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Abstract

Gaussian processes (GPs) retain the linear model (LM)regtha spe-
cial case, or in the limit. We show how this relationship carelsploited
when the data are at least partially linear. However frompirespec-
tive of the Bayesian posterior, the GPs which encode the ltMeehave
probability of nearly zero or are otherwise unattainablthait the ex-
plicit construction of a prior with the limiting linear mod@_LM) in
mind. We develop such a prior, and show that its practicatbesnex-
tend well beyond the computational and conceptual sintplafithe LM.
For example, linearity can be extracted on a per-dimensisisbor can
be combined with treed partition models to yield a highlyaidfint non-
stationary model. Our approach is demonstrated on synthatl real
datasets of varying linearity and dimensionality. Comgams are made
to other approaches in the literature.

1 Background

The Gaussian Process (GP) is a common model for fitting arpifunctions or surfaces,
because of its nonparametric flexibility [3]. This paperlexgs the connections between
GPs and linear models. Combining this union with treed GP&pts to a fully flexible
yet computationally efficient model. Consider the follogyiBayesian hierarchical model
for a GP forn inputsX of dimensionn x, andn responseg:

y|B,0% K ~ N(F8,0°K) 0 ~ 1G(a/2,40/2)
ﬂ|021 TQ,W ~ N(ﬂ()a UQTQW) T2~ IG(aT/2a %’/2) (1)
Bo ~ N(u,B) W~ W((pV) ™, p)

with F = (1,X), andI is a (mx + 1) x (mx + 1) matrix. N, IG and W
are the Normal, Inverse-Gamma and Wishart distributiomspectively. Constants
w,B, V. p a.,q.,ar,q- are treated as known. The correlation malixis constructed
from a correlation functiok (-, -) of the formK (x;, x;) = K*(x;,xy) + gd; 1 whered. .

is the Kronecker delta functiom, is called thenugget parameter and is included in order
to interject measurement error (or random noise) into thehststic process, and* is a
true correlation which we take to be from the separable powerlfafgeneralizations are
straightforward):

K™ (xj,xx|d) = exp { = 37 (2ij — vk )?/di} - )



The specification of priors foK', K*, and their parameters andg will be deferred until
later, as their construction will be a central part of thipga With the separable power fam-
ily some input variables can be modeled as more highly catedIthan others. The (non-
separable) isotropic exponential family is a special cede(d = d;, fori = 1,...,mx).

Posterior inference and estimation is straightforwarsh@ishe Metropolis-Hastings and
Gibbs algorithms [7]. We shall not duplicate the estimatiesults here due to space con-
straints, but since some of the prediction equations willbeful later we remark that the
predicted value of atx is normally distributed with mean and variance

§x)=fT(x)B+k(x) 'K (y-FB), 6(x)°=0’[x(x,x)—q' (x)C'a(x)], (3)
whereg is the posterior mean estimate 8f C~! = (K+72FF")~!, q(x) = k(x)+
T?Ff(x), andk(x,y) = K(x,y)+72f T (x)f(y), definingf " (x) = (1,x "), andk(x) is
an—vector withk, ;(x) = K(x,x;), for all x; € X, the training data.

Atreed GP [7] is a generalization of the CART (Classificatimn Regression Tree) model
[1] that uses GPs at the leaves of the tree in place of the aenatant values. The Bayesian
interpretation requires a prior be placed on the tree and &&npeterizations. Sampling
commences with Reversible Jump (RJ) MCMC which allows fonauftaneous fit of the
tree and the GPs at its leaves.

2 Linear Limiting Models

A special limiting case of the Gaussian process model is tdredard linear model. Re-
placing the top (likelihood) line in the hierarchical modg@len in Equation (1)

y|B,0% K ~ N(F3,0°K) with y|B,0% ~ N(F3,5°1),
wherel is then x n identity matrix, gives a parameterization of a linear moélebm a phe-
nomenological perspective, GP regression is more flexitda standard linear regression
in that it can capture nonlinearities in the interaction\man covariatesx) and responses
(y). From a modeling perspective, the GP can be more than jeskithfor linear data.
Parsimony and over-fitting considerations are just theftith®@iceberg. It is also unneces-
sarily computationally expensive, as well as numericatigtable. Specifically, it requires
the inversion of a large covariance matrix— an operationsglammputing cost grows with
the cube of the sample size. Moreover, large fidifearameters can be problematic from
a numerical perspective because, unlessalso large, the resulting covariance matrix can
be numerically singular when the off-diagonal elementKddre nearly one.

Itis common practice to scale the inputd gither to lie in the unit cube, or to have a mean
of zero and a range of one. Scaled data and mostly lineargbradsurfaces can result
in almost singular covariance matrices even when the raaggngeter is relatively small
(2 < d <« ). So for some parameterizations, the GP is operationalijvatent to the
limiting linear model (LLM), but comes with none of its benef{e.g. speed and stability).
As this paper demonstrates, exploiting and/or manipuasinch equivalence can be of
great practical benefit. As Bayesians, this means constguatprior distribution orK that
makes it clear in which situations each model is preferred, (when should — cI?).
Our key idea is to specify a prior on a “jumping” criterion tween the GP and its LLM,
thus setting up a Bayesian model selection/averaging freamie

Theoretically, there are only two parameterizations to ac@telation structureK’) which
encode the LLM. Though they are indeed well-known, withot¢ivention they are quite
unhelpful from the perspective pfactical estimation and inference. The first one is when
the range parameted)(is set to zero. In this cad€ = (1 + ¢)I, and the result is clearly a
linear model. The other parameterization may be less obviou

Cressie [3] (in Section 3.2.1) analyzes the “effect of varégn parameters on kriging”
paying special attention to the nugge} &nd its interaction with the range parameter. He



remarks that the larger the nugget the more the kriging polator smoothes and in the
limit predicts with the linear mean. He later remarks on thteriplay between the range
and nugget parameter in determining the kriging neighbadh8pecifically, a large nugget
coupled with a large range drives the interpolator towanddinear mean. This is refresh-
ing since constructing a prior for the LLM by exploiting therfner GP parameterization
(ranged — 0) is difficult, and for the latter (nugget— oo) near impossible. Cressie hints
that an (essentially) linear model may be attainable withzeood and finiteg.

3 Mode selection prior

With the ideas outlined above, we set out to
construct the prior for the “mixture” of the GP ¢,
with its LLM. The key idea is an augmenta-., |

tion of the parameter space byx indicators

p(d) = G(1,20)+G(10,10) and p(b|d)

b = {b};2% € {0,1}™x. The boolearb; is
intended to select either the GB, (& 1) orits &
LLM for the i dimension. The actual range pa-3+{+
rameter used by the correlation function is mul=/
tiplied by b: e.g. K*(-,-|b"d). To encode our .| 1
preference that GPs with larger range parame- oo 05 Lo s 2o
ters be more likely to “jump” to the LLM, theF.

prior onb; is specified as a function of the ran
parameter;: p(b;,d;) = p(b;|d;)p(d;).

2
a
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gure 1. Prior distribution for the boolean
Q superimposed op(d).

Probability mass functions which increase as a functiod 0é.g.,

Dv,01,00(bi = 0|d;) = 01 + (62 — 61) /(1 + exp{—7(d; — 0.5)}) (4)

with 0 < vand0 < 6; < 65 < 1, can encode such a preference by calling for the exclusion
of dimensiong with with larged; when constructind<. Thusb; determines whether the
GP or the LLM is in charge of the marginal process in tfiedimension. Accordingly,

6, andd, represent minimum and maximum probabilities of jumpinghte LLM, while

~ governs the rate at which(b; = 0|d;) grows tofs asd; increases. Figure 1 plots
p(b; = 0]d;) for (v, 61,02) = (10,0.2,0.95) superimposed on a convenieritl;) which

we take to be a mixture of Gamma distributions,

p(d) = [G(dla =1, 8 =20) + G(d|a = 10, 5 = 10)]/2, (5)

representing a population of GP parameterizations for veanfaces (small) and a sep-
arate population of those which are quite smooth or appratéiy linear. We také, to
be strictly less than one so as not to preclude a GP which rm@dgénuinely nonlinear
surface using an uncommonly large range setting.

The implied prior probability of the fulin x-dimensional LLM is

mx mx
. 0y — 04
linear mode) = b; = 0|d;) = 01 + .
p( ) i|:|1p< d;) ][1 [ e

1=

(6)

Notice that the resulting process is still a GP if any of thelbansy; are one. The primary
computational advantage associated with the LLM is foregomless all of theé,;’s are
zero. However, the intermediate result is a unique tramstiy model lying somewhere
between the GP and the LLM. It allows for the implementatibsamniparametric stochastic
processes lik& (x) = 3f(x)+e(X) representing a piecemeal spatial extension of a simple
linear model. The first part{df(x)) of the process is linear in some known function of
the the full set of covariates = {z;};"%, ande(-) is a spatial random process (e.g. a
GP) which acts on a subset of the covariatesSuch models are commonplace in the



statistics community [4]. Traditionallk is determined and fixed priori. The separable
boolean prior in (4) implements an adaptively semiparaim@tocess where the subset
x={x;: b, =1,i=1,...,mx} is given a prior distribution, instead of being fixed.

3.1 Prediction

Prediction under the limiting GP model is a simplificatior&af. (3) when it is known that
K = (1 + g)I. A characteristic of the standard linear model is that gdlirconfigurations
(x) are treated as independent conditional on knov@ngdditionally, this implies that in
(3) the termsk(x) and K (x, x) are zero for allk. Thus, the predicted value gfatx is

normally distributed with meafi(x) = £ (x)3 and variance
o214+ 72f T (x)f(x) — 72T (x)F " (1 + ¢)I + 7°FF ") 'Ff(x)7?].
Itis helpful to re-write the above expression for the vatias

2 72 -1 )
14+ 72f 7 (x)f(x) fT(x)F" <I + TFFT> Ff(x)7 ] .

0_2

_1+g 14+g

Using a matrix inversion lemma called the Woodbury formutee Mat hwor | d:
http://mathworld.wolfram.com/WoodburyFormula.htmilecan show that

5(x)? = o [1 T (x) (r 2+ F F/(1+9) f(x)} .

Not only is this a simplification of the predictive varianceean in (3), but Gramacy et
al. [7] give an expression for the posterior variance of thedr regression coefficieng
namelyV 3, which should make it look more familiar. Writing ; with K= = 1/(1 + g)
and settingW = I gives

V= (r2+F F(l+g) andthen: 4(x)> =0 |1 - £ (x)V4(x)|. (7)

This is just the usual posterior predictive densityxatinder the standard linear model:
y(x) ~ NI[fT(x)8,02(1 —fT (x)V5f(x))]. This means that we have a choice when it
comes to obtaining samples from the posterior predictis&idiution under the LLM. We
prefer (7) over (3) because the latter involves invertirggilx n matrixI+72FF T /(1+g),
whereas the former only requires the inversion of@an + 1) x (mx + 1) matrix.

4 Implementation, results, and comparisons

Here, the GP with jumps to the LLM (hereafter GP LLM) is iliteged on synthetic and real
data. This work grew out of research focused on extendincgideh of the treed GP model
presented by Gramacy et al. [7], whereby the data are reelygiartitioned and a separate
GP is fit in each partition. Thus most of our experiments arthis context, though in
Section 4.3 we demonstrate an example without treed manitity. Partition models are an
ideal setting for evaluating the utility of the GP LLM as larity can be extracted in large
areas of the input space. The result is a uniquely tractaisistationary spatial model.

Sampling from the posterior can be accomplished by Giblgsdtar all butd andg [7].
Proposals for the booleahsare drawn from the prior, conditional @ty and accepted and
rejected on the basis of the constructed covariance mKEtriXhe same prior parameteri-
zations are used for all experiments with a couple reaseretgleptions, the idea being to
develop a method that works “right out of the box” as much assitde.

4.1 Synthetic exponential data

Consider the 2-d input spage2, 6] x [—2, 6] in which the true response is given Byx) =
x1 exp(—z3—22)+¢, wheree ~ N (0,0 = 0.001). Figure 2 summarizes the consequences
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Figure 2:Left: exponential data GP LLM fitRight: histogram of the areas under the LLM.

of estimation and prediction with the treed GP LLM fora= 200 sub-sample of this data
from a regular grid of size 441. The partitioning structuféhe treed GP LLM first splits
the region into two halves, one of which can be fit linearlgh&n recursively partitions the
half with the action into a piece which requires a GP and agtfece which is also linear.
Theleft pane shows a mean predictive surface wherein the LLM wasasa®b6% of the
domain (on average) which was obtained in less than ten desaama 1.8 GHz Athalon.
Theright pane shows a histogram of the areas of the domain under theduev20-fold
repeated experiments. The four modes of the histogram carmmd 0%, 25%, 50%, and
75% showing that most often the obvious three-quartersebpace are under the LLM,
although sometimes one of the two partitions will use a venpath GP. The treed GP
LLM was 40% faster than the treed GP alone when combiningnesitbon and sampling
from the posterior predictive distributions at the remani’ = 241 points from the grid.

4.2 Motorcycle Data

The Motorcycle Accident Dataset [10] is a
classic for illustrating nonstationary models. It
samples the acceleration force on the head of
a motorcycle rider as a function of time in the
first moments after an impact. Figure 3 showse
the data, and a fit using the treed GP LLM. Thg _
top pane shows the mean predictive surface,’
with 90% quantile error-bars. From thettom s
pane, which shows the difference in 95% and' o)
5% quantiles, it is clear that the tree structure 10 2 % 0 20
typically partitions the space into three parts. x

On average, 29% of the domain was under the
LLM, split between the left low-noise region
(before impact) and the noisier right region. 9

Estimated Surface

Estimated Error Spread (95th - 5th Quantile)

Rasmussen & Ghahramani [9] analyzed this_

data by using a Dirichlet process mixture g ®

Gaussian process (DPGP) experts which ez

portedly took one hour on a 1 GHz Pentiung

Such times are typical of nonstationary mod-&

eling because of the computational effort re- ‘ : : : ‘

quired to construct and invert large covariance e R
matrices. In contrast, the treed GP LLM fits g _

this dataset with comparable accuracy butfgure 3: Top: Motorcycle Data fit by treed
less than one minute on a 1.8 GHz Athalon.GP LLM. Bottom: and quantile differences.




We identify three things which make the treed GP LLM so fakitiee to most nonstation-
ary spatial models. (1) Partitioning fits models to less dgitelding smaller matrices to
invert. (2) Jumps to the LLM mean fewer inversions all togett§3) MCMC mixes better
because under the LLM the parametérandg are out of the picture and all sampling can
be performed via Gibbs steps.

4.3 Friedman data

This Friedman data set is the first one of a suite that was ws#élddtrate MARS (Mul-
tivariate Adaptive Regression Splines) [6]. There are 1Gadates in the datax( =

{x1,22,...,210}), but the function that describes the respon3és ¢bserved with stan-
dard Normal noise,

E(Y|x) = p = 10sin(rz122) + 20(z3 — 0.5)% + 1024 + 5z (8)
depends only oz, ...,z5}, thus combining nonlinear, linear, and irrelevant effects

We make comparisons on this data to results provided forrakwther models in recent
literature. Chipman et al. [1] used this data to compare fire@ar CART algorithm to
four other methods of varying parameterization: linearesgion, greedy tree, MARS, and
neural networks. The statistic they use for comparisonasmean-square error (RMSE)

MSE = Y"1, (i — Y3)?/n RMSE = /MSE

whereY; is the model-predicted response for ingyt Thex's are randomly distributed on
the unitinterval. RMSE’s are gathered for fifty repeatedudations of size: = 100 from
(8). Chipman et al. provide a nice collection of boxplotswimy the results. However,
they do not provide any numerical results, so we have extdasbme key numbers from
their plots and refer the reader to that paper for their fghits.

We duplicated the experiment using our GP LLM. For this dettage use a single model,
not a treed model, as the function is essentially statioirathe spatial statistical sense
(so if we were to try to fit a treed GP, it would keep all of theadat a single partition).
Linearizing boolean prior parametérs 6,1, 62) = (10, 0.2, 0.9) were used, which gave the
LLM a relatively low prior probability of 0.35, for large rge parameterd;. The RMSEs
that we obtained for the GP LLM are summarized in the tablewel

| Min 1stQu. Median Mean 3rdQu. Max
GPLLM | 04341 0.5743 0.6233 0.6258 0.6707 0.7891
Linear 1.710 2.165 2291 2.325 2500 2.794

Results on the linear model are reported for calibratiorppses, and can be seen to be
essentially the same as those reported by Chipman et al. RNtBEhe GP LLM are on
average significantly better thahl of those reported for the above methods, with lower
variance. For example, the best mean RMSE shown in the bbigle 0.9. That is
1.4 times higher than the worst one we obtained for GP LLMtH&ircomparison to the
boxplots provided by Chipman et al. shows that the GP LLM ésdlear winner.

In fitting the model, the Markov Chain quickly keyed in on tlaetfthat only the first three
covariates contribute nonlinearly. After burn-in, the le@msb almost never deviated from
(1,1,1,0,0,0,0,0,0,0). From the following table summarizing the posterior forlinear
regression coefficientgd) we can see that the coefficients foy andzx; (between double-
bars) were estimated accurately, and that the model ctyrastermined thafzg, . . . 710}
were irrelevant (i.e. not included in the GP, and I#&giclose to zero).

| ®1  xs Tg Ty Ty Ty T19
5% Qu. 8.40 2.60| -1.23 -0.89 -1.82 -0.60 -0.91
B Mean 9.75 459| -0.190 0.049 -0.612 0.326 0.066
95% Qu. || 10.99 9.98 0.92 1.00 0.68 1.21 1.02




For a final comparison we consider an SVM method [5] illugitladn this data and com-
pared to Bagging. We note that the SVM method required cvabkdation (CV) to set
some of its parameters. In the comparison, 100 randomiaédrtg sets of size. = 200
were used, and RMSEs were collected for a (single) test s@t@f’ = 1000. An average
MSE of 0.67 is reported, showing the SVM to be uniformly betie Bagging method with
an MSE of 2.26. We repeated the experiment for the GP LLM (Wwhéguires no CV!),
and obtained an average MSE of 0.293, which is 2.28 timesrtibtin the SVM, and 7.71
times better than Bagging.

4.4 Boston housing data

A commonly used data set for validating multivariate modelfhe Boston Housing Data
[8], which contains 506 responses over 13 covariates. Cluipet al [1] showed that their
(Bayesian) linear CART model gave lower RMSEs, on averagmpared to a number of
popular techniques (the same ones listed in the previotissgdHere we employed a treed
GP LLM, which is a generalization of their linear CART modetaining the original linear
CART as an accessible special case. Though computatianallg intensive than linear
CART, the treed GP LLM gives impressive results. To mitigadme of the computational
demands, the LLM can be used to initialize the Markov Chaibteaking the larger data
set into smaller partitions. Before treed GP burn-in bedims model is fit using only the
faster (limiting) linear CART model. Once the treed paotiing has stabilized, this fit
is taken as the starting value for a full MCMC exploration lo€ tposterior for the treed
GP LLM. This initialization process allows us to fit GPs on #ievasegments of the data,
reducing the size of matrices that need to be inverted anatlgreeducing computation
time. For the Boston Housing data we use#f,,62) = (10,0.2,0.95), which gives the
LLM a prior probability 0f0.95% ~ 0.51, when thed;’s are large.

Experiments in the Bayesian linear CART paper [1] consistabfulating RMSES via 10-
fold CV. The data are randomly partitioned into 10 groupsatively trained on 9/10 of
the data, and tested on the remaining 1/10. This is repeaté&tDfrandom partitions, and
boxplots are shown. Note that the logarithm of the resposisséd and that CV is only
used to assess predictive error, not to tune parameterspl&suare gathered from the
posterior predictive distribution of the linear CART modiet six parameterizations using
20 restarts of 4000 iterations. This seems excessive, bétlieeved suit for the treed GP
LLM in order to obtain a fair comparison. Our “boxplot” foraining and testing RMSEs
are summarized in the table below. As before, linear regmgsn the log responses) is
used for calibration.

Min  1stQu. Median Mean 3rd Qu. Max

train GPLLM | 0.0701 0.0716 0.0724 0.0728 0.0730 0.0818
Linear 0.1868 0.1869 0.1869 0.1869 0.1869 0.1870

test GPLLM| 0.1321 0.1327 0.1346 0.1346 0.1356 0.1389
Linear 0.1926 0.1945 0.1950 0.1950 0.1953 0.1982

Notice that the RMSEs for the linear model have extremelyvawability. This is similar

to the results provided by Chipman et al. and was a key faotatetermining that our
experiment was well-calibrated. Upon comparison of thevalmumbers with the boxplots
in Chipman et al., it can readily be seen that the treed GP L& Maps and bounds better
than linear CART, andll of the other methods in the study. Our worst training RMSE is
almost two times lower than the best ones from the boxpldtofdur testing RMSEs are
lower than the lowest ones from the boxplot, and our mediarsEND.1346) is 1.26 times
lower than the lowest median RMSE (0.17) from the boxplot.

More recently, Chu et al. [2] performed a similar experimg#e Table V), but instead
of 10-fold CV, they randomly partitioned the data 100 timew®itraining/test sets of size
481/25 and reported average MSEs on the un-transformednesp. They compare their



Bayesian SVM regression algorithm (BSVR) to other high-pmd techniques like Ridge
Regression, Relevance Vector Machine, GPs, etc., with atmdw ARD (automatic rele-
vance determination). Repeating their experiment for tbed GP LLM gave an average
MSE of 6.96 compared to that of 6.99 for the BSVR with ARD, nmakihe two algorithms
by far the best in the comparison. However, without ARD theBM BSVR was 12.34,
1.77 times higher than the treed GP LLM, and the worst in theparison. The reported
results for a GP with (8.32) and without (9.13) ARD showedshame effect, but to a lesser
degree. Thus our GP LLM might similarly benefit from an ARReliapproach. Perhaps
not surprisingly, the average MSEs do not tell the wholeystdhe 1st, median, and 3rd
guantile MSEs we obtained for the treed GP LLM were 3.72, 2u3@ 8.48 respectively,
showing that its distribution had a heavy right-hand taie ke this as an indication that
several responses in the data are either misleading, moistherwise very hard to predict.

5 Conclusions

Gaussian processes are a flexible modeling tool which carvéxkith for many applica-
tions. We have shown how its limiting linear model can be hatbful and accessible in
terms of Bayesian posterior estimation, and predictiore Bénefits include speed, parsi-
mony, and a relatively straightforward implementation cfeaniparametric model. Com-
bined with treed partitioning, the GP LLM extends linear CAResulting in a uniquely
nonstationary, tractable, and highly accurate regredsiain

We believe that a large contribution of the GP LLM will be iretlomain of sequential de-
sign of computer experiments [7] which was the inspiratmmfiuch of the work presented
here. Empirical evidence suggests that many computer iexpets are nearly linear. That
is, either the response is linear in most of its input dimems; or the process is entirely
linear in a subset of the input domain. Supremely relevarntdogely ignored in this paper,
is that the Bayesian treed GP LLM provideful posterior predictive distribution (partic-
ularly a nonstationary and thus region-specific estimatgredlictive variance) which can
be used towards active learning in the input domain. Exgtioib of these characteristics
should lead to a efficient framework for the adaptive exgloraof computer experiment
parameter spaces.
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