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Abstract
The growing interest in and emphasis on high spatial resolution estimates of future

climate has demonstrated the need to apply regional climate models (RCMs) to that
problem. As a consequence, the need for validation of these models, an assessment
of how well an RCM reproduces a known climate, has also grown. Validation is of-
ten performed by comparing RCM output to gridded climate datasets and/or station
data. The primary disadvantage of using gridded climate datasets is that the spatial
resolution is almost always different and generally coarser than climate model output.
We have used a Bayesian statistical model derived from observational data to validate
RCM output. We used surface air temperature (SAT) data from 109 observational
stations in California, all with records of approximately 50 years in length, and created
a statistical model based on this data. The statistical model takes into account the
elevation of the station, distance from coastline, and the NOAA climate region in which
the station resides. Analysis indicates that the statistical model provides reliable esti-
mates of the mean monthly SAT at any given station. In our method, the uncertainty
in the estimates produced by the statistical model are directly determined by obtaining
probability density functions for predicted SATs. This statistical model is then used
to estimate average SATs corresponding to each of the climate model gridcells. These
estimates are compared to the output of the RCM to assess how well the RCM matches
the observed climate as defined by the statistical model. Overall, the match between
the RCM output and the statistical model is good with some deficiencies likely due the
representation of topography in the RCM.

1 Introduction

Improved methods of evaluating the performance of regional climate models (RCMs) are
needed to adequately address the uncertainty associated with projections of future climate.
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As an initial step, the performance of a RCM must be validated against observed climate data
(see, for example, Richard et al., 2002). The current method for validating the output of an
RCM involves running the model for several years using data derived from observations, such
as NCEP/NCAR Reanalysis, as boundary conditions for the RCM. The resulting output
can then be evaluated against observational data, which ideally are independent of the
driving data (Mearns et al., 1999; Liston and Pielke, 2001; Snyder et al., 2002; Snyder and
Sloan, 2005). Observational data are available as either station data or as gridded datasets.
Current methods of evaluation are limited and it has been suggested that more advanced
statistical techniques should be applied to the validation of climate model output and to
the quantification of uncertainty (Berk et al., 2001). To this end, we describe below the
limitations of station data and gridded datasets and demonstrate a method of evaluating
RCM output using a Bayesian statistical model.

Station data have the advantage of recording climate variables with a high degree of
certainty for a limited area. There are two primary issues with station data that must be
addressed when using that data for climate model validation. The first is that, in regions
with complex topography, such as the Pacific Northwest and California, the area around the
observation station where the value of a given climate variable is accurate is much smaller
than in regions with homogenous topography. For example, since temperature changes as a
function of the lapse rate, the value of temperature recorded at a station located on the slope
of a mountain is only valid for a small area around the station as opposed to if the station were
located on a plain. The second issue is the existence of what we will refer to as a sampling bias
due to station distribution. In California, observational stations are not evenly distributed
across the state. In an ideal situation stations would be evenly distributed spatially, but
most stations were placed in areas near cities. This means that sparsely populated areas are
underrepresented; this includes high elevation, coastal, and desert regions.

Gridded datasets are derived from station data and interpolated to a particular resolution
using various methods. The advantage of these datasets is that they provide complete and
uniform spatial coverage of a region. This is possible because the climate information is
interpolated between stations. The primary limitation of gridded datasets is that certain
assumptions about the relationship between the stations must be made in order to generate
the interpolated information. In the simplest case, the interpolation is performed using a
nearest-neighbor method. This method interpolates information from a set of stations to a
grid based on the data available at the stations nearest to a given gridcell. Gridcells without
an observational station located in them are assigned values based on nearby stations without
any adjustment due to topography or other geographic factors that might affect the climate
of the gridcell such as distance from the coast.

To attempt to reconcile the shortcomings of station and gridded data, we apply a new
statistical approach to validation of climate model output. The goal of this study is to use
Bayesian statistical methods and historical records of SAT to aid in the validation of RCM
results. Two fundamental difficulties associated with this process have to be addressed. First,
RCM output for a given gridcell may correspond to a spatial average over an area where
several observation stations are located. Second, some model gridcells may correspond to
areas where there are no stations. Our solution is to use a statistical model that allows for
the interpolation of the SAT field from station data. This in turn can be used to provide

2



an estimation of the average observed SAT corresponding to a given area in particular,
to the areas covered by the RCM gridcells. The use of a Bayesian approach provides full
probabilistic assessment of all uncertainties in the statistical model fit and prediction. That
is, RCM data are compared to the predictive distributions of SAT provided by the statistical
model, not just to single-value predictions. A related approach was presented in Sansó and
Guenni (2004) for simulations of rainfall over Nebraska and more generally in Fuentes et al.
(2003).

2 Methods and Models

2.1 Regional Climate Model Description and Configuration

The International Center for Theoretical Physics (ICTP) Regional Climate Model, RegCM3
(Giorgi et al., 2004a,b; Pal et al., In review), is a third generation regional scale climate model
derived from the National Center for Atmospheric Research-Pennsylvania State (NCAR-
PSU) MM5 mesoscale model. RegCM3 uses a compressible, finite difference scheme with
hydrostatic balance and vertical sigma coordinates. Improvements to RegCM3 over previous
versions include a new large-scale cloud and precipitation scheme, the Subgrid Explicit Mois-
ture Scheme (SUBEX) (Pal et al., 2000), a new ocean flux parameterization (Zeng et al.,
1998), and the availability of a new cumulus convection scheme (Betts, 1986). RegCM3
includes the Biosphere-Atmosphere Transfer Scheme (BATS1E) (Dickinson et al., 1993) for
surface process representation and the CCM3 radiative transfer package (Kiehl et al., 1996).

Our RCM domain is centered over California at 37.5◦N and 121.5◦W with a horizontal
resolution of 40 km by 40 km. This model configuration uses 18 levels in the vertical, 60
gridcells in the North-South direction, and 55 in the East-West direction. Land-surface
conditions were defined using the GLCC global landuse database (Loveland et al., 2000).
The sea surface temperature (SST) dataset used is the UK Met Office GISST 1 degree
global dataset (Rayner et al., 1996; Parker et al., 1995). Exponential relaxation is used at
the RCM boundaries with 12 gridpoints in the buffer zone. The RCM is configured with
the Grell convection scheme and the Fristch and Chappell closure assumption (Grell, 1993).
The RCM was run for 41 years from 1960 to 2000 using NCEP/NCAR Reanalysis 1 as the
driving boundary condition data (Kistler et al., 2001). The monthly average SAT output
from the RCM is used for comparison with the results of the statistical model.

2.2 Observational Data

Monthly average SAT observations for 109 stations in Northern California were obtained from
the Western U.S. Climate Historical Summaries at the Western Regional Climate Center
(WRCC) website (www.wrcc.dri.edu). Stations were chosen based on length of record (50
years or longer) and the completeness of the dataset (i.e. amount of missing data). Stations
with more than two years of missing data were rejected. The station locations are shown in
Figure 1.
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Figure 1: Locations of the observational stations used for model validation

2.3 Statistical Model

The fundamental assumption of the statistical model is that the SAT over Northern Califor-
nia is a Gaussian random field. Gaussian random fields provide a flexible family of models
and are frequently used to model environmental variables. Traditional geostatistical ap-
plications are focused on the first and second moments of the process, so they rely on an
implicit assumption of a Guassian distribution. A good account of geostatistical methods
can be found in Cressie (1993). Diggle et al. (1998) discuss the advantages of a model based
approach.

The statistical analysis proceeds as follows. We consider 54 years of monthly average
SATs over 109 locations in Northern California. We build an empirical statistical model
to represent the SAT field over the whole region for each month of the year. We validate
the statistical methodology by fitting the model after leaving one station out. From this
we obtain the predictive distribution of the SAT at the omitted location. We then compare
the distribution to the observed values at that location. We repeat this procedure for all
109 locations. After validation, we use the statistical model to obtain the distributions of
the average SATs over the areas corresponding to each of the gridcells from the RCM. We
refer to these as the areal predictive distributions. Finally, we compare the RCM output
to those predictive distributions and use the results as the basis of the RCM validation.
Our validation of both the statistical model and the RCM output is based on comparing a
distribution of SAT values to the RCM output. The idea is that the RCM output have to be
likely samples from the predictive distributions. Note that assuming that the observations
correspond to a Gaussian random field does not imply that the predictive distribution at
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a given site is a Gaussian distribution. As will be seen below, we propose a model that
does not provide closed forms (i.e. specifically defining the distribution to be a Gaussian or
other type of distribution) for the predictive distributions. Nevertheless we will be able to
obtain samples from them. Validation methods that use a point estimate and a standard
error are based on the assumption that the predictive (output from the statistical model) is
normal, which may not be realistic. Moreover, since we use a Bayesian approach (see, for
example Migon and Gamerman, 1999), we account for all the uncertainties due to parameter
estimation.

The field of SATs is represented using convolutions of white noise with Gaussian kernels.
Such models are presented in Higdon (2002). Priestley (1981) denotes these processes as
general linear processes. Let the SAT at a location si ∈ R2, i = 1, . . . , n, year t, t = 1, . . . , T
and month j, j = 1, . . . , 12 be denoted by rijt. We assume that

rijt =
m∑

l=1

k(si − ul; σ
2, ρ)ωlj + γhi + φdi + εijt, εijt ∼ N(0, τ 2) (1)

where hi and di denote, respectively, the elevation and the distance from the coast of site si.
k(·; σ2, ρ) is a kernel depending on parameters σ2 and ρ, given by
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2, ρ) =

1

2π

1

σ2
exp

{
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2σ2
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′
(
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)
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}
so that ul ∈ R2, l = 1, . . . ,m are the locations where the kernels are centered. We then let

ωlj = µ + α cos

(
2π

12
j

)
+ β sin

(
2π

12
j

)
+ vlj, vlj ∼ N(0, η2). (2)

In Model (1) the kernels provide spatial dependence. σ2 determines the range of the kernel,
for a large σ2 the kernel will average stations that are far apart. ρ determines the elongation
of the kernel. For large negative values of ρ, the kernel will be strongly elongated in the
NW-SE direction. A third parameter could be added to obtain different latitudinal and
longitudinal ranges, but we found that the two parameter kernel produces good results. γ
and φ are the parameters for the elevation of the station and the distance to the ocean. In
Equation (2) α and β provide the strength of the seasonal deviations.

To fit the model, we split the observations into groups corresponding to the NOAA climate
regions in California; thus we obtained one set of parameters for each one of the climate
regions. The decision to split the observations by NOAA climate regions was reached by
running a test case with the statistical model where all the stations where considered to be
part of the same region. This resulted in a poor match between the statistical model output
and the data at the individual stations. Splitting the data into the NOAA regions resulted
in a much better match. Within a Bayesian approach, Equations (1) and (2) define the
likelihood function for the parameters θ = (τ 2, σ2, ρ, γ, φ, µ, α, β, η2) based on the observed
SATs, R. We denote this by p(R|θ). Inference for such parameters is done through their
posterior distribution p(θ|R). This is obtained by multiplying p(R|θ) by a chosen prior
distribution, p(θ). For the data considered in this paper, the results were very similar for
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different choices of p(θ). We implemented a Markov Chain Monte Carlo (MCMC) method
(see, for example, Gamerman, 1997) that produces samples of the posterior distribution of
the parameters. Once these samples are available we can fix any point in the domain and
obtain samples from the predictive distribution of the SAT at that site, for a given month.
Let rm(s) denote the SAT at location s and month m, we can obtain the posterior predictive
distribution of rm(s), p(rm(s)|R) as

p(rm(s)|R) =

∫
p(rm(s)|θ, R)p(θ|R)dθ. (3)

Using the samples of θ from the MCMC output, we can draw samples from p(rm(s)|R) using
Equation (3). In this way, we are able to produce predictions for the SAT of any given month
and quantify the uncertainty of the statistical model output using a probability distribution.

In order to validate the RCM output, we need to estimate the average SAT for all model
gridcells. Let g denote a given cell and Rm(g) the average SAT for the cell for month m.
Then

Rm(g) =
1

|g|

∫
g

rm(s)ds, (4)

where |g| denotes the area of g. Within the MCMC approach that we use to fit the statistical
model, it is straightforward to approximate the integral in (4). We consider a set of points
s1, . . . , sk in g, obtain samples from the predictive distribution of rm(sj), j = 1, . . . , k and
average those samples. We repeat this process to obtain a description of the predictive
distribution of Rm(g). This is the distribution that is compared to the RCM output.

3 Results

3.1 Fit and validation of the statistical model

The first step of the statistical analysis consisted of fitting all the available observational data
after grouping them according to the NOAA climate divisions. It is interesting to note that
there has been discussion regarding the definition of the climate divisions and whether each
division encompasses stations with similar climate records (Guttman and Quayle, 1996);
in this case we obtained results indicative of very distinctive temperature regimes in each
region. This can be observed in Figure 2 where the posterior distributions for the parameters
defining the kernels in each region are shown. The plots suggest that there are significant
differences between the spatial correlation of SAT in the different climate regions.

In order to validate the statistical model, we did the fitting by leaving one observational
station out at a time. We then compared the actual left out observations to its predictive
distribution. Figure 3 presents the results for the Bowman Dam station. Similar plots were
obtained for all 109 stations. We observed that the mean of the observations was within the
central range of the predictive distribution for most of the months at all stations.

To formalize the previous analysis for all stations simultaneously, we estimated the prob-
ability that the predictive distribution will be above the observed mean for each location
and each month. The idea is that, if the mean of the observations is centrally located with
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Figure 2: Posterior distributions of the parameters that define the convolution kernels. Each curve
is a separate NOAA climate region. Since each curve has different distribution, this means that
each climate region has a unique SAT regime.
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Figure 3: Histograms of the samples from posterior predictive distribution of Bowman Dam station
for each month. The vertical line corresponds to the mean of the observations.
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Figure 4: Probability that the predictive distribution for a given station and month will be above
the observed mean (left panel). The blue dashed lines correspond to 2.5% and 97.5%. The red
continuous line corresponds to 50%. The right panel shows the proportion of observed values
outside the 95% probability predictive interval. The continuous red line corresponds to 5%.

respect to the predictive distribution, this probability should be close to 0.5. The left panel
of Figure 4 presents such probabilities. A low probability indicates overestimation, a large
probability indicates underestimation. We observe no particular over or under estimation
tendency and a large proportion of the stations are between 20% and 80%. Furthermore,
very few stations deviate greatly from the average, indicating that, when a station is re-
moved, the statistical model is able to predict its SAT in a manner that is consistent with
the average observed at that station. This is the case for the large majority of the stations.

A second measure of model assessment is obtained by calculating the proportion of ob-
servations that lie outside the interval given by the 2.5% and 97.5% predictive quantiles.
These correspond to the boundaries of a predictive interval with 95% probability. These
proportions are shown in the right panel of Figure 4. We observe that a large majority of
the predictions fall within 5% of the 95% interval.

3.2 Comparison with Regional Model Output

To compare the results of the statistical model with the RCM output, we generated 100
realizations of the average SAT of each gridcell for each month. From this we obtained
a description of the predictive distribution of the average SAT for each gridcell and each
month. We then compared the 41 years of monthly RCM output for each gridcell with
the corresponding predictive distribution. The percentage of months at each gridcell where
the RCM SATs were between the 2.5% and 97.5% quantiles of the predictive distribution
were calculated and are shown in Figure 5. Higher values indicate good agreement between
the statistical model and the RCM. As shown in Figure 5, some regions match well with
the output of the statistical model while others are poorly matched. One region with a
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Matching % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0 to 9 41 33 36 35 40 40 45 46 34 28 37 34

10 to 19 15 5 7 17 14 10 15 13 13 8 3 11
20 to 29 12 4 12 11 7 10 16 10 16 13 9 20
30 to 39 9 26 16 12 20 19 9 12 10 24 17 12
40 to 49 7 15 14 13 12 10 13 12 9 17 22 7
50 to 59 8 10 8 9 3 12 6 2 7 4 6 5
60 to 69 7 5 9 8 6 3 8 12 12 6 5 12
70 to 79 9 8 10 6 9 10 8 7 11 7 2 10
80 to 89 6 6 6 16 15 9 3 6 6 9 13 4
90 to 100 39 41 35 26 27 30 30 33 35 37 39 38

Table 1: The number of gridcells from the RCM model output that match the statistical model
output by percent. There are ten categories that indicate the percentage match between the 41
RCM model output values and 100 statistical model values, on a monthly basis for each gridcell.
The higher the matching percentage, the better the match between the RCM and statistcal model
for those gridcells.

particularly poor match is the northern Central Valley. In this region, the RCM elevations
at each gridcell are overestimated in most cases due to the pervasive topographic gradients
in this region. RCM results from some gridcells along the coast are also poorly matched
with the output of the statistical model. Again, this is likely due to topographic mismatch
between the elevations of the individual stations used in the statistical model, and the RCM
elevation for that gridcell. The mismatch along the coast is furthered complicated by the
RCM representation of the coastline at 40 km resolution. At this resolution, the RCM uses
a coarse representation of the coast that misses many of the finer scale details.

Table 1 shows that in almost every month over 30 gridcells (out of 153 total) fall in the
90% to 100% range, indicating an excellent match. We also see that about the same number
of gridcells fall in the 0% to 9% match category. The rest of the gridcells are distributed
fairly evenly through the categories in between. Since the statistical model matches quite
well with the station data, the mismatch between RCM output and the statistical model in
Table 1 is likely due to problems with the RCM representation of SAT. The RCM mismatch
could be due to a number of factors. The primary contributor is likely the representation of
topography in the RCM. Each RCM gridcell contains an average elevation value derived from
a 10 minute resolution topography dataset. On a 40 km resolution grid, the preprocessing
program that generates the topography for the RCM gridcells averages over approximately
4 values from the high resolution dataset. These values are also adjusted to make the topog-
raphy smoother for numerical reasons. Areas with topographic gradients will be adjusted to
the mean value of the slope. In areas where actual topographic features are at a finer scale
than the model resolution, those features disappear at the model resolution. An example of
this is the Owens Valley in the Eastern Sierra, a valley between two high mountain ranges,
which is not represented in the model at 40 km resolution. The net result is lower than
observed elevations in some regions (i.e. Sierra Nevada) and higher than observed elevations
in others (parts of the Central Valley).
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Figure 5: The percentage of monthly RCM SATs that fall within the 95% interval of the statistical
model’s predicted SATs. The colors indicate the percentage of monthly RCM SAT values (41 values
at each gridcell per month) at each gridcell that fall between 2.5% and 97.5% of the SAT values
(100 values at each gridcell per month) predicted by the statistical model. Higher percentages
indicate a better match between the statistical model and the RCM.
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4 Discussion

At each station, a comparison of the statistical model prediction of monthly SATs shows very
good agreement with the observational record (See Figure 3 for an example from one station).
For all stations, we find that the majority of the predictions from the statistical model lie
within the 95% probability interval (Figure 4). This indicates that the statistical model is
doing a very good job at predicting the monthly SAT values over northern California. The
statistical model is empirically built from the observations; this implies that it can be used
as a reliable tool for the comparison of regional model output and historical records.

The comparison of the statistical model’s predictions with the output of the RCM shows
good agreement for many gridcells on a monthly basis. Gridcells where the match between
the RCM and the statistical model is poor are areas where the RCM is doing poorly at
representing SAT. One possible reason for this is the simplification and smoothing of topog-
raphy that occurs in the RCM. At 40 km resolution there is still significant underestimation
of mountain elevations and overestimation of valley elevations. There may also be inherent
biases introduced by the boundary conditions that the RCM may not be able to overcome.
A combination of these factors is likely the cause of the mismatch and warrants a more
detailed analysis of the RCM, driving conditions, and observational data.

The unique feature of the use of a Bayesian statistical method is that it can be applied to
any resolution of climate model. The use of this method addresses one of the disadvantages of
gridded observational climate data which is that it must be interpolated to the same resolu-
tion as the climate model output for direct comparison. In almost all cases, the interpolation
method used is simplistic (i.e. nearest neighbor weighting) and doesn’t take into account
factors that the statistical model considers (i.e. elevation and distance from the coast). If
the gridded observational data is coarser than the climate model output, the resulting in-
terpolated data increases the spatial resolution without taking into account topography and
distance from the coast. If the gridded observational data is finer than the climate model
output, the interpolation may produce unrealistic values as well. Our Bayesian statistical
method allows the point station data to be adjusted to any climate model grid resolution
and includes a full accounting of the influence of topography and distance from the coast,
as well as the uncertainty of the estimation.

This method can be used for other climate variables, although the actual statistical model
may need some modifications to account for information that is relevant to that variable. For
example, we found that the distance to the ocean is important to explain the geographical
variability of SAT. The influence of the marine layer, especially during the summer months,
has a very significant effect on SAT at coastal stations and can also influence inland stations
through diurnal changes in surface winds. Distance from the coast may not be as important
for other variables and there may be other factors that need to be taken into account. For
example, considering precipitation introduces the difficulty of dealing with a variable with
a positive probability of getting the value zero. This is an issue that has to be taken into
account when fitting the statistical model for interpolation, see Sansó and Guenni (2004)
and references therein for discussion.
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5 Conclusions

In order to improve the accuracy and to better understand the uncertainties associated with
climate model projections of future climate, there exists a need for rigorous evaluation of
the performance of RCMs in simulating a known climate. By validating RCM output with
observations, we will be able to better discern changes in climate due to anthropogenic
climate change from biases inherent in RCMs. Our goal was to examine a method of RCM
validation using statistical modeling techniques coupled with observational station data. This
investigation has shown that the Bayesian statistical method holds promise for aiding in the
validation of model output from RCMs. We found that the statistical model does a very good
job of representing the observed SAT over the region. The comparison of the statistical model
output to the RCM output revealed that deficiencies in the RCM representation of SAT lead
to the mismatch between the RCM and statistical model output. The complexities of the
climate of California make it an ideal place to evaluate our method. This same method could
be readily applied to other RCMs, at any resolution, for different regions, and for different
climate variables.
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