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Abstract

Gaussian processes (GPs) retain the linear model (LM) either as a spe-
cial case, or in the limit. We show how this relationship can be exploited
when the data are at least partially linear. However from theprospec-
tive of the Bayesian posterior, the GPs which encode the LM either have
probability of nearly zero or are otherwise unattainable without the ex-
plicit construction of a prior with the limiting linear model (LLM) in
mind. We develop such a prior, and show that its practical benefits ex-
tend well beyond the computational and conceptual simplicity of the LM.
For example, linearity can be extracted on a per-dimension basis, or can
be combined with treed partition models to yield a highly efficient non-
stationary model. Our approach is demonstrated on synthetic and real
datasets of varying linearity and dimensionality. Comparisons are made
to other approaches in the literature.

1 Background

The Gaussian Process (GP) is a common model for fitting arbitrary functions or surfaces,
because of its nonparametric flexibility [3]. This paper explores the connections between
GPs and linear models. Combining this union with treed GPs [7] leads to a fully flexible
yet computationally efficient model. Consider the following Bayesian hierarchical model
for a GP forn inputsX of dimensionmX , andn responsesy:

y|β, σ2,K ∼ N(Fβ, σ2K) σ2 ∼ IG(ασ/2, qσ/2)

β|σ2, τ2,W ∼ N(β
0
, σ2τ2W) τ2 ∼ IG(ατ/2, qτ/2) (1)

β0 ∼ N(µ,B) W−1 ∼ W ((ρV)−1, ρ)

with F = (1,X), and I is a (mX + 1) × (mX + 1) matrix. N , IG and W
are the Normal, Inverse-Gamma and Wishart distributions, respectively. Constants
µ,B,V, ρ, ασ, qσ, ατ , qτ are treated as known. The correlation matrixK is constructed
from a correlation functionK(·, ·) of the formK(xj ,xk) = K∗(xj ,xk)+ gδj,k whereδ·,·
is the Kronecker delta function,g is called thenugget parameter and is included in order
to interject measurement error (or random noise) into the stochastic process, andK∗ is a
true correlation which we take to be from the separable power family (generalizations are
straightforward):

K∗(xj ,xk|d) = exp
{

−∑mX

i=1
(xij − xik)2/di

}

. (2)



The specification of priors forK, K∗, and their parametersd andg will be deferred until
later, as their construction will be a central part of this paper. With the separable power fam-
ily some input variables can be modeled as more highly correlated than others. The (non-
separable) isotropic exponential family is a special case (whend = di, for i = 1, . . . , mX ).

Posterior inference and estimation is straightforward using the Metropolis-Hastings and
Gibbs algorithms [7]. We shall not duplicate the estimationresults here due to space con-
straints, but since some of the prediction equations will beuseful later we remark that the
predicted value ofy atx is normally distributed with mean and variance

ŷ(x)= f>(x)β̃+k(x)>K−1(y−Fβ̃), σ̂(x)2 =σ2[κ(x,x)−q>(x)C−1q(x)], (3)

whereβ̃ is the posterior mean estimate ofβ, C−1 = (K+τ2FF>)−1, q(x) = k(x)+
τ2Ff(x), andκ(x,y) = K(x,y)+τ2f>(x)f(y), definingf>(x) = (1,x>), andk(x) is
an−vector withkν,j(x) = K(x,xj), for all xj ∈ X, the training data.

A treed GP [7] is a generalization of the CART (Classificationand Regression Tree) model
[1] that uses GPs at the leaves of the tree in place of the usualconstant values. The Bayesian
interpretation requires a prior be placed on the tree and GP parameterizations. Sampling
commences with Reversible Jump (RJ) MCMC which allows for a simultaneous fit of the
tree and the GPs at its leaves.

2 Linear Limiting Models

A special limiting case of the Gaussian process model is the standard linear model. Re-
placing the top (likelihood) line in the hierarchical modelgiven in Equation (1)

y|β, σ2,K ∼ N(Fβ, σ2K) with y|β, σ2 ∼ N(Fβ, σ2I),

whereI is then×n identity matrix, gives a parameterization of a linear model. From a phe-
nomenological perspective, GP regression is more flexible than standard linear regression
in that it can capture nonlinearities in the interaction between covariates (x) and responses
(y). From a modeling perspective, the GP can be more than just overkill for linear data.
Parsimony and over-fitting considerations are just the tip of the iceberg. It is also unneces-
sarily computationally expensive, as well as numerically unstable. Specifically, it requires
the inversion of a large covariance matrix— an operation whose computing cost grows with
the cube of the sample size. Moreover, large finited parameters can be problematic from
a numerical perspective because, unlessg is also large, the resulting covariance matrix can
be numerically singular when the off-diagonal elements ofK are nearly one.

It is common practice to scale the inputs (x) either to lie in the unit cube, or to have a mean
of zero and a range of one. Scaled data and mostly linear predictive surfaces can result
in almost singular covariance matrices even when the range parameter is relatively small
(2 < d � ∞). So for some parameterizations, the GP is operationally equivalent to the
limiting linear model (LLM), but comes with none of its benefits (e.g. speed and stability).
As this paper demonstrates, exploiting and/or manipulating such equivalence can be of
great practical benefit. As Bayesians, this means constructing a prior distribution onK that
makes it clear in which situations each model is preferred (i.e., when shouldK → cI?).
Our key idea is to specify a prior on a “jumping” criterion between the GP and its LLM,
thus setting up a Bayesian model selection/averaging framework.

Theoretically, there are only two parameterizations to a GPcorrelation structure (K) which
encode the LLM. Though they are indeed well-known, without intervention they are quite
unhelpful from the perspective ofpractical estimation and inference. The first one is when
the range parameter (d) is set to zero. In this caseK = (1 + g)I, and the result is clearly a
linear model. The other parameterization may be less obvious.

Cressie [3] (in Section 3.2.1) analyzes the “effect of variogram parameters on kriging”
paying special attention to the nugget (g) and its interaction with the range parameter. He



remarks that the larger the nugget the more the kriging interpolator smoothes and in the
limit predicts with the linear mean. He later remarks on the interplay between the range
and nugget parameter in determining the kriging neighborhood. Specifically, a large nugget
coupled with a large range drives the interpolator towards the linear mean. This is refresh-
ing since constructing a prior for the LLM by exploiting the former GP parameterization
(ranged → 0) is difficult, and for the latter (nuggetg → ∞) near impossible. Cressie hints
that an (essentially) linear model may be attainable with nonzerod and finiteg.

3 Model selection prior

With the ideas outlined above, we set out to
construct the prior for the “mixture” of the GP
with its LLM. The key idea is an augmenta-
tion of the parameter space bymX indicators
b = {b}mX

i=1
∈ {0, 1}mX . The booleanbi is

intended to select either the GP (bi = 1) or its
LLM for the ith dimension. The actual range pa-
rameter used by the correlation function is mul-
tiplied by b: e.g. K∗(·, ·|b>d). To encode our
preference that GPs with larger range parame-
ters be more likely to “jump” to the LLM, the
prior onbi is specified as a function of the range
parameterdi: p(bi, di) = p(bi|di)p(di).

p(d) = G(1,20)+G(10,10) and p(b|d)
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Figure 1: Prior distribution for the boolean
(b) superimposed onp(d).

Probability mass functions which increase as a function ofdi, e.g.,

pγ,θ1,θ2
(bi = 0|di) = θ1 + (θ2 − θ1)/(1 + exp{−γ(di − 0.5)}) (4)

with 0 < γ and0 ≤ θ1 ≤ θ2 < 1, can encode such a preference by calling for the exclusion
of dimensionsi with with largedi when constructingK. Thusbi determines whether the
GP or the LLM is in charge of the marginal process in theith dimension. Accordingly,
θ1 andθ2 represent minimum and maximum probabilities of jumping to the LLM, while
γ governs the rate at whichp(bi = 0|di) grows toθ2 as di increases. Figure 1 plots
p(bi = 0|di) for (γ, θ1, θ2) = (10, 0.2, 0.95) superimposed on a convenientp(di) which
we take to be a mixture of Gamma distributions,

p(d) = [G(d|α = 1, β = 20) + G(d|α = 10, β = 10)]/2, (5)

representing a population of GP parameterizations for wavysurfaces (smalld) and a sep-
arate population of those which are quite smooth or approximately linear. We takeθ2 to
be strictly less than one so as not to preclude a GP which models a genuinely nonlinear
surface using an uncommonly large range setting.

The implied prior probability of the fullmX -dimensional LLM is

p(linear model) =

mX
∏

i=1

p(bi = 0|di) =

mX
∏

i=1

[

θ1 +
θ2 − θ1

1 + exp{−γ(di − 0.5)}

]

. (6)

Notice that the resulting process is still a GP if any of the booleansbi are one. The primary
computational advantage associated with the LLM is foregone unless all of thebi’s are
zero. However, the intermediate result is a unique transitionary model lying somewhere
between the GP and the LLM. It allows for the implementation of semiparametric stochastic
processes likeZ(x) = βf(x)+ε(x̃) representing a piecemeal spatial extension of a simple
linear model. The first part (βf(x)) of the process is linear in some known function of
the the full set of covariatesx = {xi}mX

i=1
, andε(·) is a spatial random process (e.g. a

GP) which acts on a subset of the covariatesx̃. Such models are commonplace in the



statistics community [4]. Traditionally,̃x is determined and fixeda priori. The separable
boolean prior in (4) implements an adaptively semiparametric process where the subset
x̃ = {xi : bi = 1, i = 1, . . . , mX} is given a prior distribution, instead of being fixed.

3.1 Prediction

Prediction under the limiting GP model is a simplification ofEq. (3) when it is known that
K = (1 + g)I. A characteristic of the standard linear model is that all input configurations
(x) are treated as independent conditional on knowingβ. Additionally, this implies that in
(3) the termsk(x) andK(x,x) are zero for allx. Thus, the predicted value ofy at x is
normally distributed with mean̂y(x) = f>(x)β̃ and variance

σ2[1 + τ2f>(x)f(x) − τ2f>(x)F>((1 + g)I + τ2FF>)−1Ff(x)τ2].

It is helpful to re-write the above expression for the variance as

σ2

[

1 + τ2f>(x)f(x) − τ2

1 + g
f>(x)F>

(

I +
τ2

1 + g
FF>

)−1

Ff(x)τ2

]

.

Using a matrix inversion lemma called the Woodbury formula [see Mathworld:
http://mathworld.wolfram.com/WoodburyFormula.html] one can show that

σ̂(x)2 = σ2

[

1 − f>(x)
(

τ−2 + F>F/(1 + g)
)−1

f(x)
]

.

Not only is this a simplification of the predictive variance given in (3), but Gramacy et
al. [7] give an expression for the posterior variance of the linear regression coefficientsβ,
namelyVβ̃ , which should make it look more familiar. WritingVβ̃ with K−1 = I/(1 + g)
and settingW ≡ I gives

Vβ̃ =
(

τ−2 + F>F(1 + g)
)−1

and then: σ̂(x)2 = σ2

[

1 − f>(x)Vβ̃f(x)
]

. (7)

This is just the usual posterior predictive density atx under the standard linear model:
y(x) ∼ N [f>(x)β̂, σ2(1 − f>(x)Vβ̃f(x))]. This means that we have a choice when it
comes to obtaining samples from the posterior predictive distribution under the LLM. We
prefer (7) over (3) because the latter involves inverting then×n matrixI+τ2FF>/(1+g),
whereas the former only requires the inversion of an(mX + 1) × (mX + 1) matrix.

4 Implementation, results, and comparisons

Here, the GP with jumps to the LLM (hereafter GP LLM) is illustrated on synthetic and real
data. This work grew out of research focused on extending thereach of the treed GP model
presented by Gramacy et al. [7], whereby the data are recursively partitioned and a separate
GP is fit in each partition. Thus most of our experiments are inthis context, though in
Section 4.3 we demonstrate an example without treed partitioning. Partition models are an
ideal setting for evaluating the utility of the GP LLM as linearity can be extracted in large
areas of the input space. The result is a uniquely tractable nonstationary spatial model.

Sampling from the posterior can be accomplished by Gibbs steps for all butd andg [7].
Proposals for the booleansb are drawn from the prior, conditional ond, and accepted and
rejected on the basis of the constructed covariance matrixK. The same prior parameteri-
zations are used for all experiments with a couple reasonable exceptions, the idea being to
develop a method that works “right out of the box” as much as possible.

4.1 Synthetic exponential data

Consider the 2-d input space[−2, 6]×[−2, 6] in which the true response is given byY (x) =
x1 exp(−x2

1
−x2

2
)+ε, whereε ∼ N(0, σ = 0.001). Figure 2 summarizes the consequences
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Figure 2:Left: exponential data GP LLM fit.Right: histogram of the areas under the LLM.

of estimation and prediction with the treed GP LLM for an = 200 sub-sample of this data
from a regular grid of size 441. The partitioning structure of the treed GP LLM first splits
the region into two halves, one of which can be fit linearly. Itthen recursively partitions the
half with the action into a piece which requires a GP and another piece which is also linear.
Theleft pane shows a mean predictive surface wherein the LLM was usedover 66% of the
domain (on average) which was obtained in less than ten seconds on a 1.8 GHz Athalon.
Theright pane shows a histogram of the areas of the domain under the LLMover 20-fold
repeated experiments. The four modes of the histogram clumparound 0%, 25%, 50%, and
75% showing that most often the obvious three-quarters of the space are under the LLM,
although sometimes one of the two partitions will use a very smooth GP. The treed GP
LLM was 40% faster than the treed GP alone when combining estimation and sampling
from the posterior predictive distributions at the remainingn′ = 241 points from the grid.

4.2 Motorcycle Data

The Motorcycle Accident Dataset [10] is a
classic for illustrating nonstationary models. It
samples the acceleration force on the head of
a motorcycle rider as a function of time in the
first moments after an impact. Figure 3 shows
the data, and a fit using the treed GP LLM. The
top pane shows the mean predictive surface,
with 90% quantile error-bars. From thebottom
pane, which shows the difference in 95% and
5% quantiles, it is clear that the tree structure
typically partitions the space into three parts.
On average, 29% of the domain was under the
LLM, split between the left low-noise region
(before impact) and the noisier right region.

Rasmussen & Ghahramani [9] analyzed this
data by using a Dirichlet process mixture of
Gaussian process (DPGP) experts which re-
portedly took one hour on a 1 GHz Pentium.
Such times are typical of nonstationary mod-
eling because of the computational effort re-
quired to construct and invert large covariance
matrices. In contrast, the treed GP LLM fits
this dataset with comparable accuracy but in
less than one minute on a 1.8 GHz Athalon.
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Figure 3: Top: Motorcycle Data fit by treed
GP LLM. Bottom: and quantile differences.



We identify three things which make the treed GP LLM so fast relative to most nonstation-
ary spatial models. (1) Partitioning fits models to less data, yielding smaller matrices to
invert. (2) Jumps to the LLM mean fewer inversions all together. (3) MCMC mixes better
because under the LLM the parametersd andg are out of the picture and all sampling can
be performed via Gibbs steps.

4.3 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate MARS (Mul-
tivariate Adaptive Regression Splines) [6]. There are 10 covariates in the data (x =
{x1, x2, . . . , x10}), but the function that describes the responses (Y ), observed with stan-
dard Normal noise,

E(Y |x) = µ = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (8)

depends only on{x1, . . . , x5}, thus combining nonlinear, linear, and irrelevant effects.
We make comparisons on this data to results provided for several other models in recent
literature. Chipman et al. [1] used this data to compare their linear CART algorithm to
four other methods of varying parameterization: linear regression, greedy tree, MARS, and
neural networks. The statistic they use for comparison is root mean-square error (RMSE)

MSE =
∑n

i=1
(µi − Ŷi)

2/n RMSE=
√

MSE

whereŶi is the model-predicted response for inputxi. Thex’s are randomly distributed on
the unit interval. RMSE’s are gathered for fifty repeated simulations of sizen = 100 from
(8). Chipman et al. provide a nice collection of boxplots showing the results. However,
they do not provide any numerical results, so we have extracted some key numbers from
their plots and refer the reader to that paper for their full results.

We duplicated the experiment using our GP LLM. For this dataset, we use a single model,
not a treed model, as the function is essentially stationaryin the spatial statistical sense
(so if we were to try to fit a treed GP, it would keep all of the data in a single partition).
Linearizing boolean prior parameters(γ, θ1, θ2) = (10, 0.2, 0.9) were used, which gave the
LLM a relatively low prior probability of 0.35, for large range parametersdi. The RMSEs
that we obtained for the GP LLM are summarized in the table below.

Min 1st Qu. Median Mean 3rd Qu. Max
GP LLM 0.4341 0.5743 0.6233 0.6258 0.6707 0.7891
Linear 1.710 2.165 2.291 2.325 2.500 2.794

Results on the linear model are reported for calibration purposes, and can be seen to be
essentially the same as those reported by Chipman et al. RMSEs for the GP LLM are on
average significantly better thanall of those reported for the above methods, with lower
variance. For example, the best mean RMSE shown in the boxplot is ≈ 0.9. That is
1.4 times higher than the worst one we obtained for GP LLM. Further comparison to the
boxplots provided by Chipman et al. shows that the GP LLM is the clear winner.

In fitting the model, the Markov Chain quickly keyed in on the fact that only the first three
covariates contribute nonlinearly. After burn-in, the booleansb almost never deviated from
(1, 1, 1, 0, 0, 0, 0, 0, 0, 0). From the following table summarizing the posterior for thelinear
regression coefficients (β) we can see that the coefficients forx4 andx5 (between double-
bars) were estimated accurately, and that the model correctly determined that{x6, . . . x10}
were irrelevant (i.e. not included in the GP, and hadβ’s close to zero).

x4 x5 x6 x7 x8 x9 x10

5% Qu. 8.40 2.60 -1.23 -0.89 -1.82 -0.60 - 0.91
β Mean 9.75 4.59 -0.190 0.049 -0.612 0.326 0.066

95% Qu. 10.99 9.98 0.92 1.00 0.68 1.21 1.02



For a final comparison we consider an SVM method [5] illustrated on this data and com-
pared to Bagging. We note that the SVM method required cross-validation (CV) to set
some of its parameters. In the comparison, 100 randomized training sets of sizen = 200
were used, and RMSEs were collected for a (single) test set ofsizen′ = 1000. An average
MSE of 0.67 is reported, showing the SVM to be uniformly better the Bagging method with
an MSE of 2.26. We repeated the experiment for the GP LLM (which requires no CV!),
and obtained an average MSE of 0.293, which is 2.28 times better than the SVM, and 7.71
times better than Bagging.

4.4 Boston housing data

A commonly used data set for validating multivariate modelsis the Boston Housing Data
[8], which contains 506 responses over 13 covariates. Chipman et. al [1] showed that their
(Bayesian) linear CART model gave lower RMSEs, on average, compared to a number of
popular techniques (the same ones listed in the previous section). Here we employed a treed
GP LLM, which is a generalization of their linear CART model,retaining the original linear
CART as an accessible special case. Though computationallymore intensive than linear
CART, the treed GP LLM gives impressive results. To mitigatesome of the computational
demands, the LLM can be used to initialize the Markov Chain bybreaking the larger data
set into smaller partitions. Before treed GP burn-in begins, the model is fit using only the
faster (limiting) linear CART model. Once the treed partitioning has stabilized, this fit
is taken as the starting value for a full MCMC exploration of the posterior for the treed
GP LLM. This initialization process allows us to fit GPs on smaller segments of the data,
reducing the size of matrices that need to be inverted and greatly reducing computation
time. For the Boston Housing data we use(γ, θ1, θ2) = (10, 0.2, 0.95), which gives the
LLM a prior probability of0.9513 ≈ 0.51, when thedi’s are large.

Experiments in the Bayesian linear CART paper [1] consist ofcalculating RMSEs via 10-
fold CV. The data are randomly partitioned into 10 groups, iteratively trained on 9/10 of
the data, and tested on the remaining 1/10. This is repeated for 20 random partitions, and
boxplots are shown. Note that the logarithm of the response is used and that CV is only
used to assess predictive error, not to tune parameters. Samples are gathered from the
posterior predictive distribution of the linear CART modelfor six parameterizations using
20 restarts of 4000 iterations. This seems excessive, but wefollowed suit for the treed GP
LLM in order to obtain a fair comparison. Our “boxplot” for training and testing RMSEs
are summarized in the table below. As before, linear regression (on the log responses) is
used for calibration.

Min 1st Qu. Median Mean 3rd Qu. Max
train GP LLM 0.0701 0.0716 0.0724 0.0728 0.0730 0.0818

Linear 0.1868 0.1869 0.1869 0.1869 0.1869 0.1870
test GP LLM 0.1321 0.1327 0.1346 0.1346 0.1356 0.1389

Linear 0.1926 0.1945 0.1950 0.1950 0.1953 0.1982

Notice that the RMSEs for the linear model have extremely lowvariability. This is similar
to the results provided by Chipman et al. and was a key factor in determining that our
experiment was well-calibrated. Upon comparison of the above numbers with the boxplots
in Chipman et al., it can readily be seen that the treed GP LLM is leaps and bounds better
than linear CART, andall of the other methods in the study. Our worst training RMSE is
almost two times lower than the best ones from the boxplot. All of our testing RMSEs are
lower than the lowest ones from the boxplot, and our median RMSE (0.1346) is 1.26 times
lower than the lowest median RMSE (≈ 0.17) from the boxplot.

More recently, Chu et al. [2] performed a similar experiment(see Table V), but instead
of 10-fold CV, they randomly partitioned the data 100 times into training/test sets of size
481/25 and reported average MSEs on the un-transformed responses. They compare their



Bayesian SVM regression algorithm (BSVR) to other high-powered techniques like Ridge
Regression, Relevance Vector Machine, GPs, etc., with and without ARD (automatic rele-
vance determination). Repeating their experiment for the treed GP LLM gave an average
MSE of 6.96 compared to that of 6.99 for the BSVR with ARD, making the two algorithms
by far the best in the comparison. However, without ARD the MSE of BSVR was 12.34,
1.77 times higher than the treed GP LLM, and the worst in the comparison. The reported
results for a GP with (8.32) and without (9.13) ARD showed thesame effect, but to a lesser
degree. Thus our GP LLM might similarly benefit from an ARD-like approach. Perhaps
not surprisingly, the average MSEs do not tell the whole story. The 1st, median, and 3rd
quantile MSEs we obtained for the treed GP LLM were 3.72, 5.32and 8.48 respectively,
showing that its distribution had a heavy right-hand tail. We take this as an indication that
several responses in the data are either misleading, noisy,or otherwise very hard to predict.

5 Conclusions

Gaussian processes are a flexible modeling tool which can be overkill for many applica-
tions. We have shown how its limiting linear model can be bothuseful and accessible in
terms of Bayesian posterior estimation, and prediction. The benefits include speed, parsi-
mony, and a relatively straightforward implementation of asemiparametric model. Com-
bined with treed partitioning, the GP LLM extends linear CART, resulting in a uniquely
nonstationary, tractable, and highly accurate regressiontool.

We believe that a large contribution of the GP LLM will be in the domain of sequential de-
sign of computer experiments [7] which was the inspiration for much of the work presented
here. Empirical evidence suggests that many computer experiments are nearly linear. That
is, either the response is linear in most of its input dimensions, or the process is entirely
linear in a subset of the input domain. Supremely relevant, but largely ignored in this paper,
is that the Bayesian treed GP LLM provides afull posterior predictive distribution (partic-
ularly a nonstationary and thus region-specific estimate ofpredictive variance) which can
be used towards active learning in the input domain. Exploitation of these characteristics
should lead to a efficient framework for the adaptive exploration of computer experiment
parameter spaces.
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