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Abstract

We propose modeling for Poisson processes over time, exploiting the connection of

the Poisson process intensity with a density function. Nonparametric mixture models for

this density induce flexible prior models for the intensity function. We work with Beta

densities for the mixture kernel and a Dirichlet process prior for the mixing distribution.

We also discuss modeling for monotone intensity functions through scale uniform mixtures.

Simulation-based model fitting enables posterior inference for any feature of the Poisson

process that might be of interest. A data example illustrates the methodology.
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1. Introduction

Poisson processes play a fundamental role in the theory and applications of point processes

(see, e.g., Kingman, 1993; Møller and Waagepetersen, 2004). From a modeling perspec-

tive, of interest for a non-homogeneous Poisson process (NHPP) over time is its intensity

function λ, a non-negative and locally integrable function, that is,
∫

B
λ(u)du < ∞, for all

bounded B. The mean measure (or cumulative intensity function) of the process is given

by Λ(t) =
∫ t

0 λ(u)du, t ∈ R+. Formally, a point process over time, Y = {Y (t) : t ≥ 0}, is

a NHPP if Y has independent increments and, for any t > s ≥ 0, Y (t) − Y (s) follows a

Poisson distribution with mean Λ(t) − Λ(s).

We propose a Bayesian nonparametric modeling approach for NHPPs. The method is

based on the direct connection of the intensity function with an associated density function.

To model the density function, we employ flexible nonparametric mixtures of Beta den-

sities. The resulting nonparametric prior for the intensity function enables model-based,

data-driven inference for non-standard intensity shapes and allows quantification of the

associated uncertainty. Moreover, we develop prior models that incorporate monotonicity

restrictions for the intensity function, using scale mixtures of uniform densities.

The plan of the paper is as follows. Section 2 presents the methodology for intensity

functions with general shapes, including details for posterior inference and prior specifi-

cation. A data illustration is provided in Section 3. Section 4 discusses alternative model

formulations for monotone intensity functions, and Section 5 concludes with a discussion.

2. The modeling approach

2.1. The probability model

We consider a NHPP observed over the time interval (0, T ] with events that occur at times
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0 < t1 ≤ t2 ≤ ... ≤ tn ≤ T . The likelihood for its intensity function λ is given by

exp{−
∫ T

0 λ(u)du}
n
∏

i=1
λ(ti). (1)

Let γ =
∫ T

0 λ(u)du. To cast the problem in a density estimation framework, the key

observation is that f(t) = λ(t)/γ, t ∈ (0, T ], is a density function on (0, T ]. Hence, since

(f, γ) provides an equivalent representation for λ, a nonparametric prior model for f , with

a parametric prior for γ, will induce a semiparametric prior for λ. A flexible specification

for f arises through a Dirichlet process (DP) mixture, f(t;G) =
∫

k(t;θ)dG(θ). Here,

k(t;θ) is a parametric kernel (with parameter θ ∈ Θ ⊆ Rd, d ≥ 1) supported by (0, T ],

and the random mixing distribution G is assigned a DP prior (Ferguson, 1973; Antoniak,

1974) with precision parameter α and base distribution G0, denoted by G ∼ DP(αG0).

In this context, the choice of the DP allows us to draw from the existing theory for this

prior, and to utilize well-established techniques for simulation-based model fitting. Note

that we are creating a prior model for random intensity functions induced by the prior

model for the associated random density functions. In fact, since γ only scales λ, it is f

that determines the shape of the intensity function λ, and thus a flexible model for f will

capture non-standard shapes in λ.

To allow modeling of general density, and thus also intensity, shapes on (0, T ], we

employ a Beta distribution for the kernel of the mixture f(t;G). (In Section 4 we develop

different mixture model formulations for applications where it is of interest to model mono-

tone intensity functions.) Mixtures of Beta densities yield a wide range of distributional

shapes, in fact, they can be used to approximate arbitrarily well any density defined on

a bounded interval (Diaconis and Ylvisaker, 1985). We parameterize the rescaled Beta

distribution, with support on (0, T ), in terms of its mean µ ∈ (0, T ) and a scale parameter
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τ > 0. Specifically, letting θ = (µ, τ),

k(t;µ, τ) =
1

Be{µτT−1, τ(1 − µT−1)}T τ−1
tµτT−1

−1(T − t)τ(1−µT−1)−1, t ∈ (0, T ), (2)

where Be(a, b) denotes the Beta function,
∫ 1
0 ua−1(1 − u)b−1du, a > 0, b > 0.

Hence the mixture model for the random density f is given by

f(t;G) =

∫

k(t;µ, τ)dG(µ, τ), G ∼ DP(αG0). (3)

We assume random α with a gamma(aα, bα) prior distribution p(α) such that E(α) =

aα/bα. To specify the base distribution G0, we assume independent components, G0(µ, τ) =

G01(µ)G02(τ), and note that the variance under (2) is µ(T − µ)/(τ + 1). Hence µ deter-

mines the location of a mixture component and, for specified µ, τ controls its dispersion.

The default choice of a uniform distribution on (0, T ) for G01(µ) is appealing and, in fact,

proves to be sufficiently flexible in applications. For G02(τ) we take an inverse gamma dis-

tribution with fixed shape parameter aτ and random scale parameter β, which is assigned

an exponential prior distribution p(β) with mean 1/d.

Denote by θi = (µi, τi) the latent mixing parameter associated with ti. The discrete

countable nature of the DP is a key feature as it enables data-driven clustering in the θ i.

The discreteness for the DP is immediate from its constructive definition (Sethuraman,

1994), according to which, a realization G, given α and β, is (almost surely) of the form

G =
∞

∑

j=1

ωjδ(µ̃j ,τ̃j), (4)

where δy denotes a point mass at y, ω1 = z1, ωj = zj

∏j−1
s=1(1− zs), j = 2,3,..., with zs | α

independent from a Beta(1, α) distribution, and, independently, (µ̃j , τ̃j) | β independent

from G0.

Using (1), the full Bayesian model for γ and f , equivalently, for γ and G, becomes

exp(−γ)γn

{

n
∏

i=1

∫

k(ti;µi, τi)dG(µi, τi)

}

p(γ)p(G | α, β)p(α)p(β) (5)
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with the prior structure p(G | α, β)p(α)p(β) for G, and its hyperparameters, discussed

above, and a prior p(γ), with support (0,∞), for γ.

Because it seems difficult to specify parameters for a prior distribution for γ, we use

the reference prior (e.g., Bernardo, 2005). To obtain it, we work with the marginal like-

lihood, L∗(γ), for γ, which arises from (5) by integrating out all other parameters over

their (proper) priors. Specifically, logL∗(γ) ∝ −γ + n log γ, and, hence, the Fisher’s in-

formation based on this marginalized likelihood yields p(γ) ∝ γ−1 as the reference prior.

2.2. Posterior inference

Based on the model structure in (5), and under the p(γ) ∝ γ−1 prior for γ, it is straight-

forward to verify that the joint posterior, p(γ,G,θ, α, β|data), is proper. Here, θ =

(θ1, ...,θn) and data = (t1, ..., tn). In fact, the marginal posterior p(γ|data) = gamma(n, 1),

and p(γ,G,θ, α, β|data) = p(γ|data) p(G,θ, α, β|data). Hence, to explore the full poste-

rior distribution p(γ,G,θ, α, β|data), it suffices to implement a Markov chain Monte Carlo

method to obtain draws from p(G,θ, α, β|data), the posterior for the DP mixture part of

model (5). To this end, we follow the approach proposed in Gelfand and Kottas (2002).

Using results from Antoniak (1974), p(G,θ, α, β|data) = p(G | θ, α, β)p(θ, α, β | data),

where the distribution for G | θ, α, β is a DP, with updated precision parameter α + n

and base distribution G∗

0(µ, τ |θ, α, β) = (α + n)−1{αG0(µ, τ |β) +
∑n

i=1 δ(µi ,τi)(µ, τ)}, and

p(θ, α, β | data) is the posterior that results after marginalizing G over its DP prior.

Several posterior simulation methods have been suggested for this marginal posterior;

see, e.g., the review in Müller and Quintana (2004). We have used algorithm 5 from

Neal (2000) to obtain posterior samples from p(θ, α, β | data). Next, posterior draws

θb = {(µib, τib) : i = 1, ..., n}, αb, βb from p(θ, α, β | data) can be used to draw Gb from

p(G | θb, αb, βb) using a truncation approximation to (4). Specifically, we take Gb =
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∑J
j=1 wjbδ(µ′

jb
,τ ′

jb
), where w1b = z1b, wjb = zjb

∏j−1
s=1(1 − zsb), j = 2, ..., J − 1, wJb =

1−
∑J−1

j=1 wjb =
∏J−1

s=1 (1− zsb), with zsb independent Beta(1, αb + n), and, independently,

(µ′

jb, τ
′

jb) independent G∗

0(µ, τ | θb, αb, βb). The approximation can be made arbitrarily

accurate. For instance, because E(
∑J−1

j=1 wjb | αb) = 1 − {(αb + n)/(αb + n + 1)}J−1, we

can choose J that makes, say, {(n + maxb αb)/(n + 1 + maxb αb)}
J−1 arbitrarily small.

Now, fb0 =
∫

k(t0;µ, τ)dGb(µ, τ) =
∑J

j=1 wjbk(t0;µ
′

jb, τ
′

jb) is a realization from the pos-

terior of f(t0;G), for any time point t0 in (0, T ). Hence, if γb is a draw from p(γ|data), γbfb0

is a posterior draw for λ(t0; γ,G) = γf(t0;G), the intensity function functional at t0. Anal-

ogously, Fb0 =
∑J

j=1 wjbK(t0;µ
′

jb, τ
′

jb), where K is the distribution function for the density

k in (2), is a posterior realization for F (t0;G) =
∫ t0
0 f(u;G)du =

∫

K(t0;µ, τ)dG(µ, τ),

and γbFb0 is a draw from the posterior of the cumulative intensity function functional

at t0, Λ(t0; γ,G) =
∫ t0
0 λ(u; γ,G)du = γF (t0;G). Hence full posterior inference for the

intensity and the cumulative intensity functions at any point in the time interval (0, T ) is

available. For instance, posterior point estimates and associated uncertainty bands for λ

and Λ can be obtained using point and interval estimates from p{λ(t0; γ,G) | data} and

p{Λ(t0; γ,G) | data} over a grid of time points t0.

2.3. Prior specification

Regarding α, recall that this parameter of the DP prior controls the number n∗ (where

n∗ ≤ n) of distinct components in the DP mixture (3) (Antoniak, 1974; Escobar and West,

1995). For instance, for moderately large n, it can be shown that E(n∗) ≈ (aα/bα) log{1+

(nbα/aα)}.

To specify the mean, 1/d, of the exponential prior for β, we consider a single component

of mixture (3), for which the variance is µ(T −µ)/(τ +1). Setting aτ = 2, which yields an

inverse gamma distribution G02(τ) with infinite variance, and using marginal prior means
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for µ and τ , based on G0, a rough estimate for the variance above is 0.25T 2/(1+d−1). Let

r be a prior guess at the range of the ti; r = T is a natural default choice. Then we specify

d through 0.25T 2/(1 + d−1) = (r/6)2. This approach is fairly automatic and, in fact,

yields a noninformative specification as it is based on the special case of the mixture with

a single component, whereas, in applications, more components are needed to capture the

intensity function shape.

3. Data example

To illustrate the methodology, we consider a standard data set from the literature, the

coal-mining disasters data, as compiled by Jarrett (1979). The data are the times of 191

explosions in mines, leading to coal-mining disasters involving 10 or more men killed, over

a total time period of 40,550 days, from 15 March 1851 to 22 March 1962.

We employ the Beta DP mixture model (5) to obtain inference for the intensity of

coal-mining disasters. We have conducted prior sensitivity analysis, considering several

combinations of gamma(aα, bα) priors for α and exponential priors for β (with mean 1/d),

which revealed robustness for posterior results. To illustrate, Figure 1 shows pointwise

posterior means and 95% central posterior intervals for the intensity function under three

prior choices. Specifically, with aα = 2 in all cases, the posterior estimates correspond to

priors with bα = 1.4, d = 0.125; bα = 0.52, d = 0.125; and bα = 1.4, d = 0.333, based on

r = T , E(n∗) ≈ 7; r = T , E(n∗) ≈ 15; and r = 1.5T , E(n∗) ≈ 7, respectively. Posterior

point estimation under model (5) and kernel estimation based on certain bandwidth selec-

tion methods, as discussed in, e.g., Diggle and Marron (1988), reveal comparable shapes

for the intensity function. However, the Bayesian model yields more general inference

than point estimation, including the interval estimates reported in Figure 1.
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4. Modeling for monotone intensity functions

The focus so far has been on modeling general shapes for NHPP intensities. To this

end, we have demonstrated the utility of a mixture formulation for the intensity function,

using DP mixtures of Beta densities. However, in certain applications, such as software

reliability (see, e.g., Kuo and Yang, 1996), it might be of interest to place monotonicity

restrictions on the shape of the intensity function.

Here, we show how such restrictions can be incorporated in the prior model for f(·),

and, thus, for λ(·), retaining the DP mixture framework of Section 2, albeit with different

choices for the mixture kernel. Without loss of generality, we take T = 1 and, thus, present

models for non-increasing and non-decreasing densities on the unit interval.

The key result is a representation for non-increasing densities on R+. Specifically, for

any non-increasing density h(·) on R+ there exists a distribution function G, with support

on R+, such that h(t) ≡ h(t;G) =
∫

θ−11(0,θ)(t)dG(θ), i.e., h(·) can be expressed as a

scale mixture of uniform densities. The result involves a general mixing distribution G

and thus, for Bayesian modeling, invites the use of a nonparametric prior for G; see, e.g.,

Brunner and Lo (1989), Brunner (1995), and Kottas and Gelfand (2001) for applications

of this representation, which utilize DP priors.

To construct non-increasing densities on the unit interval, we use the representation

discussed above, restricting the support of the mixing distribution on (0, 1). Therefore,

the model for the intensity function becomes λ(·) ≡ λ(t; γ,G) = γf∗(t;G), where γ =

∫ 1
0 λ(u)du, and f∗(t;G) =

∫ 1
0 θ−11(0,θ)(t)dG(θ), for t ∈ (0, 1], with G a distribution function

on (0, 1). A DP prior, DP(αG0), is assigned to G, where now G0 is a distribution on (0, 1),

say, a Beta distribution. It is straightforward to verify that f∗(t;G) is a non-increasing

density on (0, 1]. Hence, the resulting mixture formulation for λ(t; γ,G), with the DP

prior for G and a prior for γ, defines a prior model for non-increasing intensities.
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Turning to a model for non-decreasing intensities, consider the mixture density given

by
∫ 1
0 θ−11(−θ,0)(x)dG(θ), x ∈ (−1, 0], where, again, G is a distribution function on (0, 1).

This is a non-decreasing density on (−1, 0], and, thus, f ∗(t;G) =
∫ 1
0 θ−11(−θ,0)(t−1)dG(θ),

for t ∈ (0, 1], yields non-decreasing densities on (0, 1]. A DP mixture model for f ∗(t;G)

arises by placing a DP(αG0) prior on G, with a Beta distribution for G0. Finally, the

prior model for non-decreasing intensities emerges through λ(t; γ,G) = γf ∗(t;G), and is

completed with a prior for γ. Under both modeling scenarios presented above, posterior

inference proceeds as discussed in Section 2.2 for the more general Beta DP mixture model.

5. Discussion

We have proposed a modeling approach for NHPP intensity functions employing Beta

DP mixtures for the associated density functions. The method yields flexible data-driven

inference for the intensity function as well as for any functional of the Poisson process

that might be of interest. We have discussed how such inferences can be obtained, illus-

trating with a data set from the literature. Finally, we have developed alternative model

formulations, based on DP mixtures of uniform densities, for monotone intensity functions.

Although this paper is focused on inference for NHPPs, the nonparametric mixtures

developed in Section 2.1 and Section 4 can also be utilized for density estimation on

bounded intervals; see Kottas (2006) for details as well as for an additional data illustration

involving a different temporal point pattern than the one discussed in Section 3.

Regarding the existing literature on intensity function estimation, classical approaches

build on kernel density estimation ideas; see, e.g., Diggle (1985) and Diggle and Marron

(1988). Hence, they rely on specification of a smoothing parameter (the bandwidth),

corrections for boundary effects, and asymptotic arguments to provide tolerance bands for

the intensity function point estimates. The proposed Bayesian mixture approach, which
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yields full and exact model-based inference, might be a useful alternative.

Bayesian nonparametric work has focused mainly on the mean measure Λ, includ-

ing priors based on gamma, Beta, and Lévy processes; see Lo (1992), Kuo and Ghosh

(1997), Gutiérrez-Peña and Nieto-Barajas (2003) and further references therein. Poten-

tial drawbacks in working with Λ might include the lack of smoothness in the resulting

posterior estimates, induced by properties of the stochastic processes used as priors, and

the fact that inference for λ is typically not readily available. Regarding prior models for

the intensity function, the existing work includes the method suggested by Lo and Weng

(1989), which was recently extended in Ishwaran and James (2004). Under this approach,

λ(t;H) =
∫

m(t; v)H(dv), t ∈ (0, T ], where m is a specified non-negative kernel (typi-

cally, not a density) with parameters v, and the mixing measure H is assigned a weighted

gamma process prior. A similar formulation arises under the approach of Wolpert and

Ickstadt (1998) applied to one-dimensional NHPPs. The proposed DP mixture modeling

approach might be a useful addition to the existing methods as it builds on a familiar

Bayesian density estimation framework, facilitating prior choice and posterior simulation.

An extension of the methodology developed in this paper to modeling for spatial

NHPP intensities has been recently proposed by Kottas and Sansó (2006). A practically

important extension of the model (for NHPPs either over time or over space) would be

to semiparametric regression settings for data that include individual-specific covariates,

i.e., for point patterns that can be assumed to arise from a marked NHPP. We will report

on this work in a future manuscript.
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Figure 1: Posterior point estimates and 95% pointwise interval estimates for the intensity

function under three prior settings. The dashed lines correspond to the bα = 1.4, d = 0.125

prior choice; the solid lines to bα = 0.52, d = 0.125; and the dashed-dotted lines to bα = 1.4,

d = 0.333. The observed times of the 191 explosions in mines are plotted on the horizontal

axis.
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