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Abstract: We propose a method for the analysis of a spatial point pattern, which is

assumed to arise as a set of observations from a spatial non-homogeneous Poisson process.

The spatial point pattern is observed in a bounded region, which, for most applications, is

taken to be a rectangle in the space where the process is defined. The method is based on

modeling a density function, defined on this bounded region, that is directly related with

the intensity function of the Poisson process. We develop a flexible nonparametric mix-

ture model for this density using a bivariate Beta distribution for the mixture kernel and

a Dirichlet process prior for the mixing distribution. Using posterior simulation methods,

we obtain full inference for the intensity function and any other functional of the process

that might be of interest. We discuss applications to problems where inference for clus-

tering in the spatial point pattern is of interest. Moreover, we consider applications of the

methodology to extreme value analysis problems. We illustrate the modeling approach

with three previously published data sets. Two of the data sets are from forestry and

consist of locations of trees. The third data set consists of extremes from the Dow Jones

index over a period of 1303 days.
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1 Introduction

We propose a Bayesian nonparametric model for the intensity function of a spatial non-

homogeneous Poisson process (NHPP). The intensity function characterizes the distribu-

tion of a spatial NHPP and, thus, its estimation is an important problem in the analysis

of spatial point patterns. Moreover, under a model-based framework, inference for the

intensity function yields inference for other important functionals of the spatial NHPP.

We refer to Diggle (2003) for review of parametric likelihood and classical nonpara-

metric inference approaches for spatial Poisson processes (as well as other point processes

that extend the Poisson process structure). Other useful references include Møller and

Waagepetersen (2004), where, in addition to discussion of likelihood methods, there is a

review of more recent work on simulation-based inference for spatial point processes. After

the proposed methodology is presented, we devote a section (Section 2.4 below) to dis-

cussion of existing methods for spatial NHPPs, including comparison of certain Bayesian

nonparametric approaches with our model.

Our modeling approach is based on a mixture formulation for the spatial NHPP in-

tensity function. Hence, as we discuss in Section 2.4, it has analogies with the work of

Wolpert and Ickstadt (1998a) and Ishwaran and James (2004) as well as with the non-

Bayesian work of Brix (1999). However, our mixture model is directly for densities offering

practical advantages in terms of model formulation (including the choice of mixture kernel

and the extend of mixing over its parameters), prior specification, and implementation of

computational methods for posterior inference. We utilize an equivalent representation

of the intensity function, over the bounded region where the spatial point pattern is ob-

served, through a positive scalar parameter and a density function. Extending the work

in Kottas (2005) for NHPPs over time, we develop a nonparametric mixture model for

this density. Particular emphasis is placed on the choice of the mixture kernel, for which

we use a flexible family of bivariate Beta densities. By using a kernel with a bounded

support we avoid edge effect problems. A Dirichlet process (DP) prior (Ferguson, 1973,

1974) is used for the mixing distribution. The resulting mixture model enables highly

flexible data-driven intensity shapes. Using well-established techniques for DP mixture
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models, we develop a posterior simulation method, which yields full and exact inference

for the intensity function.

In addition to illustrations with standard problems involving forestry data sets, we

consider applications of the methodology to extreme value analysis problems. Spatial

NHPP models can be utilized to study the distribution of extreme values. Pickands

(1971) considers the process given by the levels and times at which a process crosses a

given threshold. Following asymptotic arguments, the process is Poisson and its intensity

has a specific parametric form. The traditional parametric approach requires that trends

and clusters are removed from the data. This is usually done in an ad-hoc empirical

fashion, and it is heavily dependent on the actual value of the threshold that is used. More

sophisticated parametric clustering of extreme values is developed in Walshaw (1999) and,

more generally, in Bottolo et al. (2003). A nonparametric model for the intensity function

provides a more flexible description of the trends and clusters that may be present in the

process of extremes. The utility of our nonparametric mixture model in this setting is

demonstrated with a data set consisting of extremes from the Dow Jones index.

The plan of the paper is as follows. In Section 2 we describe the model including details

on prior specification, the computational approach to posterior inference, and the connec-

tion of the proposed method with the existing literature. Section 3 discusses applications

of the methodology to the analysis of extreme values. Section 4 provides data illustrations.

We conclude with a summary and discussion of possible extensions in Section 5.

2 The modeling approach

2.1 The nonparametric mixture model

Assuming the usual Borel σ-field of R2, a spatial Poisson point process, defined on a

(measurable) space S ⊆ R2, is a random countable subset Π of S. It is governed by a

stochastic mechanism that induces two properties for random variables N(A) = |Π ∩ A|,

i.e., the number of points of Π lying in measurable subsets A of S. Specifically, for any

finite collection A1,...,Ak of pairwise disjoint measurable subsets of S, the random variables

N(A1),...,N(Ak) are independent; and for any measurable subset A of S, N(A) follows
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a Poisson distribution with mean
∫

A λ(z)dz. Here, λ(·) is the intensity function of the

spatial NHPP, a non-negative measurable function defined on S such that
∫

A λ(z)dz <∞

for all bounded subsets A of S. Thus the distributional properties of a spatial NHPP

are determined by its intensity function λ(·), or, equivalently, by the mean measure of

the process, Λ(A) =
∫

A λ(z)dz defined for all measurable subsets A of S. For theoretical

background on spatial Poisson processes, see, for instance, Cressie (1993), Kingman (1993),

and Daley and Vere-Jones (2003).

We develop a prior probability model for the intensity function λ(·) of a spatial NHPP.

Inference for λ is based on the spatial point pattern {y1, ...,yn} observed in a bounded

region D ⊂ S, where yi = (yi1, yi2) includes the coordinates for the location of the i-th

point. In the applications we are interested in, as well as for most approaches discussed in

the literature, D is a bounded rectangle, and, thus, without loss of generality, we assume

that D = (0, 1) × (0, 1). (Inference for general D = (a1, b1) × (a2, b2), as in Section 4.2,

can be obtained through a linear transformation.) The likelihood for λ based on data =

{y1, ...,yn} can be expressed as

L(λ; data) ∝ exp{−Λ(D)}
n

∏

i=1

λ(yi). (1)

Letting γ ≡ Λ(D) <∞, the function f(y) = λ(y)/γ, y = (y1, y2) ∈ D, is a density over D.

Hence, the intensity function λ(·) can be equivalently represented by the density function

f(·) and the scalar parameter γ > 0. Based on (1), the likelihood for (γ, f) is given by

L(γ, f ; data) ∝ exp(−γ)γn
n

∏

i=1

f(yi). (2)

Therefore, a prior probability model for f(·), along with a prior for γ, will induce a prior

model for λ(·). Evidently, γ affects only the scale of λ(·), and, thus, a flexible prior model

for the density f(·) will enable flexible modeling for the intensity function.

We thus seek to develop a nonparametric prior model for densities, defined on the unit

square, which allows general density shapes. We employ a mixture model,

f(y) ≡ f(y | G) =

∫

Θ
k(y | θ)dG(θ), (3)

where k(y | θ) is a parametric kernel defined on D, with parameter vector θ ∈ Θ ⊆ Rd.

Therefore, there is no need for the artificial enlargement of D, as for some of the existing
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approaches. The mixture is nonparametric because the random mixing distribution G

is assigned a nonparametric prior. Specifically, a DP prior is taken for G, denoted by

DP(G | α,G0). Here α is the total mass (precision) parameter of the DP, and G0 is

the base (centering) distribution. The use of the DP prior in the generic mixture setting

of the form in (3) is standard when the mixture kernel is supported by R, R+ or Rd.

Related work dates back to Ferguson (1983), Lo (1984), Kuo (1986), and Brunner and Lo

(1989). All of these earlier approaches build on several key theoretical results given by

Antoniak (1974) who studied mixtures of DPs, i.e., DPs with random α and/or random G0

hyperparameters. We refer to MacEachern and Müller (2000) and Müller and Quintana

(2004) for reviews of more recent work with DP mixture models. However, we note

that less standard is DP mixture modeling (and, more generally, Bayesian nonparametric

modeling) for densities defined on bounded regions of R2. The well-studied DP mixture

of bivariate normals model is not optimal in this context, since inference for the density

and, thus, also for the intensity function would be subject to edge effects, especially for

point patterns with observations close to the boundaries of D.

Given the flexibility of the Beta distribution, a bivariate distribution with Beta marginals

emerges as a natural choice for the mixture kernel k(y | θ). We work with the following

bivariate Beta density

k(y1, y2 | µ1, µ2, τ1, τ2, ψ) = be(y1 | µ1, τ1)be(y2 | µ2, τ2){1 + ψ(y1 − µ1)(y2 − µ2)}, (4)

whence θ = (µ1, µ2, τ1, τ2, ψ), and the parameter space Θ ⊆ R5. Here, yj ∈ (0, 1), j = 1, 2,

and be(y | µ, τ) denotes the Beta density parameterized in terms of the mean µ ∈ (0, 1)

and a scale parameter τ > 0, i.e.,

be(y | µ, τ) =
yµτ−1(1 − y)τ(1−µ)−1

Be(µτ, τ(1 − µ))
,

where Be(a, b) =
∫ 1
0 u

a−1(1 − u)b−1du, a > 0, b > 0. For (4) to be a valid density,

the range of values for parameter ψ must satisfy 1 + ψ(y1 − µ1)(y2 − µ2) ≥ 0, for all

(y1, y2) ∈ D. This restriction yields C(µ1, µ2) ≤ ψ ≤ C(µ1, µ2), where C(µ1, µ2) =

− [max{µ1µ2, (1 − µ1)(1 − µ2)}]
−1 < 0, andC(µ1, µ2) = − [min{µ1(µ2 − 1), µ2(µ1 − 1)}]−1

> 0. Straightforwardly, the marginals associated with (4) are be(· | µj, τj) densities,
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j = 1, 2. Moreover, the correlation resulting from (4) is given by

ψ
[

µ1(1 − µ1)µ2(1 − µ2)(1 + τ1)
−1(1 + τ2)

−1
]1/2

.

The parameter ψ can be viewed as a dependence parameter; ψ = 0 corresponds to the case

of independence, and, having specified the other four parameters, ψ controls the range of

correlation values.

The family of densities in (4) belongs to the Sarmanov class of densities (see Kotz

et al., 2000, Chapter 44, for more details and further references). It yields several dif-

ferent shapes, including unimodal densities as well as non-increasing densities with most

of their mass near the boundaries of D. As an illustration, Figure 1 shows density con-

tour plots for six combinations of parameter values: the upper left panel corresponds to

(µ1, µ2, τ1, τ2, ψ) = (0.5, 0.5, 10, 10, 0); the upper middle panel to (0.5, 0.5, 1, 1, 0.9); the

upper right panel to (0.5, 0.1, 1, 10, 0); the lower left panel to (0.9, 0.1, 1, 10, 0.7); the lower

middle panel to (0.5, 0.9, 10, 10, 0.7); and the lower right panel to (0.5, 0.9, 10, 0.1, 0.7).

2.2 Prior specification

To build the 5-variate distribution G0 ≡ G0(µ1, µ2, τ1, τ2, ψ), we work with independent

components for µj and τj , j = 1, 2, and a conditional distribution for ψ given µ1 and µ2.

Specification of the distribution for µ1, µ2, and ψ is facilitated by the bounded support

for these parameters of the mixture kernel defined in (4). In particular, we take a uniform

distribution on (0, 1) for µ1 and µ2, and a uniform distribution over (C(µ1, µ2), C(µ1, µ2))

for ψ. We use inverse gamma distributions for the τj with fixed shape parameters aj > 1

and random scale parameters βj , so that the mean, given βj , is βj/(aj − 1), j = 1, 2.

From a practical point of view, this choice of G0 is attractive as it leads to a DP mixture

model whose implementation requires elicitation of only three hyperparameters, β1, β2,

and α. Moreover, empirical results based on the analysis of data sets with varying sample

sizes (including the ones discussed in Section 4) indicate that this specification for G0

is sufficiently flexible in uncovering clusters and non-standard patterns suggested by the

data.

We assign exponential priors p(βj), with means cj, to βj , j = 1, 2, and a gamma prior
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Figure 1: Contour plots of the bivariate Beta density in (4), with (X,Y) corresponding to

(y1, y2). See Section 2.1 for the parameter values associated with each panel.
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p(α) to α, with mean and rate parameters aα and bα, respectively. In the examples of

Section 4 we have used aj = 2, j = 1, 2, which implies infinite variances for the respective

inverse gamma distributions. To specify the cj , we note that the τj control the variance,

µj(1 − µj)/(1 + τj), for the marginals of the mixture kernel (4). Using marginal prior

means for µj and τj, a proxy for this variance is 0.25(1 + cj)
−1. Therefore, cj can be

specified based on, say, 0.25(1 + cj)
−1 = (R/4)2, where R is a guess at the range that

will be needed so that the mixture components can capture clusters in the spatial point

pattern.

Prior elicitation for the precision parameter α of the DP prior is facilitated by the role

it plays in the DP mixture model. In particular, α controls the number, n∗, of distinct

mixture components, i.e., the number of distinct θi, where θi = (µ1i, µ2i, τ1i, τ2i, ψi) is

the mixing parameter vector corresponding to yi. Larger values of α yield higher prior

probabilities for larger n∗. For example, a useful approximation (for moderately large n)

to the marginal prior mean for n∗ is given by E(n∗) ≈ (aα/bα) log{1+(nbα/aα)} (see, e.g.,

Antoniak, 1974; Escobar and West, 1995; Liu, 1996).

Finally, regarding the prior p(γ) for γ, one could use a gamma distribution, or, in the

interest of obtaining a more automatic approach to prior specification, a non-informative

prior can be used. Following the methodology used to obtain reference priors (see, e.g.,

Bernardo, 2005), we can use the prior structure specified above to obtain a marginal

likelihood for γ, say, L∗(γ; data), by integrating out all other parameters over their (proper)

priors. In fact, logL∗(γ; data) ∝ −γ + n log γ. The Fisher’s information based on this

marginalized likelihood yields the reference prior p(γ) ∝ γ−1, which is used for all three

data examples in Section 4.

2.3 Posterior inference

Combining the likelihood in (2) with the mixture model for the density f(·) given by

(3), and with the prior structure discussed in Section 2.2, the full Bayesian model can be

expressed as

p(α)p(β1)p(β2)DP(G | α,G0(β1, β2))p(γ) exp(−γ)γn
n

∏

i=1

k(yi | θi)p(θi | G), (5)
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where p(θi | G) denotes the density for the θi under their distribution G. Note that, under

the mixture model structure, the θi, given G, are i.i.d. from G. Thus, if we marginalize

over the θi, the product term in (5) is replaced with
∏n

i=1

∫

Θ k(yi | θi)dG(θi).

Under either of the prior choices for γ discussed in Section 2.2, it can be seen from

(5), that the marginal posterior for γ is a gamma distribution. In particular, under the

p(γ) ∝ γ−1 prior, p(γ|data) is a gamma(n, 1) distribution.

Moreover, the full posterior corresponding to model (5) can be expressed as

p(γ,G,ϑ, α, β1, β2|data) = p(γ|data)p(G,ϑ, α, β1, β2|data),

where ϑ = {θi : i = 1, ..., n} collects all the latent mixing parameter vectors. Hence, to

explore p(γ,G,ϑ, α, β1, β2 | data), it suffices to sample from p(G,ϑ, α, β1, β2 | data), i.e.,

the posterior for the DP mixture part of model (5). We use a combination of posterior sim-

ulation techniques for DP mixture models to obtain posterior draws {G`,ϑ`, α`, β1`, β2` :

` = 1, ..., L} from p(G,ϑ, α, β1, β2|data).

First, based on results from Antoniak (1974), we have the following decomposition,

p(G,ϑ, α, β1, β2 | data) = p(G | ϑ, α, β1, β2)p(ϑ, α, β1, β2 | data). (6)

Here, p(G | ϑ, α, β1, β2) = DP(G | α′, G′

0), where α′ = α+ n, and

G′

0(θ | ϑ, α, β1, β2) =
α

α+ n
G0(θ | β1, β2) +

1

α+ n

n
∑

i=1

δθi
(θ), (7)

where θ = (µ1, µ2, τ1, τ2, ψ), and δz(·) denotes a point mass at z. Moreover, p(ϑ, α, β1, β2 |

data) is the posterior that results after marginalizing G in (5) over its DP prior,

p(ϑ, α, β1, β2 | data) ∝ p(α)p(β1)p(β2)p(ϑ | α, β1, β2)

n
∏

i=1

k(yi | θi).

The marginal joint prior for ϑ arises from a Pólya urn scheme, described in Blackwell and

MacQueen (1973), which is implicit in the DP structure. Specifically,

p(ϑ | α, β1, β2) = g0(θ1)

n
∏

i=2

{

α

α+ i− 1
g0(θi | β1, β2) +

1

α+ i− 1

i−1
∑

m=1

δθm
(θi)

}

, (8)

where g0 is the density of G0.
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Several posterior simulation methods have been suggested in the literature for sam-

pling from the marginal posterior that results after integrating out the random mixing

distribution in a DP mixture model (see, e.g., Escobar and West, 1998; MacEachern,

1998; Neal, 2000). To obtain posterior samples from p(ϑ, α, β1, β2 | data), we have found

that a version of algorithm 5 from Neal (2000) strikes a good balance between ease of im-

plementation and efficiency. Briefly, we use a Gibbs sampler updating each of the θ i with

a Metropolis step, which uses the prior full conditional for θ i as the proposal distribution.

Based on the Pólya urn structure of p(ϑ | α, β1, β2) in (8), the prior full conditional for

θi is a mixed distribution with point masses (α+ n− 1)−1 at θm, m 6= i, and continuous

mass α(α + n − 1)−1 on G0. After all the θi are updated in a Gibbs sampler cycle, we

obtain a number, n∗, of distinct values, θ∗

` = (µ∗1`, µ
∗

2`, τ
∗

1`, τ
∗

2`, ψ
∗

` ), ` = 1, ..., n∗, in the

vector ϑ. The full conditional for βj, j = 1, 2, is a gamma distribution with shape pa-

rameter n∗aj + 1 and rate parameter c−1
j +

∑n∗

`=1(τ
∗

j`)
−1. Finally, we update α using the

augmentation method discussed in Escobar and West (1995).

Next, we use the approach described in Gelfand and Kottas (2002) and Kottas (2006)

to sample from the marginal posterior of the mixing distribution G. Based on (6), this

can be accomplished by combining the posterior draws ϑ` = (θ1`, ..,θn`), α`, β1`, β2` from

p(ϑ, α, β1, β2 | data) with additional draws G` from p(G | ϑ`, α`, β1`, β2`). As discussed

above, the distribution p(G | ϑ, α, β1, β2) is given by a DP, which can be sampled using

its constructive definition (Sethuraman and Tiwari, 1982; Sethuraman, 1994). Based on

this definition, a realization from DP(G | α,G0) is (almost surely) of the form G =
∑

∞

m=1 ωmδφm
, where ω1 = z1, ωm = zm

∏m−1
r=1 (1 − zr), m = 2,3,..., with zr i.i.d. from a

Beta(1, α) distribution, and, independently, φm i.i.d. from G0. We obtain the draws G`

using a partial sum approximation to the countable sum representation above. Specifically,

we take G` =
∑M

m=1 wm`δφm`
, where w1` = z1`, wm` = zm`

∏m−1
r=1 (1−zr`), m = 2, ...,M−1,

wM` = 1−
∑M−1

m=1 wm` =
∏M−1

r=1 (1−zr`), with zr` i.i.d. Beta(1, α` +n), and, independently,

φm` i.i.d. from G′

0(· | ϑ`, α`, β1`, β2`) given in (7). The partial sum approximation can

be made arbitrarily accurate. For example, a simple approach to specifying M , uses the

result E(
∑M−1

m=1 wm` | α`) = 1−{(α` +n)/(α` +n+1)}M−1, to choose M that makes, say,

{(n+ max` α`)/(n+ 1 + max` α`)}
M−1 arbitrarily small.
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The samples {G` : ` = 1, ..., L} from the posterior of the mixing distribution provide

full inference for the intensity function at any spatial location y ∈ D. Note that f`(y) =
∑M

m=1 wm`k(y | φm`), ` = 1, ..., L, are draws from the posterior of the density function

f(y | G) at y. Therefore, using posterior draws γ` for γ, we obtain samples γ`f`(y),

` = 1, ..., L, from the posterior of the intensity function λ(y | γ,G) = γf(y | G) at

y. Working with a grid {yc : c = 1, ..., C} of spatial locations over D, we can provide

inference for the NHPP intensity surface. We work with means and medians based on the

posterior samples {γ`f`(yc) : ` = 1, ..., L} at each yc to produce point estimates, referred

to in Section 4 as posterior mean and posterior median intensity estimates, respectively.

We use interquartile ranges from the {γ`f`(yc) : ` = 1, ..., L} posterior samples at each yc

to provide a measure of the uncertainty associated with the point estimates; in Section 4,

we refer to this estimate as the posterior interquartile range intensity estimate.

2.4 Discussion and literature review

Here, we review approaches to inference for spatial NHPPs, including Bayesian nonpara-

metric methods, in an effort to indicate our contribution within this research field. Note

that, instead of a NHPP, the classical literature uses the term Cox process (or doubly

stochastic Poisson process), i.e., a NHPP with random intensity function. Under the

Bayesian nonparametric framework, the intensity function is treated as a random realiza-

tion from a (prior) process, and, thus, the data could also be viewed as arising from a

doubly stochastic Poisson process.

One of the first approaches to Bayesian nonparametric inference for spatial NHPP

intensities can be found in Heikkinen and Arjas (1998), where piecewise constant functions,

driven by Voronoi tesselations and Markov random field priors, were used to model the

intensity function. See also Heikkinen and Arjas (1999) for an extension to a model for

spatial point patterns influenced by concomitant variables.

A different line of research involves log-Gaussian Cox process models, i.e., spatial

NHPPs directed by a random intensity function, which is modeled, on the logarithmic

scale, with a stationary real-valued Gaussian process. Møller et al. (1998) study properties

of log-Gaussian Cox processes and discuss empirical Bayesian inference for the intensity
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surface. Extensions to spatio-temporal settings are considered in Brix and Diggle (2001)

and Brix and Møller (2001).

Both of the approaches discussed above require, for full Bayesian inference, difficult to

tune computational schemes; the former uses reversible jump Markov chain Monte Carlo

methods; the latter a Metropolis-adjusted Langevin algorithm. Simulation-based model

fitting (as discussed in Section 2.3) for the proposed mixture model of Section 2.1 is,

arguably, easier to implement.

Our modeling approach is closer, in spirit, to the Bayesian nonparametric approaches

developed by Wolpert and Ickstadt (1998a) and Ishwaran and James (2004). Both of these

approaches utilize a mixture representation for the intensity function, λ(y) ≡ λ(y;H,ϕ) =
∫

Θm(y;θ,ϕ)H(dθ), y ∈ D, where m(·;θ,ϕ) is a non-negative kernel (that is not a den-

sity) specified up to a parameter vector (θ,ϕ), with θ ∈ Θ ⊆ Rd, and H(dθ) is the mixing

measure. A parametric prior is assigned to ϕ. The prior distribution for H(dθ) is an

inhomogeneous gamma process with shape parameter a(dθ), a finite measure on Θ, and

scale parameter b(θ), a positive integrable function on Θ. This prior structure implies

that for each Borel-measurable C ⊂ Θ, H(C) =
∫

C b(θ)Γ(dθ), where Γ(dθ) follows a

gamma process distribution over Θ with shape parameter a(dθ). A gamma process is

an independent increment process such that Γ(C) has a gamma(a(C), 1) distribution, for

each Borel-measurable C ⊂ Θ. Note that, under the framework of Wolpert & Ickstadt

(1998a), the inhomogeneous gamma random field for the mixing measure can be replaced

by another Lévy random field. Details on the corresponding posterior simulation methods

are given in Wolpert and Ickstadt (1998b); applications to regression settings are discussed

by Ickstadt and Wolpert (1999) and Best et al. (2000).

Note that the illustrations given in Wolpert and Ickstadt (1998a), Ickstadt and Wolpert

(1999) and Best et al. (2000) are based on the Poisson-gamma random field model, i.e., the

special case of the mixture model described above with a constant scale function b(θ) ≡ b.

A connection of this model with DP mixture models is possible, recalling the connection

between the DP and the gamma process, i.e., the fact that Γ(·)/Γ(Θ) follows a DP distri-

bution with parameter a(·) (Ferguson, 1973, 1974). (In our notation, a(·) ≡ αP0(·), where

α = a(Θ), and P0 is the probability measure over Θ corresponding to distribution G0.)
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For example, as discussed in Ickstadt and Wolpert (1999), if m(·;θ,ϕ) is the Gaussian

density on R2 with mean vector θ and covariance matrix ϕ (which might be diagonal), and

b(θ) ≡ 1, then the normalized intensity function, λ(·)/Λ(D) ≡
∫

Θm(·;θ,ϕ)Γ(dθ)/Γ(Θ),

is defined by a location DP mixture of bivariate normals. Our approach differs in that

the mixture representation in (3) is used directly for the density f(·) ≡ f(· | G), which,

along with parameter γ = Λ(D), defines the intensity function over the bounded region

D. Potential advantages of the model formulation developed in Section 2.1 include the

following. The mixture f(· | G) is fully nonparametric and, hence, it allows clustering for

the location parameters as well as the scale parameters and the dependence parameter

of the mixture kernel in (4). (Note that λ(·;H,ϕ) is a semiparametric mixture model.

In particular, the choice for the kernel function m(·;θ,ϕ) is, typically, a scaled Gaussian

density, with mean vector θ and uncorrelated components, whence the mixing is with

respect to the mean vector only.) Moreover, the fact that the bivariate Beta density ker-

nel (4) is supported by D leads to inference for the intensity function, which avoids edge

effects problems. Finally, the methods for prior specification (Section 2.2) and posterior

simulation for full inference (Section 2.3) build on a familiar Bayesian density estimation

framework, and are, thus, at least as easy to implement as the respective methods of the

related Bayesian work discussed above.

Finally, we note the work of Brix (1999) who studied generalized gamma measures

(G-measures) and defined shot-noise G Cox processes, which are Cox processes driven by

kernel smoothed G-measures. Because G-measures include gamma processes, shot-noise

G Cox processes include as a special case the Poisson-gamma random field model. Spatio-

temporal modeling with shot-noise G Cox processes is considered by Brix and Chadœuf

(2002). However, this work does not involve a Bayesian model formulation; in particular,

estimation is based on a minimum contrast method (Møller et al., 1998) rather than

the likelihood function. Related and, in fact, more general probability models for Cox

processes are studied by Møller (2003) and Møller and Torrisi (2005), though the focus

of this work is on probabilistic aspects of the spatial processes rather than on statistical

modeling and applications.
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3 Applications to extreme value analysis problems

Methods for the analysis of the distribution of extreme values have been widely developed

in the literature. Coles (2001) provides a very readable account of the most popular models

and inferential methods. Three approaches are commonly used in the univariate case:

the Generalized Extreme Value Distribution (GEV), the Generalized Pareto Distribution

(GPD), and the point process approach. Suppose we have an i.i.d. sequence of random

variables, X1, X2, . . . , and let MN = max{X1, ..., XN}. It can be shown that, if there exist

sequences aN > 0 and bN such that Pr((MN − bN )/aN ≤ z) → H(z) for a non-degenerate

distribution H, then H is a GEV. The GEV is a three parameter family of distributions

given by H(x) = exp
{

−
(

1 + (x− µ)ξψ−1
)

−ξ−1

+

}

, where ψ > 0 and µ, ξ are real-valued

parameters. (Here, z+ = max{0, z} denotes the positive part of z.) For a sequence of

observations in time, inference on the parameters of the GEV is obtained by assuming

that the maxima over a given time unit are distributed as H(x).

An alternative approach arises by considering the exceedances over a given threshold.

Inference is based on the fact that, if the GEV limit holds for a random variable X, then

the distribution of X − u conditionally on X > u is, for large enough u, approximately

equal to the GPD, i.e., G(x) = 1 −
(

1 + xξσ−1
)

−ξ−1

+
where σ = ψ + ξ(u − µ). Here u is

intended as the threshold. Inference based on exceedences can be performed by postulating

the following model: (a) The number n of exceedences over the threshold u in any unit

of time has a Poisson distribution. (b) Conditionally on n ≥ 1, the values of the excesses

are i.i.d. with a GPD.

A full point process approach consists of considering the times of exceedances, say

t, and the excess values, say s, as a bivariate point process. The point process ap-

proach for the analysis of the distribution of extreme values was originally introduced

in Pickands (1971). Smith (1989; 2003) uses the fact that, under suitable normaliza-

tion, the process of exceedances behaves as a bivariate NHPP. Asymptotic theory (as

N → ∞) is used to justify that the intensity of this NHPP process is given by λ(t, s) =

ψ−1
(

1 + ξψ−1(s− µ)
)

−ξ−1
−1

+
, over the domain (0, T ]× (u,∞), where T is the largest time

point in the original time series. The former implies that, for a set A = [t1, t2] × [y,∞),

14



Λ(A) =
∫

A λ(t, s)dsdt = (t2−t1)
(

1 + ξψ−1(y − µ)
)

−ξ−1

, when y > u and 1+ξψ−1(y−µ) >

0. Time-varying changes in the intensity of the processes can be modeled by assuming

that λ(t, s) = ψ−1
t (1 + ξtψ

−1
t (s− µt))

−ξ−1

t
−1, so that the three parameters that define the

intensity are allowed to vary with time.

More generally, and in order to avoid asymptotic arguments that might not be appro-

priate for small or moderate sample sizes N of the original time series, we can study the

distribution of the extremes using the nonparametric model developed in Section 2.1 for

the intensity λ. Inference proceeds by fixing a threshold u and observing the correspond-

ing data = {(t1, s1), . . . , (tn, sn)}. We assume that the bivariate NHPP of exceedances is

defined on (0,∞)×(u, V ] and observed in D = (0, T ]×(u, V ], where V is a specified upper

bound for the exceedances values. This is not a restrictive assumption, since the value

of V can be taken to be large enough to practically imply zero intensity above V . Using

the methodology described in Section 2.1, we can obtain full inference for the intensity

function λ(t, s). Such inference provides quantitative information about the times when

large values are more likely to occur. It also provides information about which ranges

those extreme values are likely to attain.

Of interest here is also the process of exceedances over time. According to the map-

ping theorem for the Poisson process, the point process, defined by the projection of

(t, s) to t, is a NHPP over time with intensity function λ∗(t) =
∫ V
u λ(t, s)ds. Hence, the

likelihood for the point pattern {t1, ..., tn} of the times of exceedances is proportional to

exp(−γ∗)
∏n

i=1 λ
∗(ti). Since γ∗ =

∫ T
0 λ∗(t)dt =

∫ T
0

∫ V
u λ(t, s)dsdt = γ, under the mixture

model of Section 2.1 for the bivariate intensity λ(t, s), we obtain the following induced

mixture model for λ∗(t) ≡ λ∗(t | γ,G),

λ∗(t | γ,G) = γ

∫ V

u
f(t, s | G)ds =

∫ V

u

∫

Θ
k(t, s | θ)dG(θ)ds =

∫

Θ
be(t | µ1, τ1)dG(θ).

Therefore, posterior inference for the marginal intensity function λ∗(t), at any time point

t ∈ (0, T ), is readily available using, again, the samples G` from the posterior of the

mixing distribution G in the bivariate nonparametric mixture model (obtained with the

computational technique described in Section 2.3). We illustrate both types of inferences

discussed above in Section 4.2.
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4 Data illustrations

In this section we illustrate our methods using three previously published data sets. The

first example corresponds to the locations of 62 redwood seedlings, in a square of 23 meters.

The data are presented in Diggle (2003) with a reference to Ripley (1977). The second

data set includes the locations of 514 maple trees in a 19.6 acre square plot in Lansing

Woods, Clinton County, Michigan, USA. These data are also presented in Diggle (2003).

Both data sets are available from www.maths.lancs.ac.uk/∼diggle/. The third example

involves an application to the study of extremes. The data consists of a transformation

of the daily closing prices of the Dow Jones Index. These data are obtained from Coles

(2001) and are available from www.maths.bris.ac.uk/∼masgc/ismev/summary.html.

Following the prior specification approach discussed in Section 2.2, for all three data

sets, we used exponential priors for βj with means cj = 50, j = 1, 2, corresponding to

R ≈ 1/4. This choice resulted in posterior learning for β1 and β2, which increased with

the sample size. We have also experimented with other values for cj in the range from 20

(based on R ≈ 1/2) to 200 (based on R ≈ 1/7), noticing little sensitivity in the posterior

inference for the intensity function. We also studied sensitivity to the prior choice for α;

results are discussed in Sections 4.1 and 4.2 below.

Regarding the posterior simulation algorithm described in Section 2.3, we observed

good mixing and fast convergence for all three data examples. In all cases, the reported

inferences are based on L = 15, 000 posterior samples, obtained after a (conservative)

burn-in period of 30, 000 iterations.

4.1 Forestry data sets

Figure 2 presents the estimated intensity for the data on redwood seedlings. It has been

noted in the literature that the data have a clustering pattern. This can be attributable

to the clustering of seedlings around stumps. The positions of the stumps are unknown.

Diggle (2003) discusses modeling approaches using Poisson cluster processes. We notice

that our model is able to clearly identify the different clusters in the distribution of the red-

wood. To illustrate the robustness of posterior inference for the intensity function, Figure
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Figure 2: Redwood seedlings data. Contour plots of posterior mean intensity estimates

under gamma(2, 0.7) and gamma(2, 0.15) priors for α (left and right panels, respectively).

In both panels, the dots indicate the locations of the redwood seedlings.
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Figure 3: Maples data. Panels (a) and (b) include the posterior mean intensity estimate

(contour plot and perspective plot, respectively). Panels (c) and (d) plot contour plots for

the posterior median and posterior interquartile range intensity estimates, respectively.

The dots superimposed on the contour plots denote the locations of the maple trees.
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2 includes posterior mean intensity estimates under two prior choices for α, gamma(2, 0.7)

and gamma(2, 0.15) priors, corresponding to E(n∗) ≈ 9 and E(n∗) ≈ 23, respectively.

We observed similar robustness in the posterior median and posterior interquartile range

intensity estimates (not shown). Regarding inference for n∗, the posterior 25% percentile,

posterior median, and posterior 75% percentile are given by 14, 16, and 18, under the

gamma(2, 0.7) prior for α, and by 18, 20, and 23, under the gamma(2, 0.15) prior for α.

Figure 3 shows the results for the maple trees data based on a gamma(2, 0.197) prior

for α, which implies E(n∗) ≈ 40. (The estimates were practically indistinguishable under

two different prior choices for α corresponding to E(n∗) ≈ 20 and E(n∗) ≈ 30.) The

posterior median for n∗ is 44; posterior 25% and 75% percentiles are given by 39 and 50,

respectively. The hypothesis that there is substantial spatial variation in the intensity of

maples in Lansing Woods is confirmed. We notice that panels (a) and (c) are comparable

to the results presented by Diggle (2003) in the lower panel of Figure 8.3, p 120. Our

method has the advantage of providing a full probabilistic assessment of the uncertainties

involved.

4.2 An example from extreme value analysis

We work with 1,303 returns for the daily closing prices of the Dow Jones index. These

cover a period of about five years. The returns are calculated as the logarithm of ratios

of successive observations. In order to study the behavior of the extremes, Coles (2001)

suggests a parametric model based on the generalized Pareto distribution. An ad hoc

de-clustering of the data is done and a threshold of u = 2 is used, resulting in n =

37 exceedances. Following this suggestion, we initially considered as the domain of the

Poisson process a region defined by the rectangle (0, 1303]× (2, 5]. The resulting posterior

median and posterior interquartile range intensity estimates are included in Figure 4,

which indicates three fairly well defined clusters.

A better understanding of how the intensity varies with time is given by the marginal

intensities. Figure 5 shows posterior point estimates (based on posterior means) and 95%

pointwise interval estimates for the marginal intensity over time. Panels (a), (b), and (c)

correspond to the use of different thresholds, u = 1.5, u = 1.75, and u = 2, respectively.
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Figure 4: Dow Jones index data. Contour plots of posterior median (left panel) and

posterior interquartile range (right panel) intensity estimates under u = 2. In both panels,

the dots denote the observed times of exceedances with the corresponding excess values.
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Figure 5: Dow Jones index data. Panels (a), (b), and (c) show posterior mean and 95%

interval estimates for the marginal intensity function over time, under u = 1.5, u = 1.75,

and u = 2, respectively. In each case, the observed times of exceedances are plotted on

the horizontal axis. Panel (d) compares posterior mean estimates for the marginal density

function, with the dotted, dashed, and solid line corresponding to u = 1.5, u = 1.75, and

u = 2 respectively.
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The associated number of exceedances are n = 86, n = 60, and n = 37. In all three cases,

we used fairly dispersed priors for α yielding E(n∗) ≈ 14. (Again, posterior intensity

estimates were not significantly affected by less dispersed priors for α.) We observe that,

in all cases, there is a roughly increasing trend. Decreasing the threshold increases the

number of points and has the effect of blurring the clustering. This is also clear from the

comparison presented in panel (d) of Figure 5.

5 Summary and future work

We have proposed a Bayesian nonparametric approach to the modeling of spatial non-

homogeneous Poisson processes. The problem of estimating the intensity of the process in

a bounded domain is equivalent to that of density estimation. We have developed a non-

parametric mixture model where the kernel is bounded in the unit square and the mixing

distribution has a DP prior. The fact that the kernel is of bounded support is important in

order to avoid spurious edge effects. We have used a 5-parameter mixture kernel given by

a family of bivariate Beta densities that yields a wide range of density shapes. Moreover,

we have discussed applications of the methodology to extreme value analysis problems, in

particular, to the problem of describing the distribution of exceedances over a threshold.

We have argued that the proposed nonparametric mixture modeling approach might be a

useful alternative/addition to the related existing Bayesian nonparametric methods, some

of which were reviewed in detail. We have illustrated the methodology with three data

sets. The results show that the model is able to accurately describe clusters and trends in

the data.

Although we have focused on estimation for Poisson process intensity functions, our

approach is also applicable to bivariate density estimation problems where the support

is bounded. The proposed model can be extended in several directions. A practically

important one is to semiparametric regression settings, which allow for the inclusion of

location-specific and/or individual-specific covariates. Another extension is that of em-

bedding the present model in a hierarchical structure, so that two or more interacting

spatial point processes can be considered jointly. A natural example of the importance
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of such a model is given by forestry applications, where it would be desirable to consider

the distribution of two or more species jointly. Finally, it would be of interest to develop

spatio-temporal model formulations for the analysis of replicated spatial point patterns.

We will report on some of these extensions in a future manuscript.
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