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Abstract

Computer experiments often require dense sweeps over input parameters to obtain a qualitative un-

derstanding of their response. Such sweeps can be prohibitively expensive, and are unnecessary in regions

where the response is easily predicted; well-chosen designs could allow a mapping of the response with

far fewer simulation runs. Thus, there is a need for computationally inexpensive surrogate models and an

accompanying method for selecting small designs. We explore a non-stationary modeling methodology

for addressing this need that couples stationary Gaussian process with treed partitioning. A Bayesian

perspective yields an explicit measure of (non-stationary) predictive uncertainty that can be used to

guide sampling. As typical experiments are high-dimensional and require large designs, a careful but

thrifty implementation is essential. Thus, the statistical computing details which make our methodology

efficient are outlined in detail. Classic non-stationary data analyzed in recent literature is used to validate

our model, and the benefit of adaptive sampling is illustrated through our motivating example which

involves the computational fluid dynamics simulation of a NASA reentry vehicle.

1 Introduction

Many complex phenomena are difficult to investigate directly through controlled experiments. Instead,

computer simulation is becoming a commonplace alternative to providing insight into such phenomena.

However, the drive towards higher fidelity simulation continues to tax the fastest of computers, even in

highly distributed computing environments. Computational fluid dynamics (CFD) simulations in which fluid

flow phenomena are modeled are an excellent example—fluid flows over complex surfaces may be modeled

accurately but only at the cost of supercomputer resources. In this article we discuss the problem of fitting

a response surface for a computer model when we also have the ability to design the experiment adaptively,

revising the experiment as we learn about the model— a task to which we feel the Bayesian approach is
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particularly well-suited.

Consider a simulation model which defines a mapping (perhaps non-deterministic) from parameters de-

scribing the inputs to one or more output responses. Without an analytic representation of the mapping

between inputs and outputs, simulations must be run for many different input configurations in order to

build up an understanding of its possible outcomes. This is called a computer experiment.

High fidelity computer experiments are usually run on clusters of independent computing agents, or

processors (e.g. a Beowulf cluster). Agents can process one input configuration at a time. Multiple agents

allow several input configurations to be run in parallel, starting and finishing at different (even random)

times. The cluster is usually managed by master controller (emcee) program that gathers responses from

finished simulations, and keeps free agents busy with new inputs. Even in extremely parallel computing

environments, computational expense of the simulation and/or high dimensional inputs often prohibit the

naive approach of running the experiment over a dense grid of possible inputs. However, computationally

inexpensive surrogate models can often provide accurate approximations to the simulation, especially in

regions of the input space where the response is easily predicted.

For example, NASA is developing a new re-usable rocket booster called the Langley Glide-Back Booster

(LGBB). Much of its development is done with computer models. In particular, they are interested in

learning about the response in flight characteristics (lift, drag, pitch, side-force, yaw, roll) of the LGBB as

a function of three inputs (side slip angle, Mach number, angle of attack). For each input configuration

triplet, CFD simulations yield six response outputs. The left panel of Figure 2 shows one of these outputs,

lift, plotted as a function of speed and angle of attack. Of note is the large ridge at Mach 1, where the flight

abruptly transitions from subsonic to supersonic. While most of the output space is rather smooth, the ridge

is clearly not. Thus there is interest in being able to automatically explore this surface, learning about the

ridge and spending relatively more effort there than in the smooth regions. The CFD simulations in this

experiment involve the integration of the inviscid Euler equations over a mesh of 1.4 million cells. Each run

of the Euler solver for a given set of parameters takes on the order of 5-20 hours on a high end workstation.

The above experiment is an example of a situation where surrogate models combined with active learning

techniques could direct future sampling, dramatically reducing the size of the final experimental design, saving

thousands of hours of computing time. Sampling can be focused on input configurations where the surrogate

model is least sure of its predicted response, either because the output response is changing significantly or

because there are relatively few nearby data points already examined.

The traditional surrogate model used to approximate outputs to computer experiments is the Gaussian
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process (GP). GPs are conceptually straightforward, easily accommodate prior knowledge in the form of

covariance functions, and return a confidence around predictions. In spite of its simplicity, there are three

important disadvantages to standard GPs in our setting. Firstly, inference on the GP scales poorly with

the number of data points, typically requiring computing time that grows with the cube of the sample

size. Secondly, GP models are usually stationary in that the same covariance structure is used throughout

the entire input space. In the applications we have in mind, where subsonic flow is quite different than

supersonic flow, this limitation is unacceptable. Thirdly, the error (standard deviation) associated with a

predicted response under a GP model does not directly depend on any of the previously observed output

responses.

All of these shortcomings may be addressed by partitioning the input space into regions, and fitting

separate GPs within each region. Partitioning allows for the modeling of non-stationary behavior, and

can ameliorate some of the computational demands by fitting models to less data. Finally, a fully Bayesian

approach yields uncertainty measures for predictive inference which can help direct future sampling. However,

the MCMC required to estimate the parameters of a Bayesian model can be computationally intensive.

Careful but thrifty implementation is required to ensure the development of a cost-effective aid in the

sequential design of computer experiments.

The following sections take the reader through a logical progression of ideas, methodologies, and results,

culminating with the illustration of our adaptive sampling framework on the NASA LGBB data. Section 2

outlines Bayesian treed GP modeling, and Section 2.1 demonstrates proof of concept on real data. Adaptive

sampling is covered in Section 3 and then coupled with Bayesian treed GP modeling in Section 4. Results for

the LGBB data are provided in Section 4.1. Conclusions are drawn and future work is outlined in Section 5.

2 Bayesian Treed GP Models

A tree model partitions the input space and infers a separate model within each region. Partitioning is

accomplished by making (recursive) binary splits on the value of a single variable (e.g., speed > 0.8) so

that partition boundaries are parallel to coordinate axes. These sorts of models are often referred to as

Classification and Regression Trees (CART). CART has become popular because of its ease of use, clear

interpretation, and ability to provide a good fit in many cases. The Bayesian approach is straightforward to

apply to tree models, provided that one can specify a meaningful prior for the size of the tree. We follow

Chipman et al. (1998) who specify the prior through a tree-generating process. Starting with a null tree (all
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data in a single partition), the tree T is probabilistically split recursively with each partition, η, being split

with probability psplit(η, T ) = a(1 + qη)−b where qη is the depth of η in T and a and b are parameters

chosen to give an appropriate size and spread to the distribution of trees. We expect a relatively small

number of partitions, and choose a and b accordingly.

Extending the work of Chipman et. al (2002), we fit a stationary GP with linear trend independently

within each of R regions, {rν}
R
ν=1

, depicted by the tree T . Conditioning on T , the hierarchical generative

model we use is:

tν |βν , σ2

ν ,Kν ∼ N(Fνβν , σ2

νKν)

βν |σ
2

ν , τ2

ν ,W, β0 ∼ N(β0, σ
2

ντ2

ν W),

β0 ∼ N(µ,B)

σ2

ν ∼ IG(ασ/2, qσ/2)

τ2

ν ∼ IG(ατ/2, qτ/2),

W−1 ∼ W ((ρV)−1, ρ),

with Fν = (1,Xν), and W a (mX + 1) × (mX + 1) matrix. Constants µ,B,V, ρ, ασ, qσ, ατ , qτ are known.

The GP correlation structure Kν for each partition rν is chosen either from the isotropic power family,

or separable power family of unknown (random) parameterization. In both cases, the correlation function

takes the form Kν(xj ,xk) = K∗
ν (xj ,xk) + gνδj,k where δ·,· is the Kronecker delta function, and K∗

ν is a true

correlation representative from a parametric family. Priors which encode our belief that the global covariance

structure is non-stationary are chosen for parameters to K∗
ν and gν .

Most literature on the Design and Analysis of Computer Experiments (Santner et al., 2003; Sacks et al.,

1989) deliberately omits the nugget parameter (g) on grounds that computer experiments are deterministic.

However, there are many reasons why one may wish to study a computer experiment with a model that

includes an explicit noise component. In particular, the experiment may, in fact, be non-deterministic. Our

collaborators tell us that their CFD solvers are often started with random initial conditions, involve forced

random restarts when diagnostics indicate that convergence is poor, and that input configurations arbitrarily

close to one another often fail to achieve the same estimated convergence. Thus a conventional GP model

without a small-distance noise process (e.g. a nugget) can be a mismatch to such inherently non-smooth

data.

The data {X, t}ν in region rν are used to estimate the parameters θν of the model active in the region.

4



Parameters to the hierarchical priors depend only on {θν}
R
ν=1

. Samples from the posterior distribution are

gathered using Markov chain Monte Carlo (MCMC). All parameters can be sampled using Gibbs steps, except

for the covariance structure and nugget parameters, and their hyperparameters, which can be sampled via

Metropolis-Hastings. More details are available in Gramacy et al. (2004). The predicted value of y(x ∈ rν)

is normally distributed with mean and variance

ŷ(x) = f>(x)β̃ν + kν(x)>K−1

ν (tν − Fνβ̃ν),

σ̂(x)2 = σ2

ν [κ(x,x) − q>
ν (x)C−1

ν qν(x)],

where β̃ν is the posterior mean estimate of βν , and

C−1

ν = (Kν + FνWF>
ν /τ2)−1

qν(x) = kν(x) + τ2FνWνf(x)

κ(x,y) = Kν(x,y) + τ2f>(x)Wf(y)

with f>(x) = (1,x>), and kν(x) a nν−vector with kν,j(x) = Kν(x,xj), for all xj ∈ Xν . Notice that σ̂(x)2

does not directly depend on the observed responses tν .

Integrating out dependence on the tree structure T is accomplished by reversible-jump MCMC (RJ-

MCMC). We implement the tree operations grow, prune, change, and swap similar to those in Chipman

et al. (1998). To keep things simple, proposals for new parameters—via an increase in the number of

partitions R—are drawn from their priors, thus eliminating the Jacobian term usually present in RJ-MCMC.

We augment the swap operation with a rotate option to improve mixing. Rotations are typically used in

balancing the Binary Search Tree (BST) data structure, as in Red Black Trees, to keep the depth of the

BST small. In the context of Bayesian CART, rotations can be useful when the proposed parent-child pair

to be swapped happen to split on the same dimension, i.e., when the child split is a recursive split. A swap

in this case always fails, but a rotate operation would almost always accept and possibly lead to the pruning

of higher-level recursively-partitioned regions.

We coded the treed GP model in a mixture of C and C++: C++ for the tree data structure (T ) and

C for GP at each leaf of T . The C code can interface with either standard (platform-specific) Fortran

BLAS/Lapack libraries for the essential linear algebra necessary to estimate the parameters of the GP, or

link to those automatically configured for fast execution on a variety of platforms via the ATLAS library
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(Whaley & Petitet, 2004). We found that in most cases the ATLAS implementation was significantly faster

than standard BLAS/Lapack.

After conditioning on the tree and parameters ({T , θ}) we noticed that prediction could be parallelized

by using a producer/consumer model. This allowed us to use PThreads in order to take advantage of multiple

processors, and get speed-ups of at least a factor of two. This is particularly relevant since dual processor

workstations and multi-processor servers are becoming a commonplace in modern research labs. We have

also had some preliminary success with parallelizing the sampling of the posterior of θ|T by drawing each

of the {θν}
R
ν=1 in parallel. However, the speed-up in this second case was less impressive. To ice the cake

we wrapped the whole thing up in an intuitive R interface (R Development Core Team, 2004). Compared to

existing methods, the above approach lead to an extremely fast implementation of non-stationary GPs.

2.1 Proof of concept

As an empirical proof of concept, we fit our treed GP model to the Motorcycle Accident Dataset (Silverman,

1985)— a classic non-stationary data set used in recent literature (Rasmussen & Ghahramani, 2002) to

demonstrate the success of non-stationary models. The goal of the data set is to model the acceleration force

on the head of a motorcycle rider as a function of time in the first moments after an impact. In addition to

being non-stationary, the data has input-dependent noise.

Figure 1 shows the data, and the fit given by our treed GP model. The top pane shows the estimate of

the surface with 90%-quantile error bars; the bottom pane shows the difference in quantiles. Vertical lines

on both panes show a typical partition (T ). The error bars, and estimated error spread, can give insight into

the uncertainty in the posterior distribution for T . The sharp rise in estimated variance from the leftmost

to the center region contrasted with a more gradual, stepwise, decent in variance from the center to the

rightmost region shows that there was higher posterior certainty in the left split than in the right one. The

average number of partitions in the posterior for T was 3.11.

These results are quite different from those reported by Rasmussen & Ghahramani (2002). In particular,

their error-bars in the leftmost region seem too large relative to the center and rightmost regions. They use

a what they call an “infinite” mixture of GP “experts”; technically a Dirichet Process mixture of GPs. They

report that the posterior distribution uses between 3 and 10 experts to fit this data (which they admit has

“roughly” three regions), and even 10-15 experts have considerable posterior mass. Our treed GP model

almost always partitions into three regions.

On speed grounds, the treed GP is also a winner. Rasmussen & Ghahramani (2002) report that their
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Figure 1: Motorcycle Data, fit by our treed GP.
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code implementing the mixture of GP experts model on the motorcycle data took roughly one hour on a

(single) 1 GHz Pentium. Our treed GP code took less than three minutes on a (single) 1.8 GHz Athalon.

3 Adaptive Sampling

In the world of Machine learning, adaptive sampling would fall under the blanket of a research focus called

active learning. Active learning techniques have been proposed in areas such as computational drug de-

sign/discovery by aiding in the search for compounds that are active against a biological target (Warmuth

et al., 2003). However, we are not aware of any other active learning algorithms that use non-stationary

modeling to help select small designs.

In the statistics community, the traditional approach to sequential data solicitation goes under the general

heading of (Sequential) Design of Experiments (Santner et al., 2003). Depending on whether the goal

of the experiment is inference or prediction (as described by a choice of utility), different algorithms for

obtaining optimal designs can be derived. For example, one can choose the Kullback-Leibler distance between

the posterior and prior distributions (with parameters θ) as a utility. For Gaussian process models with

correlation matrix K, this is equivalent to maximizing det(K). Subsequently chosen input configurations are

called D−optimal designs. Choosing quadratic loss leads to what are called A−optimal designs. An excellent

review of Bayesian approaches to the design of experiments is contained in Chaloner & Verdinelli (1995).

Other approaches used by the statistics community include space-filling designs: e.g. max-min distance and

Latin Hypercube (LH) designs (Santner et al., 2003).

A hybrid approach to designing experiments employs active learning techniques. The idea is to choose

a set of candidate input configurations X̃ (say, a D−optimal or LH design) and an active learning rule for

determining the order in which they should be added into the design. For example, consider an approach

which maximizes the information gained about model parameters by selecting the location x̃ ∈ X̃ which

has the greatest standard deviation in predicted output. This approach has been called ALM for Active

Learning–Mackay, and has been shown to approximate maximum expected information designs (MacKay,

1992). Given its simplicity this is the method we explored first. MCMC posterior predictive samples provide

a convenient estimate of location-specific variance; namely the width of predictive quantiles.

An alternative algorithm is to select x̃ minimizing the resulting expected squared error averaged over

the input space (Cohn, 1996), called ALC for Active Learning–Cohn. Conditioning on T , the reduction in
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variance given that the location x̃ is added into the data (averaged over a reference set Ỹ) is:

∆σ̂2(x̃) =
1

|Ỹ|

∑

y∈Ỹ

∆σ̂2

y(x̃) =
1

|Ỹ|

∑

y∈Ỹ

σ̂2

y − σ̂2

y(x̃)

=
1

|Ỹ|

∑

y∈Ỹ

σ2
[

q>
N (y)C−1

N qN (x̃) − κ(x̃,y)
]2

κ(x̃, x̃) − q>
N (x̃)C−1

N qN (x̃)

which is easily computed using MCMC methods. A comparison between ALC and ALM using standard GPs

appears in (Seo et al., 2000).

Given these two hybrid approaches to sequential design, constructing a list of input configurations to send

to available computing agents is simply a matter of sorting candidate locations ranked via either ALM or

ALC. That way, the most informative locations are first in line for simulation when agents become available.

4 Experimental Design & Results

Bayesian adaptive sampling (BAS) proceeds in trials. Suppose N samples and their responses have been

gathered in previous trials (or from a small initial design before the first trial). In the current trial the model

is estimated for data {Xi, ti}
N
i=1

. In accordance with the ALM algorithm, MCMC predictive quantiles are

gathered based on sampled {θ, T }, and sorted. After refreshing the sorted list of candidates, BAS gathers

finished and running input configurations and adds them into the design. Predictive mean estimates are

used as surrogate responses for unfinished (running) configurations until the true response is available. New

trials start with fresh candidates.

We developed two implementations of an artificial clustered simulation environment with a fixed number

of agents in order to simulate the parallel and asynchronous evaluation of input configurations (whose

responses finish at random times). One implementation is in C++ and uses the message passing features of

PVM (Parallel Virtual Machine) to communicate with the adaptive sampler. The second implementation is in

Perl and was designed to mimic (and interface with) the Perl modules used by NASA to drive their current

experimental design software.

For the LGBB experiment we chose to model K∗ as a member of the separable Power family—a practice

common in the Design of Computer Experiments community (Santner et al., 2003)— so that correlation

in speed can decay at a rate different than correlation in angle of attack. Since our current experiments

are based on pre-calculated pairs of input configurations and responses delivered by NASA, candidates (for

now) must be chosen via random-subsample from the available data. To deal with multiple responses we
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ran six independent copies of BAS, and pooled the ALM-based uncertainty estimates. Treating highly

correlated physical measurements as independent is a crude approach, however it still affords remarkable

results, and allows us to again employ PThreads to get a highly parallel implementation. Coupled with

the producer/consumer model for parallelizing prediction and estimation we notice nearly a factor of 2M

speedup for 2M processors, where M dimension of the response space. Co-kriging and other approaches to

modeling multivariate (correlated) responses is part of our future work.

Chipman et al. (1998) recommend running several parallel chains, and sub-sampling from all chains in

order better explore the posterior distribution of the tree T . Rather than run multiple chains explicitly, we

take advantage of the trial nature of adaptive sampling: at the beginning of each trial the tree is restarted,

or randomly pruned back. Although the tree chain associated with an individual trial may find itself stuck in

a local mode of the posterior, in the aggregate of all trials we find that (empirically) the chain(s) explore the

posterior of tree space nicely. Random pruning represents a compromise between restarting and initializing

the tree-chain at a well-chosen starting place. We find that with this tree inertia we can usually afford shorter

burn-in of the MCMC at the beginning of each trial.

4.1 Results on the LGBB data

We turn now to an analysis of results obtained by using BAS on the LGBB data. The left side of Figure 2

shows one of the six outputs (lift) plotted as a function of speed (Mach) and angle of attack (alpha) based

on the full design of more than 3000 input configurations. The third input, side slip angle (beta), is fixed at

zero. A fitted surface, based upon 750 total samples obtained over 100 BAS trials, is shown on the right side

of Figure 2. Configurations gathered using BAS (for beta = 0) are shown in the Figure 3. Also shown in

Figure 3 is a representative sample of the partitions obtained by integrating over the tree T . BAS has the

desired behavior in that it fits different models around and on either side of the Mach 1 regions, and focuses

most of the adaptive sampling around Mach 1. Further partitioning and sampling occurs for large angle of

attack (alpha) near Mach 1 as indeed the response there is changing most rapidly.

Visually, there is little difference between the true surface (left) and the estimated surface (right) shown in

Figure 2. However, BAS requires fewer than 1/4 as many samples compared to a simple gridding. Relative to

the computing time needed to evaluate the each response (5-20 hours), the execution of BAS was negligible,

saving thousands of hours of computing time.

For further analysis on the LGBB experiment, experiments on other data, and comparisons with other

approaches, the interested reader is referred to a paper we presented at ICML 2004 (Gramacy et al., 2004).
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Figure 3: Adaptively sampled configurations (beta = 0).
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Our future work includes running a live experiment on the NASA supercomputers.

5 Conclusions and Future Work

The experiment described in Section 4 was specifically designed such that the computing time of each BAS

trial does not affect the rate of sampling. Rather, a slow BAS would simply incorporate sampled responses

and re-sort candidates less often compared to a faster BAS, leading to a less optimal sequential sample, but

always one better than would be obtained by naive gridding. Future work will focus on obtaining speedups by

employing time-saving approximations: e.g. iterative and sparse (via tapering) methods for quickly inverting

large covariance matrices, empirical Bayes alternatives to full MCMC, and priors on T which prefer smaller

partitions.

In conclusion, creating a surrogate model for computer experiments is a problem that will continue to be

of interest, as additional computing resources are put toward more accurate simulations rather than faster

results. The Bayesian approach allows a natural mechanism for creating a sequential design based on the

current estimated uncertainty.
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