for (a) m = 0.5, T = (0.25, 0.5, 0.75, 1) and (b) T = 0.5 and m = (0.5, 0.25, 0.1, 0.01) (c)
Effects of amax = (2, 3, 5, 10) on r̃(T ) for m = 0.9

the aging bacteria and the immortal bacteria, r − r̃, very small.

Since the fitness of the aging and immortal bacteria are very close when amax is large,

we would expect that the allocation strategies would be similar as well. Let us denote the

allocation strategy of an aging bacteria by ρ̃. Substituting (3) and (4) into (10) gives a

relationship between r̃, ρ̃, m0, T0, and amax:

exp

(
(r̃ +

m0

1− ρ̃
)
T0

ρ̃

)
= 2− exp

(
−(r̃ +

m0

1− ρ̃
)
T0

ρ̃
amax

)
. (12)

Unlike the baseline model without aging, Eqn. (12) does not have an exact closed form

analytic solution. Figure 5 shows a numerical solution for the fitness of the aging bacteria,

r̃, as a function of fraction of resources allocated for reproduction, ρ̃, for various values of

amax, m0, and T0. The values of r̃ increase drastically between the lowest values of amax.
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(a)

(b)

Figure 4: (a) Analytic approximation (dashed lines) and numerical solution (solid lines) of r̃ vs amax for
m = 0.5 and T = (0.1, 0.25, 0.5, 0.75) (b) The difference between the numerical solution and analytic ap-
proximation, r̃ − r̃approx, for the same values as in (a)

However, for higher values of amax, r̃ hardly varies and there is a lower return in the fitness

for more opportunities to reproduce. Additionally, notice that as amax increases, the peak in

r̃ becomes more pronounced, and shifts towards higher values of ρ̃. Thus, bacteria that can

double many times gain more fitness from focusing resources for reproduction than those

that cannot.

We can quantify how aging shifts the optimal allocation strategy away from the value

determined in Eqn. (6) for immortal bacteria. If we differentiate Eqn. (12) with respect to ρ̃,

and evaluate it at the optimal strategy, ρ̃∗, so that dr̃(ρ̃∗)
dρ̃

= 0, we find an implicit expression

for the maximum fitness, r̃(ρ̃∗) = r̃max, as a function of ρ̃∗:

(
(2ρ̃∗ − 1)m0 − r̃max(1− ρ̃∗)2

) [
e(r̃max+m(ρ̃∗))T (ρ̃∗) + amaxe

−(r̃max+m(ρ̃∗))T (ρ̃∗)amax
]

= 0 (13)
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Effects of amax = (1, 2, 5, 10, 20) on r̃(ρ̃) and r(ρ) (solid black line) for (a) m0 = 0.7, T0 = 0.45;
(b) m0 = 0.7, T0 = 0.25; (c) m0 = 0.9, T0 = 0.1; (d) m0 = 0.9, T0 = 0.01; (e) m0 = 0.01, T0 = 1; and (f)
m0 = 0.5, T0 = 0.1.

Since the sum of exponential terms in (13) can never be equal to zero, we conclude that

(2ρ̃∗ − 1)m0 − r̃max(1− ρ̃∗)2 = 0,

and therefore r̃max is related to ρ̃∗ by

r̃max =
(2ρ̃∗ − 1)

(1− ρ̃∗)2
m0. (14)

It is straightforward to confirm that this expression holds for the case when amax →∞.
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(a)

(b)

Figure 6: Close-ups of the maxima of r̃(ρ̃) for amax = (5, 10, 20) and r(ρ) (solid black line) for (a) m0 = 0.7,
T0 = 0.25 (corresponding to Figure 5a ) (b) m0 = 0.9, T0 = 0.01; (corresponding to Figure 5d )

As previously discussed, as the maximum cellular age, amax, increases, the difference between

the fitness of the immortal bacteria, r, and the fitness of the aging bacteria, r̃, decreases. In

particular, for large values of amax we saw that r → r̃. We can also see in Figure 5 that when

amax ≈ 10 the peaks in the fitness curves are very close, so that rmax ≈ r̃max, and occur at

about the same value of the allocation strategy, i.e. ρ̃∗ ≈ ρ∗. We would like to quantify the

magnitude of the change in optimal allocation strategy as a function of amax. We begin by

looking at the difference between rmax and r̃max:

rmax − r̃max = r(ρ∗)− r(ρ̃∗) + r(ρ̃∗)− r̃(ρ̃∗). (15)
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Writing (15), in this way allows us to use our approximation from Eqn. (11) to determine

the value of a small parameter, ε, in our approximation. Substituting Eqns. (5), (11), and

(14) into (15) and rearranging gives:

(2ρ̃∗ − 1)

(1− ρ̃∗)2
m0 ≈

ρ̃∗ ln 2

T0

+
m0

1− ρ̃∗
+

ρ̃∗

T0

ε

where ε = 2−amax

ln 2+amax2−amax . Solving this expression for ρ̃∗, we find:

ρ̃∗ ≈ 1−
(

m0T0

ln 2− ε

) 1
2

= ρ∗ − 1

2

(
ln 2

m0T0

) 1
2

ε + O(ε2), (16)

where O(ε2) denotes terms that are of order ε2 or smaller. From this we also have an

approximate expression for r̃max, similar to (7):

r̃max ≈
1

T0

(
ln 2− ε− 2 (m0T0(ln 2− ε))

1
2

)
. (17)

This analytic approximation gives results that are very close to those obtained numer-

ically. For instance, for T0 = 0.05 and m0 = 0.5, the difference between the analytic

approximation and numerical solution when amax = 5 is fairly large, as we might have

guessed since this is when r − r̃ is largest (Figure 4). In this case the numerical solu-

tion is (ρ̃∗, r̃max) = (0.8077, 8.31959) compared to the analytic approximation (ρ̃∗, r̃max) =

(0.804836, 8.00324). As amax increases, the approximation improves. For instance, when

amax = 20, the numerical solution is (ρ̃∗, r̃max) = (0.8101, 8.58945), and the analytic approx-

imation is (ρ̃∗, r̃max) = (0.810086, 8.59738), a difference of less then 0.1% in r̃max and less

than 0.002% in ρ̃∗.
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4 Discussion

Studying the impacts of aging and resource allocation on fitness for bacteria is appealing

for a number of reasons. Bacterial systems are relatively simple. They also are ideal for

experimental manipulation. Metabolism and repair activity should be fairly straightforward

to measure, giving indications of how bacteria allocate resources. Genetic manipulation of

bacterial systems is also possible, which allows more direct measurement of the parameters

in the model. Because generation times are short, bacterial systems also allow for replicate

experiments at a reasonable cost. Thus, bacterial systems are ideal model systems for ecology

(Jessup et al., 2004).

Here we have proposed a simple mathematical model to explore how aging, in the form of

finite life span, effects fitness in bacteria. This allows us to explore, explicitly, predictions of

the disposable soma theory of aging for a system that is fairly simple and easy to manipulate.

This model provides valuable insight into which trade-offs have the most impact on

bacterial fitness. Given the assumptions about the form of lx in the Euler-Lotka equation, as

well as the relationships between mortality, doubling rate, and resource allocation, we found

that the ability to manipulate the doubling time T has the greatest impact upon bacterial

fitness. If the doubling time is short, even if the mortality is high, as is shown in Figure

5d, the bacteria’s fitness is considerably higher than in a system with lower mortality, but

longer doubling time (Figure 5e and 5f). Thus we expect for there to be strong selection for

lower values of the minimum doubling time, T0.

We also find that that a bacteria experiences surprisingly little loss of fitness when it

has a finite number of opportunities to reproduce (Figures 3 and 5). For most combinations

of the minimum mortality rate, m0, and minimum doubling time, T0, amax ≈ 5 or 10 is

large enough to confer almost exactly the same amount of fitness to the bacteria as an

ability to reproduce indefinitely (Figure 6). Most of the bacteria’s fitness is gained the first
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few times the it doubles, and the amount gained in each subsequent doubling decreases

rapidly. Therefore we expect that if there were a resource cost associated with increasing

the maximum number of possible doublings then investing resources to survive to double the

first few times would be better than investing additional resources to try to maintain cell

integrity indefinitely.

This simple model also has the advantage of being analytically tractable. Although

numerical results for complex models are fairly easy to obtain it can be difficult to understand

and quantify the roles of model parameters. Good analytic approximations, such as those

found above for r̃, r̃max, and ρ̃∗, allow us to explore the effects of parameter variation in a

very concrete way that might not be available for more complex models.

This model is only a first step in understanding how aging impacts bacterial fitness.

Other mechanisms are likely important in determining the optimal life history strategy. The

model does not consider the effects of variable environmental conditions, density effects, or

of increasing doubling times as a function of age. Also, here we assume no dependence of

amax on ρ, so the trade-offs between mortality, reproduction, and lifespan are not explicitly

explored. These could be important factors in the development of bacterial life histories.

However, in spite of these limitations, this model gives insight into why bacteria do not

exhibit infinite lifespans, and suggests directions for further exploration.
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