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Abstract

In this paper, a fine scale simulation-based upscaling pro-
cedure for full tensor permeability fields is presented based
on the Hybrid Mixed Finite Element (HMFE) numerical
scheme and synthetic permeability fields generated using a
Gaussian Markov Random Field (GMRF) model. HMFE
scheme is an accurate scheme that conveniently represents
tensorial permeability field for forward flow /transport sim-
ulation. It is also one of few choices that provides a natu-
ral technique for conservative upscaling, meaning that the
coarse grid should produce the same flux and pressure as
the upscaled fine values. As in any renormalization ap-
proach, we require that the coarse linear system to be in
the same form as in the fine. This process produces good
upscaling results if both the fine scale tensor and the up-
scaled tensor are assumed diagonal. However, results from
a few examples show that it is not always possible to ob-
tain a positive definite permeability tensor while conserv-
ing fluxes and pressures on upscaled cells. One explana-
tion is that the discretized Darcy’s law on the upscaled
grid, based on conserving fine flow variables, may not be
valid. Results from a generally used two-step upscaling
procedure demonstrate that a symmetric, positive definite
tensor field on coarser grids is obtainable. But it should
be applied with caution because some of the off-diagonal
values may be highly unreasonable.

Introduction

Upscaling of permeability heterogeneity can be thought
of as a spatial resolution transformation from a geological
model built on a very fine grid to a numerical permeability
model on a full-field flow simulation grid. A great deal of
research work has been done in the last few decades and
different upscaling approaches have been proposed and ap-
plied in practice, from the simple averaging (arithmetic,
harmonic and geometric) to the more complicated renor-
malization 16, homogenization &!%'* and the simulation-
based approaches 71915 Common upscaling approaches
such as renormalization, homogenization, etc. are based
on 1D ideas and the tensor extensions are 1D after a ro-
tation. Different approaches rely on different upscaling
criteria such as conservation of statistics %918 conserva-
tion of mean flow 191213 or energy dissipation ?, and even
preservation of the governing PDEs 813,

There is a good agreement that upscaling results are
problem dependent, that is, the upscaling results depend
not only on the intrinsic permeability heterogeneity but
also on the boundary conditions of the flow problem 2:3.
To distinguish these problem dependent consequences from
the intrinsic properties of the porous media, a few concepts
or definitions have been adopted both in the reservoir engi-
neering community and the underground hydrology com-
munity. Block or efficient permeability is usually referred
to the upscaling results.

The importance of full tensorial representation of
porous media permeability has been reported by many re-
searchers 3. Upscaling of a tensor permeability field relies
not only on a tensorial representation scheme but also on
an effective approach.

In this paper, we are trying neither to review and
compare different approaches nor to propose another com-
pletely new method. Rather, we adapt the simulation-
based upscaling strategy as reported by many investiga-
tors, but concentrate on a relatively new numerical sim-
ulation method, i.e., the Hybrid Mixed Finite Element
method(HMFE) and a Gaussian Markov Random Field
(GMRF) model for permeability. MRF models have been
used before as permeability models?’. Qur HMFE schemes
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emplying adaptive mesh refinement techniques are useful
for flow and transport simulation in porous media. Upscal-
ing is only a basic by-product. A short description of this
method and its advantages are given in the next section.

Gaussian Markov random field models have been
widely and successfully used in image analysis for a long
time!?:21,22 Tt is essentially a Gaussian random field model
for which spatial dependence is specified through local in-
teractions. Such models can offer advantages both in mod-
eling and computation as compared to standard geostatis-
tical models.

The main idea of the simulation-based upscaling ap-
proaches is to conserve the fine flow field (flux and pres-
sure) obtained from a relatively simple and cheaper simula-
tion on the discrete fine domain by an efficient or smoother
version of the fine scale heterogeneity (permeability).

Following many authors 45711121317 " we consider
single phase incompressible flow in a 2D isothermal porous
medium, e.g., an oil reservoir or a underground aquifer.
We denote the flow region and its boundary as Q and
01, respectively. The concerning flow variables for up-
scaling purposes are fluid pressure P(z,y) and volumet-
ric flux V(z,y), which are functions of space coordinates
(z,y) € Q. We assume that the local-scale Darcy’s law
and the continuum approach apply. In this approach, the
continuous porous medium is replaced by a fictitious con-
tinuum where we can represent the medium with physi-
cally meaningful parameters on a representative elemen-
tary volume (REV) such as porosity ¢(z,y) and perme-
ability K (z,y) and take the flow variables as continuous
functions of space (and time in general). The local Darcy’s
law provides a relationship between the volumetric flux and
the pressure gradient. Under an incompressible medium
assumption, the local-scale governing equations based on
mass conservation and Darcy’s law can be written as,

V(e,y) = —@vm,y), 1)

where p is the fluid viscosity which will be considered con-
stant.

To simplify notation, we will denote P(x,y) = P,
V(z,y) =V and T'(z,y) = @, called transmissibility,
from now on and assume p = lcp, without loss of gener-
ality, so that T'(z,y) is equivalent to K(z,y) in value. It
should be noted that the medium heterogeneity is repre-
sented in the equation by K(z,y). K(z,y) or T(z,y) is a
positive definite tensor field in nature. This parameter, ap-
pearing as functions of spatial coordinates (x,y), is termed
as a spatial field and its point-wise values have to be given
to solve equations (1) and (2) for P and V. In the last
few decades, a great deal of research has been carried out

on modeling K (z,y) and the most widely used models are
to treat K (z,y) as a random spatial function or a random
field. As a consequence, the flow variables, P and V, are
also random in nature. As stated previously, we will use
GMRF models for K (z,y).

In this paper, we seek to solve the equations (1) and
(2) on a finite numerical domain of ) that corresponds
to a geological modeling grid by the HMFE method. We
will denote this grid as Q = U=, U2, Qi where n, and
ny are the number of gridblocks in each coordinate direc-
tion of the geological domain Q. The upscaling problem of
the random field K (z,y) based on the simulation results
on the domain Q is defined as follows: (for simplicity, we
drop the functional dependence of K on (z,y)) Given a
realization of the GMRF permeability model on a geolog-
ical grid , denoted by k, and the numerical solution of
Egs. (1) and (2) by the HMFE scheme on this grid, find
an upscaled version of k, defined on Q¢ and denoted by k¢,
such that the volumetric fluxes and the driving pressures
are the same on both scales.

It is important to be aware that there are a few as-
sumptions made for this simulation-based upscaling pro-
cess. Most importantly, for closure in renormalization, we
assume that the discrete Darcy’s law and divergence free
equation of Egs. (1) and (2) based on the HMFE dis-
cretization scheme are valid on the upscaled grid Q¢. Sec-
ondly, we assume that an upscaled, physically meaningful
permeability tensor field can be obtained for each realiza-
tion of K on a fine grid. We will see from the examples that
these assumptions are not always simultaneously possible.

The Hybrid Mixed Finite Element Method

In the conventional approach employed in reservoir engi-
neering, one combines Egs. (1) and (2) and solves the pres-
sure equation by finite difference or finite element methods,
and the volumetric flux field is then determined by Darcy’s
law and numerical differentiation of the pressure solution.
In this case, the flux field is one order less accurate than
the pressure field. In addition, it does not produce flux and
pressure at cell sides to allow formulation of a consistent
upscaled block-centered models. In the HMFE method,
however, we treat and discretize Eq.(1) and Eq.(2) sepa-
rately, then solve directly for both the pressure and the
flux field, that is, the so-called mixed formulation. This
discretization conserves volume naturally. Under reason-
able circumstances, it is known that the HMFE produces
the same cell-centered pressures and volume fluxes as the
lowest-order mixed method, which itself is related to block-
centered finite differences. Another advantage of this for-
mulation is that the full tensorial permeability field is rep-
resented very conveniently and the hybrid formulation of
the mixed finite element method leads to a block diagonal
linear system for side pressures. Although this system is
larger than that for the mixed method, it is positive defi-
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nite (unlike that of the mixed method).

Rather than giving a detailed formulation and dis-
cretization of the HMFE method, we refer interested read-
ers to the paper by Trangenstein, etc.! for details and the
Adaptive Mesh Refinement schemes. Instead, we provide
the discretized equation on each rectangular element (or
cell) of the geological grid . Using piece-wise constant
pressure functions, discontinuous (linear,constant) or (con-
stant,linear) velocities, piece-wise constant Lagrange mul-
tipliers, piece-wise constant permeabilities, and exact inte-
gration, within each cell Q;; on the geological grid Q, we
can write Darcy’s law (1) and the divergence-free equation
(2) in the matrix form

1 Az g—1 1 Az g—1 17.—1 17.—1
§A_yk11 EA_ykn k1o k1o 1 Viray
1Az —1 1Azp-—1 13-1 1p-1 -1
8 Ay 11 3Ry N1 1712 1712 Viray
17.—1 17.—1 1Ay—1 1Ayg—1
ikar ik 3arkn  gagknm 1| |Varow
171 1p-1  1Ayp—1 1Ayz-1 _ Varaw
ka1 ikn  §Zxakn  3Askn 1 i
1 -1 1 -1 0
Py
—Pig
= P2L ) (3)
—Par
—q

where k', kI, k3;' and k3, denote the elements of the
inverse of the permeability tensor (not the reciprocal of
the tensor elements); P is the cell center pressure; g rep-
resents the production from the cell or injection into the
cell. The cell sizes in the x- and y- coordinate directions
are ax and ay. Other notations are illustrated in Fig. 1,
where the side pressures and velocities are considered to
be at the centers of the sides and L and R means from
the left and right of the sides. The linear system for side
pressures, Pir, Pig, P> and Pyg, follows by inverting and
using continuity of volume flux.

Upscaling Methodology

Given a realization of the random permeability model (ei-
ther scalar or tensor) on the geological scale grid Q, we can
solve Eq.(3) numerically for Vi1, Vig, Var and Vag as well
as Py, Pig, P>y, and Pop. With this flow information, one
can back solve the system of equations for the permeabil-
ity tensor field on a coarser scale grid €, by completely or
partially conserving the flow properties such as fluid fluxes
and driving fluid pressures.

The general upscaling procedures are as follows: we
first generate a realization from the permeability model.
Then we take the realization as the true permeability field
on the fine-scale grid and use our AMR code with max-
imum level of refinement 1 (for uniform grid simulation)
to do simulation for side pressures, side velocities and cell

pressures (our AMR code libraries are designed for flow
and transport simulation in porous media using Adaptive
Mesh Refinement technologies, the cell size or scale of the
numerical grid is modified dynamically during simulation.
But it can be used for simulations on uniform grid with
fixed scale or cell size). We then upscale these flow vari-
ables using conservation of flow variables with an upscaling
factor of R (meaning R xR fine cells upscaled to one coarse
cell) to get the flow variables on the coarse grid. Finally,
we apply these upscaled flow variables to back solve the
permeability field on the coarse grid as described in the
following subsections.

Diagonal Tensor One way to solve Eq. (3) for perme-
ability is to force the upscaled permeability tensor to be
diagonal, i.e., k{, = k$; = 0. By doing this, we actually
decouple the full tensorial system of equations into two
separate scalar equations. Of course, the upscaling would
be very simple. It is easy to see that the diagonal entries
of the upscaled permeability are

30y(Vsy, + Vi)
(P‘ZCL - P2CR)

o _ 2207 + Vi)

1= (Ps, — Ptp) y k3o =

(4)

By default, all the variables in this equation are defined
on a coarse cell overlapped on the corresponding fine cells.
Given the fine cell values for Vi, Vig, Vor, Vor and Py,
Pig, P>1, Pog, one can actually calculate the correspond-
ing coarse cell values by the definition of the physical prop-
erties (conservation of forces and fluxes). For example,
conservation of fluid flux and pressure in the x-coordinate
direction on the coarse grid gives

c EPIfRAyf

‘/IL:W7 1R — ZAyf ) (5)

where the notations are obvious as shown in Fig. 2. Note
that this is actually a linear transformation, hence the di-
vergence equation (last equation in Eq.(3)) will be auto-
matically satisfied on the coarse cell. Also note that the
fine cell center pressure does not matter in this case.

It is not difficult to see that two steps are required in
order to determine both kf; and k$,. During the step for
k$,, fine scale flow caused by fine heterogeneity in the y-
coordinate direction will be neglected. Similarly, fine scale
flow in the x-direction will be neglected in the computation
of kS,.

Symmetric Tensor Another way to determine the up-
scaled permeability tensor based on the fine flow variables
is to assume a symmetric permeability tensor. In this case,
the coarse cell center pressure could also be taken as an un-
known because it is not clear how one should calculate it
rather than to make it satisfy the HMFE discretization
(Eq.(3)) on the coarse cell. Note that since there are four
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equations and four unknowns, one can seek a unique solu-
tion as long as the coefficient matrix associated with the
upscaled flow variables is not singular.

To show the process, we take k', kiy- = kyy', kyy and
P of a coarse cell composed of Rx R fine cells as unknowns,
use Eq.(5) for fluxes and side pressures and rewrite the ma-
trix equation, Eq.(3), on the coarse cell, as follows,

P —Pp

Note that we have dropped the coarse cell indicator for
simplicity. The solution of this matrix equation, if it ex-
ists, can be written as,

k;li Pir

ki | —Pig

k2_21 - B X P2L 9 (7)
P —Pr

where B is the inverse of the coefficient matrix in Eq.(6).
Note that k', k5" and k;,' are the entries of the inverse
of the permeability tensor in the upscaled cell. It is easy
to compute k11, k12 and koo from the entries of the inverse
tensor,

Fit = LTy s = i
Uk — kR kntkyy — kptky
and
k,fl
ki2 = ko1 = — 12 (8)

—17.—-1 —17—-1°
kll k22 - k12 k12

It should be pointed out that there is no guarantee that the
resulting symmetric permeability tensor is positive definite
unless all the underlying upscaling assumptions are satis-
fied such that k7' > 0, ko > 0,k gy — iy ko > 0.

Overdetermined Symmetric Tensor Case Finally,
one can obtain a symmetric permeability tensor if the
coarse cell center pressure P can be computed indepen-
dently, say by volume averaging over the fine cell center
pressures, i.e.,

pe S Pfazf ayf 9)
S azfayf -

Since the solution in this case is over-determined (3 un-
knowns and 4 equations) , the singular value decompo-
sition will be used for the solutions. The singular value
decomposition produces a solution that is the best ap-
proximation in the least-square sense. Again, taking k',
ks = ko' and ky," as unknowns and rearranging Eq.(3)
result in

(Yot Yror (s Bse 0
AT AN A
0 (e + gt )ay (T3 + Be)ay
0 (B +5m)ay (%= + 2)ay
k! £1£;P
8 kl}i ~ | P —11}; (10)
k2o P — Pp

The upscaled permeability tensor can then be calculated
with Eq. (8)

Experimental Results

Some results are shown here based on the above method-
ology and some 2D numerical experiments. We define & to
be a scalar field indexed by grid locations (i,j) € Q. Then
if k is distributed according to a stationary GMRF with
mean y, it has density function given by

ae) xexp { ~3 e~ W Wn =10 |

where the fixed precision matrix W is required to be
positive-definite and symmetric. The conditional distri-
bution of any component ;; given all the remaining com-
ponents k_g;;3 = {kn, (k,1) # (i,7)} is univariate normal
with

E(kijli_gy) = pt Y, wii(km — p)/wi g,
(k1) #(ind)
Vikijlo—iy) = 1/wijij. (11)

The precision matrix W is typically very sparse and pa-
rameterized by a small vector 8. For the GMRF models
considered here we use a third order neighborhood system
and define

(1 if (i-kj-1) = (0,0
By i (i—kj—1) = (0,+1)
B i (i—kj—D) = (£1,0)
wijp =4 =B if (i—-kj-1) = (£1,F1)
_;83 if (l_kaj_l) = (:tla:t]-)
_;84 if (l_kaj_l) = (03 2)
| 85 i (i—kj-0) = (£2,0)

Thus the sum in (11) depends only on the 12 neighboring
sites of (7, 7). In general, it is required that any choice of 8
yields a symmetric, positive definite precision matrix W.
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Diagonal Tensor Case In this case, each diagonal entry
of the permeability tensor can be treated independently.
Therefore, we only present the upscaling results for a scalar
permeability field. Our first experiment is on a 2D rectan-
gular domain. The physical dimensions of the medium are
100ft by 100ft. We divide this domain into 256 cells in
each coordinate direction and take this as a fine scale grid.
To generate a diagonal permeability field on this fine grid,
we specify a set of § parameters which encourage straw-like
structures in the first coordinate direction and ensure that
the first principal entry of the permeability tensor is par-
allel to the coordinate axis. We use Markov chain Monte
Carlo method 22 to sample the GMRF pdf. The diagonal
tensor field will be the GMRF sample & times an identity
matrix, i.e.,

o [10 00] _[kn 00 A
sz - Kjl] [00 10:| - [00 k22:| ij; fOT (7’7.7) € Q

Fig. 3 shows a realization of the Gaussian MRF model
with a set of parameters and its histogram.

For flow simulation on the fine grid, an boundary
injector on the left of the physical domain is specified
with a uniform constant pressure of 1000psi and a pro-
ducer is assumed on the right boundary of the domain
and specified with a constant pressure of 100psi. The
top and bottom boundaries are considered no flow. A
constant porosity value of 0.27 and a negligible gravity
effect are also assumed. The fluid viscosity is lcp. Af-
ter solving the system of equations on the fine grid, we
calculated the upscaled flow variables on the coarse scale
grid using Eq.(5) and an upscaling factor R = 2. Hence,
Q= {0%,,I =1,2,..,128 J = 1,2,..,128}. Tt should
be pointed out that the upscaled side velocities satisfy the
divergence free condition exactly.

The upscaled flow variable values are then used to cal-
culate the diagonal permeability field on the coarser grid in
terms of Eq.(4). It should be noted that to calculate k$; en-
try on the coarse grid, we only need the side velocities and
pressures in the x-coordinate direction. In other words, we
can only conserve fine scale flow in the x-direction. How-
ever, due to the permeability heterogeneity on the fine scale
grid, solution of the system equations Eq.(3) does produce
a non-zero component of side velocities in the y-coordinate
direction, although very small compared to the side veloc-
ities in the x-direction. Fig. 4 shows the upscaled field of
k11 in Fig. 3(a).

It is interesting to note both from the histograms and
from the color maps that the upscaled field looks like a
smoothed version of the fine-scale field. In particular, the
mean of the upscaled field is approximately similar to that
of the fine field and the variance of the upscaled field is
reduced. This is very typical based on our observation
of many upscaling results. It suggests that the upscaling
transformation which operates on a fine stationary Gaus-

sian MRF model and conserves fine scale flow properties in
the mean flow direction is linear because the Gaussianity
remains unchanged only under linear transformation.

To verify this, we generated 50 realizations for k11 on
the fine scale grid and we upscaled these realizations follow-
ing exactly the same way. Then we calculated and com-
pared the statistics (sample means and variances) based
on these realizations. It turned out that the sample means
of the fine scale realizations and the upscaled realizations
are statistically the same (499.78md and 499.65md) and
the sample variance of the upscaled realizations is slightly
larger than 1/R times the fine scale variance(1569.4 and
894.3 respectively). We did a lot of experiments on dif-
ferent sets of the fine scale model parameters (8’s) and
upscaling factors (R) and we obtained basically similar re-
sults. As an example, we plotted in Fig. 6 a realization of
the fine scale GMRF model with another set of parameters
and its histogram as well as the corresponding upscaled
ones.

The above results support the following upscaling
formula??.

R R
1
f1 =15 2 D_Ku-nRsir-nRe) T (12)

i=1 j=1

Where 6r; ~ N(0,€2), independent of the fine field k, is
a zero mean, i.i.d normal variable with variance 2. This
means that the upscaled permeability field is the arith-
metic average of the fine grid field plus a zero mean i.i.d
Gaussian field §, the variance of ¢ is inversely proportional
to the upscaling factor R.

An Example of Symmetric Tensor Case Mathemat-
ically speaking, Eq.(3) can be solved for a symmetric ten-
sor permeability and cell center pressure as long as the
coefficient matrix associated with side pressures and side
velocities is invertible (four equations for four unknowns).
There are some imposed assumptions and some physical
constraints which may not be under control. Most im-
portantly, the resulting permeability tensor on each coarse
cell must be positive definite. In the example, we consider
an areal problem with dimensions 200ft x 200ft x 1ft,
ie, Q@ = {(z,y),z,y € [0,200]}. We divide this rectan-
gular domain into 256 by 256 cells on the fine scale grid
and use a GMRF model to generate a scalar permeabil-
ity field k. The prior mean and standard deviation for
k are 1000md and 31.6md respectively. A set of model
parameters (8o = 0.595,3; = —0.209,3, = 0.105,83; =
0.198, 84 = —.179, 85 = —.011) were chosen to encourage
wooden structures in the southwest to northeast direction.

The tensorial permeability field on this fine grid is ob-
tained by

1.0 0.01 .. ~
kij = Kij |:001 095:| fO’I' (7’7.7) €. (13)
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Hence, k11, k12 and koy in each fine cell are totally corre-
lated.

An injector is positioned at the lower left corner. It is
in cell (1,1) on the fine grid and specified with a constant
injection pressure of 1500psi. A producer is at the upper
right corner and is in the fine cell (256,256). It produces
at a constant flowrate of 800B/D. The outer boundaries
are considered no flow. After solving Darcy’s equation and
the divergence free equation by our HMFE scheme, we up-
scaled the side velocities and side pressures by conserving
fine scale fluxes and driving pressures. Using this infor-
mation, we determined a symmetric tensorial permeability
field on the upscaled grid assuming an upscaling factor of
R =4, 1i.e., 4 x4 fine cells are upscaled into one coarse cell.
Therefore, we have 64 x 64 cells on the upscaled grid and
k¢ ={k§,,I=1,2,..,64;J =1,2,...,64}.

It turned out that on some of the upscaled cells,
the calculated permeability tensor is not positive defi-
nite. In other words, either k' < 0 or k3, < 0 or
kil'kyyt — kip k- < 0. For example, on cell (31,31) of
the upscaled grid, kf; = —1469.2md, k5, = —1185.3md,
and k§, = kS, = 2292.9md. In particular, k7' > 0,
ky > 0, ki'ky' — kip ki < 0, which indicates that a
physically meaningful permeability tensor based on the up-
scaled flow variable values within the HMFE method does
not exist. Since the discrete divergence free equation is
independent of cell scales by the conservation transforma-
tion of fine scale fluxes while the conservation of flow is a
physically reasonable assumption, a possible explanation
for these results would be that the HMFE discretization
of Darcy’s law on this upscaled grid cell is not valid if an
upscaled symmetric, positive definite permeability tensor
exists. Examination of the fine flow variables and the up-
scaled ones verifies this explanation. In Fig. 5, we show
a typical case where the upscaled flow variables actually
violate the HMFE discretization for Darcy’s law.

Another case where the upscaled flow variables fail to
produce useful HMFE formulation on an upscaled cell is
that the coefficient matrix in Eq. (6) is such that the deter-
minant of the inverse of the resulting permeability tensor
is on the order of 0.001 or less, i.e., ki kyy — kiy ki = 0.
In this case, the resulting solutions are far away from rea-
sonable although the flow field can be honored exactly. For
example, in the upscaled cell (26,11), Vi, =4.975 < Vig =
5.229, Vo, = 4.138 > Vop = 3.888, but P = 1101.186 >
Pir = 1098.675, Por, = 1100.931 > Pop = 1098.952. As a
result, k7' kyy — kig ks = 0.0013 and ki1 = 10783.43md,
k12 = —19382.80md, koo = 39084.75md.

The above two cases are very common in this back-
solution upscaling process. Up to this point, we don’t know
how to correct this in a theoretically sound way. However,
we would offer an alternative below when either of the cases
of negative definiteness occurs. Further rigorous treatment
is subject to ongoing research. We have noticed that the

upscaled pressure always looks reasonable by any means,
and it does not distinguish significantly from the volume
averaged pressures as in the next example.

We have also recognized that the upscaling results are
independent of the well conditions (or boundary condi-
tions) due to incompressible flow where only pressure gra-
dient matters. For example, turning the flowrate-specified
producer into a pressure-specified one does not change the
upscaling results. The actual well pressure values also have
no effect on the upscaling results. For example, setting in-
jector pressure to be 1.0psi and the producer pressure to
be 0.0psi could not change the upscaled permeability val-
ues. Hence, the upscaled results are ”intrinsic” to the fine
permeability fields and incompressible single phase flow.

An Example of the Over-determined Symmetric
Tensor Case Following the same procedure as in the
symmetric permeability tensor case, we first generate a cor-
related permeability tensor field from the GMRF model,
then solve the HMFE linear system of equations and up-
scale the flow variables by conserving fluxes and driving
pressures. The coarse cell center pressure is determined by
volume averaging fine cell pressures. Finally, we use sin-
gular value decomposition to compute a symmetric per-
meability tensor from a over-determined system in each
upscaled cell.

Here, we present the results of the same physical prob-
lem and the GMRF model as in the unique symmetric
tensor case for comparison. The only difference is that the
tensor field on the fine grid is now calculated by

1.0 —0.005 . =

meaning that a pressure drop in the x-direction could cause
a negative flux in the y-direction on the fine scale grid.

Solutions of the pressure and divergence free equations
on the fine scale grid were checked and then conservatively
upscaled through Eq. (5). The upscaled permeability ten-
sor results by singular value decomposition method were
also carefully examined. The results still show the same
problems as in the last example. We don’t repeat any ex-
planation here. Instead, we list some of the results on the
diagonal of the physical domain in Table 1 as verifications.
Notice that there are some negative ky1’s and k25’s and the
value of k11 in the upscaled cell (49,49) is 3145.06md which
is too large. Notice also that ko; is basically on the same
order of magnitude as k11 or kos which is not reasonable
compared to the fine scale tensors.

Discussion and A Feasible Alternative

The above upscaling results have given rise to some dif-
ficulties which make the simulation-based upscaling ap-
proaches quite questionable, specifically in tensorial per-
meability field cases. Most problematically, the HMFE
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discretization of Darcy’s law on upscaled cells may not be
valid. As a result, an upscaled positive definite perme-
ability tensor can not be determined from the conserved
flow variables. However, the HMFE method is one of very
few discretizations that allow conservative upscaling. With
block-centered difference methods, it is unknown how to
find a coarse permeability field so that the coarse equations
produce flow consistent with the upscaled fine volume flux
and pressure.

It is obvious with the HMFE method that in order to
obtain a positive definite tensor on an upscaled cell, some
conditions on the conserved upscaling fluxes and pressures
must be satisfied from the solution viewpoint of a nonsin-
gular linear system. These conditions can be derived from
the system directly without any difficulty. For example, to
have a positive definite permeability tensor from Eq. (6),
the upscaled values of Vir, Vig, Vor, Vor and P, PR,
P51, Pop must be such that the resulting k17 > 0, ka2 >0
and ki1kee — ko1ker > 0. However, conserving fine scale
fluxes and pressures for Vi1, Vig, VoL, Vor and Py, Pig,
Psp, Pop on a coarse cell has no guarantee of meeting
these conditions, and thus the positive definiteness of the
resulting tensor. Release of the symmetry assumption on
the permeability tensor may partially resolve this prob-
lem, but we don’t see reasons that this problem could be
completely solved. We did not try this since the HFME
method assumes symmetric permeability tensors.

Although Darcy’s law is derivable from Navier-Stokes
equation under the assumption of local homogeneity, this
does not mean that Darcy’s law is valid in heterogeneous
fields going from fine scale to coarse scale with arbitrary
boundary conditions. In the Appendix, we present step-
by-step the upscaling formulas through the simplest possi-
ble case and demonstrated with two specific examples that
there is no guarantee that a symmetric permeability ten-
sor which satisfies the the HMFE formula, i.e., the discrete
Darcy’s law, on an upscaled cell and preserves positive def-
initeness at the same time, can be obtained.

Based on our experience, it is still feasible to determine
an upscaled positive definite permeability tensor field from
the HMFE scheme and the GMRF model, as was done
by other researchers using finite difference schemes and
Gaussian permeability models. But a two step procedure
must be utilized. For example, one can create a synthetic
flow field on a fine symmetric positive definite field by im-
posing a pressure gradient on physical boundaries first in
the x-coordinate direction and closing the boundaries in
the y-direction, then compute an upscaled field following
the procedure in the second example (unique symmetric
case), keep the results for entries k;; and kj2 (these en-
tries would look reasonable), but throw away the results of
entry kos. Subsequently and by the same token, one could
obtain results by switching the boundary conditions in the
x- and y-coordinate directions. This time, take only kj2

and k2o. Normally, k15 from the first step should be differ-
ent from the k12 of the second step, meaning the resulting
permeability tensor is not symmetric. To force symmetry,
a simple approximation would be the arithmetic average
of the two. Let’s designate this average by k5. Usually,
the resulting k11, k1o and koo would give a positive definite
tensor on each upscaled cell.

The problem with this process, however, is that the
fine scale flow field can not be honored totally and there
is no theoretical justification on how good the upscaling
results would be, except that a full-field real simulation
and a comparison with fine scale simulation results are
made. As an illustration, we present some results ob-
tained in such a way. In Fig. 7(a), we plotted a realization
of the GMRF model, taken as k11 on the fine scale grid
with 256x256 cells. The GMRF model parameters are
Bo = 0.440,5; = 0.227,5, = —0.042,83 = —0.080, 84 =
—.051, 85 = —.005. The physical dimensions are 200 ft¢ by
100ft. The boundary conditions used in the first step are
constant pressures over the left/right boundaries and no-
flow top/bottom boundaries. In Fig. 7(b), the upscaled
k11 entry from the first step is plotted. Visually, most of
the heterogeneity structures are preserved in the upscaled
field, which makes physical sense. We have also plotted the
histograms with statistics for both the fine scale field and
the upscaled one. The permeability tensor on the fine scale
grid was set similarly as in Eq. (14). In Fig. 8, we com-
pared the histograms of the off-diagonal entry k;2 on the
fine grid and the upscaled grid from the first step. Their
statistics are significantly different and some extreme val-
ues also appeared, which raise another caution in practical
applications.

Conclusion

We have implemented a simulation-based upscaling proce-
dure in our AMR code libraries for tensorial peameability
fields in two dimensions based on the HMFE numerical
scheme and a GMRF permeability model. We have tried
three cases. In the first case, we assumed an upscaling co-
efficient R and a diagonal permeability tensor on both the
fine scale grid and the upscaled grid. It turned out that
for any of the realizations from the various GMRF models
we considered, the upscaled permeability field is actually
a ”smoother” version of the fine scale field. This is con-
sistent with both the averaging properties of the GMRF
model and geological experience. In the second case, we
assumed a nonzero off-diagonal tensor field but kept the
symmetry of the tensor. We start from a positive definite
tensor field on a geological fine grid, simulate a synthetic
single phase, incompressible flow based on the HMFE dis-
cretization on the fine domain, then we back solve the dis-
cretized HMFE system in the same form for permeability
tensors on an upscaled grid in terms of the conserved flow
fluxes and driving pressures. There were two subclasses
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depending on how the upscaled cell-center pressures are
computed. We solve the linear system analytically if the
pressures are solved simultaneously with the entries of the
tensor inverse, while we apply the singular value decompo-
sition for an over-determined system where the cell-center
pressures are calculated independently by volume averag-
ing the corresponding fine cell center pressures. We have
demonstrated that a positive definite, physically meaning-
ful permeability field on coarser scales can not always be
determined. We think that these results are not specific
to the HMFE method and the GMRF model, but are gen-
eral to the simulation-based upscaling approaches based on
other numerical schemes and other permeability models.

We have also tried a two step upscaling procedure
done by many others for a positive definite tensor field
on coarser grids. The upscaling results look reasonable,
but with many large off-diagonal values. Moreover, these
upscaling results don’t conserve fine flow. In other words,
if the upscaled tensor field obtained in this way were used
to simulate on the upscaled grid, then it would not pro-
duce the same fluxes and pressures as those upscaled from
the fine flow simulation. So we recommend that they are
used with caution for real, full field simulation.
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Appendix A: Upscaling formulas and examples
on a 2 x 2 fine grid: questioning Darcy’s law
from fine scale to coarse scale

We consider a 2D unit-square domain, @ = {(z,y),z,y €
[0.0,1.0]}. For simplicity, we specify uniform pressures on the
four boundaries, P(0.0,y) = pzo, P(1.0,y) = pz1, P(x,0.0) =
Pyo, P(x,1.0) = py1. On the fine scale, we divide the domain
into 2 by 2 cells with equal sizes, i.e., Q=u2, U?zl Q;;. Each
cell has a piecewise constant permeability tensor, k;;, as shown
below.
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Given all the information, we can easily solve for the side
pressures inside the domain, i.e., P%,I,P%,z, Pl,%, PQ,%, based
on the boundary pressures and the continuity of fluxes in the x
and y directions.

®
ki1 kio P%Z ki1 k1o
ks koo, © kiz kal,,
. ...................... O ............................................... o ...................... .
Pl,% Pz,%
ko k] Fha ki ki
kiz k| @ kiz k),
o

To show this process, we first write Eq. (3) in each fine cell

as
Viray M1 M2 M4 M7 ml Pir
Viray M2 M3 M5 M8 m2 —Pir
‘/QLA.'I; = | M4 M5 M6 M9 m3 PZL s
Varax M7 M8 M9 MI10 m4d —Psp
P ml m2 m3 md b 4L —a
(B-1)

Where the symmetric matrix at the right hand side represents
the inverse of the coefficient matrix in Eq. (3) and is related to
the permeability tensor of each cell (7, j). For example,
M- [ (ki)' + ki kg — 3kiy by ]
= = = —1; -1 —1, 1 )
(kii' + kas ) (k) oy — kpy'hry)

%)
mlz[lL] bz[LM] _
2 (ki + ko)l 12 (k) + ko) |

The side pressures, P1 ;,P1,, P, 1 and P, 1, are determined
2 2° ’2 22

by a system of equations that couples the grid cells,

P%,l =[(M1)11 + (M3)1,1] 1 + (M8)1,1 r3 + (M7)2,1 74,

P%,z = [(M1)2,2 + (M3)1,2] r2 + (M5)1,2 73 + (M4)2,2 74,
PI’% = (M8)1,1 1+ (M5)1,5 72 + [(M6)1,2 + (M10)1,1] r3,
P2,% = (MT7)21 11+ (M4)2,2 72 + [(M6)2,2 + (M10)2,1] 4.
Where

r1 = (M2)11 peo + (M2)2,1 pe1 — [(M4)2,1 — (M5)1,1] pyo,
ry = (M2)1,2 poo + (M2)2,2 po1 + [(MT)2,2 — (M8)1,2] py1,
r3 = [(M7)1,1 — (M4)1,2] pao + (M9)1,1 pyo + (M9)1,2 py1,
rq = [(M5)2,2 — (M8)2,1] pa1 + (M9)2,1 pyo + (M9)2,2 Py1.

which are associated with all the permeability tensors and the
boundary pressures, pzo, Pe1, Pyo and py1.

Knowing the side pressures and the piecewise constant per-
meability tensors, we can then compute the side velocities for
each fine cell from Eq. (B-1) and the total flux on an upscaled
coarse cell side. For example, the x-direction side fluxes of the
first cell (1,1), V7%,1Ay and V%JAy can be calculated as,

[(M].)l,lpa:o — (M2)1,1P%71 =+ (M4)1,1py0 — (M7)1,1P1,%i| and

[(M2)1,1pm0 - (M3)1,1P%,1 + (M5)1,1pyo — (M8)1,1P1,%] .

The total flux at the left boundary will be Ay(VL%,1 + V7%,2).
Total fluxes on any other upscaled cells can be computed in the
same way.

With these side pressures, side velocities and fluxes, one
can upscale the fine cells into 1x1, 1x2 or 2x1 coarse cells
and analytically obtain the upscaled side pressures and veloci-
ties and subsequently the symmetric permeability tensors using
Eq. (5) and Eq. (6) respectively.

As a numerical example, assume pzo = pyo = 1.0, pe1 =
py1 = 0.0 and,

20 0.1 3.0 —0.2
ki = [0.1 1.0] Kz = [—0.2 2.0 ] ’

3.0 0.2 45  —0.05
ka1 = [0.2 1.0] koo = [—0.05 2.5 ] '

For these permeability tensors, we computed the values of M1
through M10 for each cell. The side pressures are P%,l =0.63,
P, = 016, P, 1 = 0.77 and P, 1 = 0.10. If the four
fine cells are upscaled into 1x1 coarse cell, then the total
fluxes on the four boundaries are Ay(V_%,1 + V—%,z) = 4.24,

Ay(VgJ + V%,2) = 3.56, A:E(Vl,,% + V2,7%) = 2.61 and
az(Vy, 3 + Vs, %) = 3.28, respectively. The conservative up-
scaled permeability tensor would be

. _[048 3.42

T lor —047)°
which is apparently unreasonable. But if the four cells are up-

scaled into 2x1 cells, then the resulting permeability tensors
would be

c _[4.81 0.79

e _[517 131
L1 Jo.79 1.17]’ and ka1 = [ ]

1.31 0.77

which are actually positive definite.

It is clear enough from the above expressions and examples
that the fine flow variables (side pressures and velocities) are all
dependent on the permeability tensors in the entire domain and
the pressures on all the four boundaries, so are the upscaled side
pressures and side velocities. Consequently, there is no guaran-
tee that a symmetric permeability tensor which satisfies exactly
the HMFE equation (discrete Darcy’s equation), i.e., Eq. (3),
on the upscaled cell and preserves positive definiteness of the
tensor at the same time, can be obtained.
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°
Py P PlR
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.
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Figure 1: A rectangular element and its flow variables; P-cell pressure; P11, Pir, Vir and Vig are side pressures and velocities
in the x-direction; P>, Por, Vor, and Vai are side pressures and velocities in the y-direction.
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Figure 2: Upscaled flow variables by preserving fluxes and pressures from the fine grid. Here 2 x 2 fine cells are upscaled to
one coarse cell (R=2).
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(a) A realization of Ki1(z,y). (b) The histogram of the realization.

Figure 3: (a) A realization of K11 = k generated from the permeability model on the fine-scale grid (256 x 256 cells), Model
parameters are o = 0.499, 81 = 0.001, 82 = B3 = B4 = B5 = 0.0. The final permeability tensor field is set to be diagonal, so
k11 = koa; (b) The histogram of the realization.
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Upscaled Permeability
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(a) The Upscaled field of K11 (z,y)

(b) The histogram of the upscaled field

Figure 4: The upscaled version of K11 in Fig. 3(a) and its histogram.
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Figure 5: A coarse cell, its upscaled side pressures in psi (above) and velocities in ft/day (below). Blank circles represent the
fine cell edges for pressure and velocity calculations. Here on the upscaled cell edges (dots), Py, = 1078.18 > P, g = 1076.60,
Vit =3.7194 > Vigp = 3.2393, but Py, = 1078.23 > Pop = 1076.52 and Var, = 3.3536 < Vagr = 3.8338, which are against the
discretized Darcy’s law.
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Figure 6: (a) A realization of Kj; generated from the permeability model on the fine-scale grid (256 x 256 cells), Model
parameters are 9 = 0.440,8; = 0.227,82 = —0.042, 83 = —0.080, 84 = —0.051, 85 = 0.005. The final permeability tensor
field is set to be diagonal and ki1 = kao; (b) The histogram of the realization (a); (¢) The upscaled field of (a); (d) The
histogram of field (c).
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Cell Index Upscaled Permeability Tensor(md)

I J k11 kia = ka koo

10| 10 0.30287232E+03 | 0.62393668E+03 | 0.29237356E+03
11 11 0.34384168E+03 | 0.70907771E+403 | 0.31788879E+03
12 12 0.18205100E+03 | 0.76811796E+03 | 0.22095725E+403
13 13 0.49225238E+4-03 | 0.42729257E+403 | 0.51334842E+03
14 14 0.22400155E+03 | 0.75697603E+03 | 0.27599606E403
15 15 0.84850335E+403 | 0.13511769E+403 | 0.78111848E+03
16 16 0.70049641E+03 | 0.29167871E+03 | 0.65414188E403
17 17 0.33120042E+4-03 | 0.58044404E+03 | 0.41806250E+03
18 18 -0.27919004E+-03 | 0.12035826E+-04 | -0.21924916E+03
19 19 0.14328685E+4-03 | 0.74190652E+403 | 0.26156108E+03
20| 20 0.35328581E+03 | 0.58074057E+03 | 0.41341273E+03
21 21 -0.79656548E+02 | 0.95598855E+03 | 0.11097732E403
22 22 -0.66190526E+02 | 0.10156474E+404 | 0.57826239E+02
23 23 0.27767379E403 | 0.78481329E+403 | 0.22316908E+03
24 24 0.23816896E+03 | 0.69236757E+03 | 0.29796884E+03
25 25 0.11258960E+04 | -0.17745953E4-03 | 0.10279125E4-04
26 26 0.58514379E+02 | 0.84570403E+03 | 0.15164194E+403
27 27 0.13955669E+04 | -0.34390877E4-03 | 0.12410409E4-04
28 28 0.30838641E+403 | 0.50768581E+403 | 0.42338731E+03
29 29 0.30469579E+03 | 0.52210457E+03 | 0.44087930E+03
30 30 0.43833127E+403 | 0.48682382E+403 | 0.52443920E+03
31 31 -0.14133267E+-04 | 0.22299714E4-04 | -0.11440370E+04
32 32 -0.18320740E+04 | 0.26523123E+404 | -0.14918793E-+04
33 33 -0.65275321E4-04 | 0.70369162E+-04 | -0.55425692E+04
34 34 0.26624984E+03 | 0.73245079E+03 | 0.24072804E+03
35| 35 | -0.35966009E+02 | 0.10795870E+04 | -0.47015243E+02
36 36 0.53675255E4+03 | 0.43275022E403 | 0.59827965E403
37 | 37 | 0.31963194E+03 | 0.58339130E+03 | 0.38502030E+03
38 38 0.23793860E+03 | 0.66672595E+03 | 0.30154988E+03
39 39 0.92504759E+03 | 0.39705006E+02 | 0.88986937E+03
40 40 0.10718348E+04 | 0.10935371E+402 | 0.99514074E+03
41 41 0.75718540E403 | 0.28802621E+403 | 0.71457392E+03
42 | 42 0.27278403E+03 | 0.70854383E+03 | 0.25377028E+03
43 43 -0.44288889E+-03 | 0.12521720E+4-04 | -0.17375048E+03
44 | 44 | 0.59453805E+02 | 0.99375697E+03 | 0.12365714E+03
45 45 0.20915352E+03 | 0.86697940E+03 | 0.18201474E+03
46 46 0.10324708E+04 | -0.36529199E+-01 | 0.97930119E+03
47 47 0.52848762E+03 | 0.47606503E+03 | 0.48980915E+03
48 48 -0.43059130E+03 | 0.12850088E+04 | -0.26399429E4-03
49 49 0.31450632E+-04 | -0.19502103E+04 | 0.27425746E+04
50 50 -0.55881188E+-04 | 0.61670521E+4-04 | -0.47901714E+04

Table 1: Upscaled permeability tensors for the overdetermined case
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Figure 7: ki1 entry from the two-step upscaling procedure: (a) The fine scale k11 field; (b) The upscaled field, k§;; (c) The
histogram of fine scale field, k11; (d) The histogram of kf, field.
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(b) The histogram of k§, on the upscaled grid

Figure 8: Comparison of the off-diagonal entry on the fine grid, ki2, and the upscaled grid, k$,. (a) The histogram of the

fine scale ki field; (b) The histogram of &, field.



