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lays, the number of models and the model orders of the VARs that define a particular
VAR-HME model configuration are chosen by means of an algorithm based on the
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1 Introduction

We propose a multivariate time series modeling approach based on the idea of mixing models
through the paradigm known as hierarchical mixture-of-experts (HME) (Jordan and Jacobs,
1994). The HME approach easily allows for model mixing and permits the representation
of the mixture weights as a function of time or other covariates. Our HME models assume
that the components of the mixture are vector autoregressions (VAR). These models provide
useful insight into the spatio-temporal characteristics of the data by modeling multiple time
series jointly. In addition, the VAR-HME models can assess, in a probabilistic fashion, the
different states of the multivariate time series over time by means of the estimated mixture
weights.

Developments on univariate HME time series models can be found in Huerta et al. (2003).
These authors show how to estimate the parameters of mixture-of-expert (ME) and HME
models for univariate time series via the expectation-maximization (EM) algorithm and
Markov chain Monte Carlo (MCMC) methods. Huerta et al. (2003) applied the HME method-
ology to model monthly US industrial production index from 1947 to 1993. Specifically, a
HME model to discriminate between stochastic trend models and deterministic trend mod-
els was considered. In this analysis time was the only covariate included in the model. More
recently, Villagran and Huerta (2004) showed that the inclusion of additional covariates
leads to substantial changes in the estimates of some of the model parameters in univari-
ate mixture-of-expert models. In particular, the authors consider ME models for stochastic
volatility in a time series of returns where time and the Dow Jones index are both covariates.

We present an extension of the HME developments of Huerta et al. (2003) to handle mul-
tivariate time series. We propose a novel class of models in which the mixture components,
usually called experts in the neural network terminology, are vector autoregressions. VAR-
HME models extend the univariate mixture of autoregressive (AR) models presented in Wong
and Li (2000) and Wong and Li (2001) to the multivariate framework. Related univariate
models, in which single-layer stochastic neural networks are used to model non-linear time
series, are also developed in Lai and Wong (2001). The hierarchical structure of the VAR-
HME models developed here allows the construction of very flexible models to describe the
non-stationarities and non-linearities often present in multiple time series. Such hierarchical
structure is not present in the univariate models developed in Wong and Li (2000), Wong
and Li (2001) and Lai and Wong (2001).

The time series applications that motivate the VAR-HME modeling approach arise mainly
in the area of biomedical signal processing where the multiple time series have two main
characteristics. First, the series consist of multiple signals recorded simultaneously from a
system under certain conditions. Second, each individual signal has an underlying structure
possibly, but not necessarily, quasi-periodic, that can adequately be modeled by a collection of
univariate autoregressive models or AR models with parameters that vary over time (TVAR).
These are the characteristics of the multi-channel electroencephalogram (EEG) data analyzed
in Section 4.2. The VAR-HME models constitute a new class of multivariate time series
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models that are non-linear and non-stationary and so, they are suitable for modeling highly
complex and non-stationary signals such as EEG traces. It is important to emphasize that
the multivariate nature of the VAR-HME models developed here is a key feature. These
models are able to capture latent process that are common to several univariate time series
by modeling them jointly. This could not be achieved by analyzing each series separately
via univariate mixtures of AR models. Other potential areas of application for these models
include seismic and speech signal processing and applications to environmental and financial
data analysis.

The paper is organized as follows. Section 2 presents the mathematical formulation of the
VAR-HME models and summarizes the EM algorithm for parameter estimation when the
number of overlays, the number of models and the model orders of the VAR components are
known. Section 3 describes an algorithm for selecting the number of overlays, models and
model orders of the VARs using the Bayesian information criterion or BIC. Model checking
issues are also discussed in Section 3. Section 4 presents the analyses of two datasets: a
simulated data set and a 7-channel electroencephalogram data set. Finally, conclusions and
future work are presented in Section 5.

2 Models and Methodology

Let {yt}
T
1 be a collection of T k-dimensional time series vectors, and let {xt}

T
1 be a collection

of T l-dimensional vectors of covariates indexed in time. Let the conditional probability
density function (pdf) of yt be ft(yt|Ft−1,XT ; θ), where θ is a parameter vector; XT is the
σ-field generated by {xt}

T
1 representing external information; and for each t, Ft−1 is the

σ-field generated by {ys}
t−1
1 representing the previous history at time t − 1. Typically, the

conditional pdf ft is assumed to depend on XT through xt only. Our main interest lies in
drawing inference on {yt}

T
1 conditional on {xt}

T
1 , and in drawing inference on the model

parameters θ conditional on {yt}
T
1 and {xt}

T
1 .

In the univariate hierarchical mixture-of-experts context of Jordan and Jacobs (1994), which
was developed for time series modeling in Huerta et al. (2001) and Huerta et al. (2003), the
pdf ft is assumed to be a conditional mixture of the pdfs from simpler models or experts.
We follow a similar approach in the multivariate time series case and so, we assume that the
HME model partitions the covariate space, specifically including time as a covariate, into O
overlapping regions called overlays. In each overlay, M models, or experts, are to compete
with each other and the most suitable model for a given time region will be favored by a high
weight. Since multiple overlays are available, the HME model allows for modeling multiple
switching across regions. In a multivariate time series setting, the mixture can be represented
by the finite sum

ft(yt|Ft−1,XT ; θ) =
O∑

o=1

M∑

m=1

gt(o, m|Ft−1,XT ; γ)πt(yt|Ft−1,XT , o, m; η), (1)
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where the functions gt(·, ·|·, ·; γ) are the mixtures weights, usually known as gating functions
in the neural network terminology; πt(·|·, ·, o, m; η) are the pdfs of simpler models defined by
the labels o and m; and finally, γ and η are sub-vectors of the parameter vector θ.

Applying the approach of Huerta et al. (2003) to the multivariate case, we obtain that the
mixture weights have a parametric form given by

gt(o, m|Ft−1,XT ; γ) = gt(o|Ft−1,XT ; γ) × gt(m|o,Ft−1,XT ; γ) (2)

=

{

euo+v′
owt

∑O
s=1 eus+v′

swt

}

×







e
um|o+v′

m|o
wt

∑M
l=1 e

ul|o+v′
l|o
wt






, (3)

where the u’s and the v’s are parameters which are components of γ. The vector wt is an in-
put at time t which is measurable with respect to the σ-field induced by Ft−1∪XT . The vector
γ includes the parameters u1, . . . , uO−1,v1, . . . ,vO−1, u1|1, . . . , uM−1|1, . . . , u1|O, . . . uM−1|O,
v1|1, . . . ,vM−1|1,vM−1|O, . . . ,vM−1|O. For identifiability of the γ vector, we set uO = 0,vO =
0, uM |o = 0 and vM |o = 0 for all o = 1, . . . , O. As noted in Huerta et al. (2003), if the interest
lies on assessing how the weighting for individual models is assigned across different time
periods, wt can be taken as (t/T ), and so, the following parametric function of the gating
functions can be adopted

gt(o, m|Ft−1,XT ; γ) = go,m(t; γ)≡ go(t; γ) × gm|o(t; γ),

with

go(t; γ) =
euo+vo(t/T )

∑O
s=1 eus+vs(t/T )

and gm|o(t; γ) =
eum|o+vm|o(t/T )

∑M
l=1 eul|o+vl|o(t/T )

, (4)

for o = 1, . . . , O and m = 1, . . . , M . Other options for wt include, for example, taking
wt = xt, or wt = (y′

t−1,y
′
t−2, . . . ,y

′
t−q)

′ for some value of q.

In the HME models considered here, we assume that each simpler model or expert is a vector
autoregression. In other words, the pdfs defined by the experts have the form

πt|o,m = Φo,m



yt −
pm∑

j=1

Ao,m
j yt−j



 , (5)

where Ao,m
j is a k × k matrix and Φo,m(·) denotes the pdf of a multivariate k-dimensional

normal distribution with zero mean vector and variance-covariance matrix Σo,m Note that
the order of the VAR depends on m, while the VAR coefficients, as well as the covariance
matrix, depend on both, o and m. In addition, we assume that Σo,m is diagonal for all o and
m, and so, all the correlation structure across the k time series is accounted for in the VAR
coefficients Ao,m

j . This assumption can be relaxed, however, more general structures of Σo,m
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are not considered here. In practice, we have found that models with diagonal Σo,m’s matrices
are very flexible and in terms of capturing most of the non-linearities and non-stationarities
present in a wide range of multiple time series processes.

For fixed values of O, M and model orders p1, . . . , pM , inferences on θ based on the obser-
vations yt0 , . . . ,yt1 are made by maximizing the log-likelihood function

Lto:t1(·) =
1

(t1 − t0 + 1)

t1∑

t=t0

log ft(yt|Ft−1,XT ; ·). (6)

Typically, for model configurations with a maximum model order given by pmax,M , with
pmax,M = max{p1, . . . , pM}, inferences are made by maximizing (6) with t0 = pmax,M +1 and
t1 = T so the estimation is conditional on the first t0 observations. Direct maximization of
the log-likelihood is difficult hence, in order to obtain the maximum likelihood estimator of
θ, θ̂ = argmaxLt0:t1(·), we use the Expectation Maximization (EM) algorithm. A general
formulation of the EM algorithm can be found in Tanner (1996). In Section 2.1 we briefly
outline the EM algorithm implemented for estimation of θ in our multivariate time series
framework. The algorithm proposed here follows a scheme similar to that of the EM algorithm
described in Huerta et al. (2003) for the univariate case.

The components of the vector γ are the parameters that define the gating functions and
so, they determine the location and softness of the splitting periods. The number of distinct
model types M can be usually specified by the practitioner, depending on the number of
models that are of interest to a particular application. The number of overlays O can be
selected based on subjective information related to the application, or based on historical in-
formation. Alternatively, in Section 3, we propose an algorithm that searches for the numbers
of overlays, models and VAR model orders that minimize the Bayesian information criterion
or BIC (Schwarz, 1978).

Conditional on a given value of θ, it is possible to look at the weights assigned to each model
as a function of time. Following Huerta et al. (2001), there are two ways of achieving this.
One is based on computing the conditional probability of a given model m, with the current
observation yt being conditioned on, defined by

Pt(m|yt,Ft−1,XT ; θ) ≡ hm(t) ≡
O∑

o=1

ho,m(t; θ), (7)

where ho,m(t; θ) is given by

ho,m(t; θ) =
go,m(t; γ)πt(yt|Ft−1,XT , o, m; η)

∑O
s=1

∑M
l=1 gs,l(t; γ)πt(yt|Ft−1,XT , s, l; η)

,

which is the conditional probability of choosing the expert (o, m) at time t. The second
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approach is to consider the unconditional probability at time t given by

Pt(m|Ft−1,XT ; θ) ≡ gm(t) ≡
O∑

o=1

go,m(t; γ). (8)

Point estimates of (7) and (8) can be obtained by evaluation of these expressions at the
MLE θ̂, or in a Bayesian framework, by computing the expected value with respect to the
posterior distribution π(θ|FT ,XT ). Point estimates of (7) may vary a lot over time due
to the conditioning on yt, while point estimates of (8) are far more smoother if the regime
switching described by the gating functions depends only on the time t and no other covariate
is considered.

2.1 Estimation via the EM algorithm

We now describe how to estimate the parameters of a VAR-HME model via the expectation-
maximization (EM) algorithm when the model configuration denoted by M is known, i.e.,
when O, M and the VARs model orders pM = (p1, . . . , pM)′ are assumed to be known.
The algorithm starts with an initial estimate θ0

M and then, a sequence {θi
M} is obtained

by iterating between the following steps for i = 1, 2, . . . , n, where n is a specific number of
iterations.

(1) E-step. At each iteration i the function Qi(θM) is constructed, with

Qi(θM) =
T∑

t=1

∑

o,m

ho,m(t; θi
M) log{πt(yt|Ft−1,XT , o, m; ηM)gt(o, m|Ft−1,XT ; γM)},

where θM = (γM, ηM), θi
M = (γi

M, ηi
M), ho,m(t; θi

M) = ho,m(t; θM)|
θM=θ

i

M

.

(2) M-step: Find θi+1
M = arg maxθM

Qi(θM).

In the VAR-HME framework, the partition of the θM vector is given in terms of the pa-
rameters related to the gating functions included in γM and the VAR parameters, Ao,m

j and
Σo,m for all o, m and j = 1, . . . , pM included in the vector ηM. In this case it is possible to
decompose the maximization problem into a smaller number of maximization problems. It
can be shown that the equations used in the M-step to estimate γM, when the only covariate
is time —and so, wt can be taken as a scalar with value (t/T )— are given by

∑

t

∑

m

ho,m(t; θM)=
∑

t

[

euo+vo(t/T )

∑

s eus+vs(t/T )

]

,

∑

t

∑

m

t × ho,m(t; θM)=
∑

t

[

t ×
euo+vo(t/T )

∑

s eus+vs(t/T )

]

,
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∑

t

∑

m

ho,m(t; θM)=
∑

t

[(
∑

q

ho,q(t; θM)

)

×
eum|o+vm|o(t/T )

∑

s eus|o+vs|o(t/T )

]

,

∑

t

∑

m

t × ho,m(t; θM)=
∑

t

[

t ×

(
∑

q

ho,q(t; θM)

)

×
eum|o+vm|o(t/T )

∑

s eus|o+vs|o(t/T )

]

.

Similarly, the equations used in the M-step to estimate η are

Σo,m =

∑

t ho,m(t; θM) ·
[(

yt −
∑pm

j=1 Ao,m
j yt−j

) (

yt −
∑pm

j=1 Ao,m
j yt−j

)′
]

∑

t ho,m(t; θM)
,

for the variance-covariance matrices and










[

Ao,m
pm

]′

...

[Ao,m
1 ]′










=B−1
o,m(t; θM) ×

(
∑

t

hom(t; θM)Cm(t)

)

,

for the VAR coefficients, with

Bo,m(t; θM) =
∑

t










ho,m(t, θM)










[yt−pm
y′

t−pm
] · · · [yt−pm

y′
t−1]

...
. . .

...
[

yt−1y
′
t−pm

]

· · ·
[

yt−1y
′
t−pm

]



















,

and

Cm(t) =










yt−pm
y′

t

...

yt−1y
′
t










.

The limit of the sequence {θi
M}, denoted by θ̂M(θ0), is a root of the likelihood equation

∇θM
Lt0:t1 = 0 corresponding to a stationary point (Tanner, 1996). If the likelihood is multi-

modal, the limit depends on the different modes. Multiple starting points are used to find the
corresponding limits via the EM algorithm. For a given model configuration M, the result
with the largest likelihood value is chosen as the limit point estimate of θM.
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3 Model selection and model checking

3.1 Model selection

We now describe a general algorithm that searches for the optimal VAR-HME for a given
data set. Optimality here will be defined in terms of the Bayesian information criterion or
BIC (Schwarz, 1978). In other words, the optimal VAR-HME model configuration M, will
be the one whose number or overlays, number of expert models, VAR model orders and
associated parameter values minimize the BIC, which is defined in this framework as

BIC(M, θM) = −2Lt0:t1(θM) + dim(θM) log(kT ∗),

where dim(θM) is the dimension of the parameter vector θM. Here T ∗ = T−pmax, where pmax

is the maximum VAR model order considered in the search, or equivalently, the maximum
VAR model order for all the model configurations considered in the search.

Since it is not possible to explore the space of all VAR-HME models and also, since there is
no guarantee that running the EM a finite number of times for a given model configuration
would lead to the global minimum of the BIC, a heuristic is used to select both, the number of
model configurations that the algorithm visits and the number of iterations the EM algorithm
is run for each particular model configuration. This selection is made at running time, and
it depends to some extent on the complexity of the structure of the models that are local
minima. At every iteration, a model configuration M with O overlays, M expert models,
pM model orders and some initial parameter values are chosen. Then, the EM algorithm is
applied to obtain the estimates of the model parameters. If the same model configuration is
visited some iterations later, the algorithm is started again with different initial values. In
the search of the model that minimizes the BIC, BIC values obtained at previous iterations
determine the selection of the next points to be visited. After a certain number of model
configurations have been visited, possibly more than once, the search continues through
those points where it is most likely that the configuration that minimizes the BIC could be
found. The search method considered here assumes that model configurations that produce
the smallest BIC values after a certain number of iterations are more likely to minimize the
BIC than those that lead to larger BIC values. It also assumes that model configurations
that are similar to the one that minimizes the BIC after a certain number of iterations are
more likely to lead to the global minimum than those that are not similar. Search methods
based on these assumptions yielded very good results in several simulation studies.

In order to fully describe the search algorithm it is necessary to define the concept of similar
or neighboring model configurations. Assume that a model configuration M has O overlays
and M expert models. Let pM = (p1, . . . , pM)′ be the M -dimensional vector of VAR model
orders of such model. Let p∗

M be the O × M -dimensional vector containing the VAR model
orders for all the possible combinations of overlays and expert models ordered in increasing
order. So, for example, let M1 be a model with O = 1, M = 2 and model orders p1 = 1
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and p2 = 1. Then, pM1
= (1, 1)′ and p∗

M1
= (1, 1)′. Similarly, a model M2 with O = 2,

M = 2 and p1 = 3, p2 = 1 leads to pM2
= (3, 1)′ and p∗

M2
= (1, 1, 3, 3)′. Note that O, M

and p1, . . . , pM determine p∗
M, however, a given vector p∗ can be associated to various model

configurations. For instance, consider a model M3 with O = 2, M = 1 and p1 = 1. Then,
p∗
M3

= (1, 1)′ and so, p∗
M1

= p∗
M3

even though M1 6= M3. Now, using p∗ it is possible to
define a class of model configurations that are equivalent to a given model configuration M,
say EQ(M), as follows

EQ(M) = {All models Mi such that p∗
Mi

= p∗
M}.

Similarly, it is possible to define the class of neighboring model configurations of M, NB(M),
given by

NB(M) = {All models Mi such that p∗
Mi

∈ C},

where C is the set of vectors p∗
Mi

that are derived from p∗
M in one of the following ways:

• By adding 1 or 0 to one of the components of p∗(M) and subtracting 1 or 0 to one
of the components of p∗(M), i.e., p∗

Mi
(j0) = p∗

M(j0) + a0, for some component j0 and
p∗
Mi

(j1) = p∗
M(j1)−a1 for some other component j1 such that j0 6= j1 and p∗

Mi
(j) = p∗

M(j)
for all the other components j, such that j 6= j0, j 6= j1. Here a0 = 0, 1 or a1 = 0, 1.

• By adding 1 or 2 to one of the components of p∗(M) and subtracting 1 or 2 to one
of the components of p∗(M), i.e., p∗

Mi
(j0) = p∗

M(j0) + b0, for some component j0 and
p∗
Mi

(j1) = p∗
M(j1)−b1 for some other component j1 such that j0 6= j1 and p∗

Mi
(j) = p∗

M(j)
for all the other components j, such that j 6= j0, j 6= j1. Here b0 = 1, 2 or b1 = 1, 2.

• By removing one component in the mixture and so, dim(p∗
Mi

) = dim(p∗
M) − 1.

• By adding one new component to the mixture and so, dim(p∗
Mi

) = dim(p∗
M) + 1. It is

assumed that the model order that is added differs in at most 1 from the model orders in
p∗
M.

Increasing or decreasing by one or two a given VAR model order is equivalent to adding or
eliminating at least one real or complex root to the characteristic polynomial associated to
such VAR mixture component. At a given iteration, the algorithm keeps the lowest BIC found
so far, as well as the model configuration and the estimates of the parameters associated to
this configuration. All of them are updated when a lower value of the BIC is found.

3.1.1 Stopping and reinitialization rules

The search algorithm stops or is restarted at a given iteration when one of the following
happens:

• Every neighboring model configuration of the current model configuration and correspond-
ing parameter estimates that minimize the BIC has been visited a number n1 of times.
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In this case the algorithm reports the optimal model configuration and its corresponding
parameter estimates.

• If one of the elements of the diagonal matrix Σo,m is smaller than some threshold τ1, with
τ1 very close to zero or, if

∑T
t=pmax+1 ho,m(t; θ) < τ2, with τ2 close to zero for some m, o

then a new run of the algorithm is started with initial estimates build in the following
way:
· the parameters Ao,m

1 , . . . ,Ao,m
p and Σo,m are initialized at random values;

· the rest of the VAR parameters, As,l
j for s 6= o and l 6= m, are set at the values they had

at the previous iteration and all the u’s and v’s parameters are set to zero.
If the number of partial reinitializations exceeds a threshold n2 then a complete reinitial-
ization of the algorithm takes place so that the initial values of this reinitialization are
unrelated to the results of the previous convergence. If the number of complete reinitial-
izations reaches n3 then the EM algorithm stops without convergence to a local minimum.

• The search stops when the relative differences of the VAR parameters at consecutive
iterations is smaller than τ3, or if the number of iterations from the last time the EM was
reinitialized is greater than n4. In both cases the algorithm reports that a local minimum
has been successfully found.

3.2 Model checking

As in Huerta et al. (2003), and following Kim et al. (1998) and Elerian et al. (2001), we
use the one-step-ahead predictive distribution function for model checking. In our case this
distribution is given by

Ft(yt|Ft−1,XT ; θ) =
O∑

o=1

M∑

m=1

gt(o, m|Ft−1,XT ; γ)Fπt
(yt|Ft−1,XT , o, m; η),

where Fπt
(·|·, ·, o, m; η) is the distribution function of the simpler models, each indexed by

the pair (o, m). In the univariate HME context, Huerta et al. (2003) use a transformation
proposed by Rosenblatt (1952) to show that, if the model is correctly specified then {ut}, with
ut = Ft(yt|Ft−1,XT ; θ) and yt a univariate time series process, is a sequence of independent
random variables uniformly distributed in the interval (0, 1).

Here we consider Rosenblatt’s transformation for each component of the time series, and so,
if the model is correct, each sequence of random variables {ut,j}, for j = 1, . . . , k, will be
a sequence of independent random variables uniformly distributed in the interval (0, 1). In
this case each ut,j is defined as ut,j = Ft,j(yt,j|Ft−1,XT ; θ), where Ft,j(·|·, ·; θ) is the marginal
distribution function for the j-th component of the time series. Each ut,j can be estimated by

ût,j = Ft,j(yt,j|Ft−1,XT ; θ̂), where θ̂ is the ML estimate obtained via the EM algorithm. As
in Huerta et al. (2003), we judge model adequacy by looking at distributional characteristics
of {ût,j}, for j = 1, . . . , k, or with transformed values via the Normal inverse cdf. We also
look at the correlation and distributional forms of 2|ût,j − 0.5|, as suggested by Kim et al.
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(1998). Model checking techniques will be illustrated in the data analyses presented in the
following Section.

4 Applications

In order to show the performance of the proposed models and search algorithm, two examples
are considered. In the first example we analyze a simulated bivariate time series. In the second
example we apply the VAR-HME models to a 7-channel electroencephalogram data recorded
during electroconvulsive therapy.

4.1 A simulation study

A bivariate time series of 1,000 observations was generated according to a VAR-HME with
two overlays (O = 2) and two expert models (M = 2). The VAR models were parameterized
as follows:

O = 1, M = 1, yt =






−0.750 −0.250

−0.250 −0.250






︸ ︷︷ ︸

A1,1

1

yt−1 + ε
(1,1)
t ,

O = 2, M = 1, yt =






0.250 0.500

0.750 0.250






︸ ︷︷ ︸

A2,1

1

yt−1 + ε
(2,1)
t ,

O = 1, M = 2, yt =






−0.250 0.000

−0.250 −0.500






︸ ︷︷ ︸

A1,2

1

yt−1 +






0.125 0.125

0.125 0.250






︸ ︷︷ ︸

A1,2

2

yt−2 + ε
(1,2)
t ,

O = 2, M = 2, yt =






0.500 1.000

0.750 1.250






︸ ︷︷ ︸

A2,2

1

yt−1 +






−0.125 −0.500

−0.375 −0.563






︸ ︷︷ ︸

A2,2

2

yt−2 + ε
(2,2)
t ,

where ε
o,m
t ∼ N(0, Σo,m), with Σo,m = diag(72, 72) for all o and m. In addition, the fol-

lowing parameters were used for the gating functions: u1 = 259.540, v1 = −519.081, u1|1 =
130.532, v1|1 = −522.128, u1|2 = −63.054 and v1|2 = 84.072.
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The search algorithm described in the Section 3 was initialized at a model configuration M0

with OM0
= 2, MM0

= 4 and pM0
= (1, 2, 3, 4). The values of the parameters that define

the stopping and reinitialization rules in the search algorithm were set as follows: n1 = 20,
n2 = 20, n3 = 500, n4 = 500, τ1 = 10−5, τ2 = 0.001, τ3 = 0.01. The initial values for the
A’s and Σ’s matrices were randomly generated from uniform distributions on the intervals
[−1, 1] and [1, 100], respectively. The maximum VAR model order considered in the search
was pmax = 10.

The optimal VAR-HME model configuration, denoted by M1 found by the algorithm has
the form OM1

= 2, MM1
= 2 and pM1

= (1, 2), which corresponds to the correct model
configuration. The total number of model configurations visited was 955.

The parameter estimates for the optimal VAR-HME model configuration are

Â
1,1

1 =






−0.764 −0.275

−0.239 −0.259




 , Â

2,1

1 =






0.240 0.533

0.704 0.234




 ,

Â
1,2

1 =






−0.339 0.021

−0.238 −0.480




 , Â

1,2

2 =






0.164 0.147

0.074 0.289




 ,

Â
2,2

1 =






0.511 0.973

0.750 1.251




 , Â

2,2

2 =






−0.227 −0.400

−0.339 −0.594




 ,

for the VAR coefficients and Σ̂1,1 = diag(6.9052, 6.1052), Σ̂2,1 = diag(7.5122, 6.5162), Σ̂1,2 =

diag(7.5482, 6.9392) and Σ̂2,2 = diag(5.6282, 6.7082) for the variance-covariance matrices.

Figure 1 shows the trajectories of the gating functions gt(o, m) used to generate the data
(solid lines) and their estimates (dotted lines) for the four combinations of overlays and mod-
els. These plots show that the optimal VAR-HME model adequately captures the structure
of the simulated series. Graph (a) in Figure 2 displays the trajectory of gm=1(t) (solid line)
and its estimate (dotted line) as a function of time. Here m = 1 corresponds to a VAR(1)
model-type. gm=1(t) is the unconditional probability of choosing a VAR(1) model-type at
time t computed using (8). Panel (b) in this figure shows the estimate for hm=1(t), the
conditional probability of model m = 1 given in equation (7). These graphs split the data
in two parts, the initial portion and final portion of the series in which a VAR(1)-type of
model is favored, and the middle portion of the series in which a VAR(2)-type of model is
favored. Graph (a) is a smoother version of graph (b), which is less affected by individual
observations.
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Fig. 1. The gating functions gt(o,m) (solid lines) used in the simulation and their maximum like-
lihood estimates (dotted lines) for all the combinations of overlays and models considered: two
overlays and two model types, a VAR(1) and a VAR(2).

Diagnostic summaries appear in Figures 3 and 4. These graphs show the autocorrelation
functions and qqplots for ût,1 and 2|ût,1 − 0.5| in Figure 3, and for ût,2 and 2|ût,2 − 0.5| in

Figure 4. Here the estimates, ût,j for j = 1, 2 are computed as ût,j = Ft,j(yt,j|Ft−1,XT ; θ̂),

where θ̂ is the ML estimate of θ obtained from the EM algorithm. In order to explore the
distributional assumptions of ut,j for j = 1, 2 under the correct model, we transformed the
sequences using the inverse cdf of a standard Normal distribution. The qqplots in Figures
3 and 4 show that most points lie at the qqline, with a few displaying some deviation from
the standard Normal distribution. A careful look at the points that deviate from the Normal
shows that such points correspond to observations around the transition times when jumps
from one of the overlay/expert models to another one occurs. This is expected as the series
were simulated from a model in which the switches between various expert models and
overlays occur in a very abrupt manner (see Figure 1).

4.2 Analysis of multichannel EEG data

We consider the analysis of 7 EEG signals recorded on a patient who received electrocon-
vulsive therapy (ECT), a treatment for major depression. The 7 signals are part of a multi-
channel recording of 19 EEG channels located over the patient’s scalp. Figure 5 displays
a scheme of the approximate location of the 19 electrodes over the scalp. The seven sites
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Fig. 2. (a): gt(m = 1) (solid line) and its maximum likelihood estimate (dotted line). (b) Maximum
likelihood estimates of hm(t) for model-type VAR(1)
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Fig. 3. Graphical summaries for ût,1 and 2|ût,1 − 0.5|.
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Fig. 4. Graphical summaries for ût,2 and 2|ût,2 − 0.5|.

F7

T3
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F3
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P3

O1 O2
Pz

P4 T6T5

F4

F8Fz

Fig. 5. Schematic Ictal-19 electrode placement. The electrodes marked with a rectangle correspond
to those analyzed here using HME models.

marked with a rectangle correspond to those analyzed here with a VAR-HME model. Uni-
variate analyses of the 19 EEG signals via time-varying autoregressive (TVAR) models can
be found in Prado (1998); West et al. (1999) and Prado et al. (2001). The EEG signals
studied here were recorded at channels labeled as Fp1, Fp2, F8, Cz, T5, O1 and O2 (from the
top down and left to right in Figure 5). According to EEG nomenclature Fp, F, C, T and O
stand for prefrontal, frontal, central, temporal and occipital regions, respectively. Electrodes
located down the center of the scalp are labeled with the letter z. Even numbered channels
are located to the right while odd numbered channels are located to the left.

Previous analyses of individual channels via TVAR models with time-varying orders sug-
gested that models with different orders were appropriate to describe the complexity of the
time series over time (Prado and Huerta, 2002). In particular, such analyses found that rel-
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search p∗
M0

p∗
M1

#models visited

1 (2, 5) (1, 1, 1, 1, 1, 2, 2, 2) 1,243

2 (1, 2, 3) (1, 1, 1, 1, 1, 1, 1, 2, 2) 848

3 (1, 2, 3, 4) (1, 1, 1, 1, 1, 1, 1, 2, 2) 811

4 (1, 1, 1, 1, 1, 1, 2, 2, 2, 2) (1, 1, 2, 2, 2, 2, 2) 75

5 (1, 1, 1, 1, 1, 2, 2, 2, 2) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2) 400

6 (1, 1, 1, 1, 1, 2, 2, 2) (1, 1, 1, 1, 1, 2, 2, 2) 640

search Omax Mmax pmax BIC

1 5 10 6 199276.8

2 3 10 4 198955.2

3 4 11 6 199122.0

4 3 10 4 199826.0

5 4 11 5 199185.8

6 4 11 4 199026.6

Table 1
Results obtained from six runs of the search algorithm when applied to the 7-channel EEG data

atively high model orders (around 6-12) were needed in earlier and middle portions of the
signals while lower order models (around 2-4) were appropriate for the latter portions of the
signal.

In this Section we simultaneously study the 7 channels listed above using multivariate VAR-
HME models. Several trials of the algorithm described in Section 3 were initialized at different
model configurations and multiple starting points were chosen for the parameters of each
initial model configuration. Table 1 summarizes some of the results obtained after running the
algorithm 6 times using different model configurations as starting points. The parameters
that define the reinitialization and stopping criteria of the algorithm were set as follows:
n1 = n2 = 20, n3 = n4 = 500, τ1 = 10−5, τ2 = 10−3 and τ3 = 10−2. A maximum model
order pmax = 30 was allowed. All the final configurations had one overlay, even though
the algorithm visited several model configurations with 2,3,4 and even 5 overlays. Model
configurations with a minimum of M = 1 experts and a maximum of M = 11 experts
were visited. The maximum model order for all the VAR components visited was 6. Table 1
displays the initial p∗

M0
vectors that contain the model orders for each expert, as well as the

vector p∗
M1

containing the model orders for each expert model of the final model configuration
found by the algorithm before stopping. The number of model configurations, the maximum
number of overlays, the maximum number of models and the maximum VAR model orders,
as well as the optimal BIC for each search are also shown in Table 1. The optimal VAR-
HME model configuration from the six trials was obtained in the second search. We denote
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Fig. 6. Maximum likelihood estimates of gm(t) for m = 1, . . . , 9

this configuration as M∗
1. This model configuration is defined by OM∗

1
= 1, MM∗

1
= 9 and

p∗
M∗

1

= (1, 1, 1, 1, 1, 1, 1, 2, 2).

Figures 6 and 7 show the ML estimates of the traces of gm(t) and hm(t), respectively, for
m = 1, . . . , 9. From these figures we see that expert models m = 1 to m = 6 have more
weight in initial and middle portions of the series, while expert models m = 7, m = 8 and
m = 9 have more weight toward the end of the series. The fact that six model components
are used to describe initial and middle portions of the series, while three components are
enough to explain the behavior of the series toward the end of the seizure indicates that
the latent structure of the multiple series is more complex at initial and middle portions of
the EEGs. Figure 8 shows the added trajectories of the estimated gating functions for the
expert models m = 1, . . . , 6. It is obvious from this picture that components 1 to 6 do a
very good job in explaining initial and middle portions of the multiple series. These findings
are consistent with those summarized in Prado and Huerta (2002) in the analysis of a single
EEG channel. The latent structure of the series has a greater complexity before the seizure
starts to dissipate and therefore, more components are needed to capture such structure at
initial and middle parts.

The variance-covariance ML estimates obtained from the algorithm for the optimal model
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Fig. 7. Maximum likelihood estimates of hm(t) for m = 1, . . . , 9

configuration are given by

Σ̂1,1 = diag(1165.3, 1148.3, 1105.2, 1305.5, 516.0, 2693.3, 363.0),

Σ̂1,2 = diag(928.0, 1183.7, 758.0, 1197.7, 603.6, 2708.0, 407.6),

Σ̂1,3 = diag(2413.9, 1259.7, 2101.5, 2529.7, 706.2, 2504.7, 474.9),

Σ̂1,4 = diag(795.2, 953.3, 564.0, 835.3, 300.7, 993.9, 271.4),

Σ̂1,5 = diag(553.9, 1319.3, 546.9, 887.0, 422.2, 2041.8, 346.9),

Σ̂1,6 = diag(5504.1, 3749.6, 4719.5, 10082.0, 3362.3, 6955.8, 1864.2),

Σ̂1,7 = diag(29.8, 49.6, 33.6, 20.4, 18.4, 51.0, 16.5),

Σ̂1,8 = diag(213.6, 176.8, 221.7, 134.9, 83.7, 254.7, 69.0),

Σ̂1,9 = diag(278.4, 405.5, 245.9, 229.2, 127.5, 357.5, 109.9).

The variance is a measure of the amplitude of the signal and so, these results are consistent
with the fact that, on average, the EEGs have higher amplitude at initial and central portions
of the series — represented by variance covariance matrices Σ̂1,i for i = 1, . . . , 6 — and lower

amplitudes toward the end — represented by variance-covariance matrices Σ̂1,i for i = 7, 8, 9
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Fig. 8. Estimated trace
∑6

j=1 ĝt(j) for the EEG data

— when the seizure starts to dissipate. In addition, ordering the channels by increasing
variance for each of the components it is possible to see that channels F3 and Fp2 (frontal-
left and pre-frontal right, respectively) consistently display the lowest amplitude over the
seizure course. The channels displaying the highest amplitude vary over the seizure course,
with Cz and O2 having the highest amplitudes at the beginning of the series and O2, O1

and Fp1 displaying the highest amplitude toward the end. These findings are consistent with
those reported in the multi-channel univariate analysis of Prado et al. (2001). In addition,
the VAR-HME analysis presented here provides further insight into the structure of the
multiple EEG series over time. The estimates of gm(t) and ht(m) for m = 1, . . . , 9 indicate a
change in the structure of the multiple time series that is associated to seizure dissipation.
In particular, Figure 8 shows a decrease in the probabilities related to components m = 1
to m = 6 starting at around t = 1500 to t = 2000. Detecting the beginning of seizure
dissipation is believed to be relevant in assessing the efficacy of ECT treatment (Prado and
Huerta, 2002). The multivariate VAR-HME models allow us to estimate seizure dissipation
in a probabilistic fashion using several EEG channels to make such inferences instead of a
single channel. This is clearly an advantage of using these multivariate models instead of
simpler univariate alternatives.

The latent structure of the multivariate time series can be investigated by looking at the
moduli and wavelengths (or frequencies) of the characteristic polynomials of each of the VAR
models present in the mixture. A time series decomposition for each of the seven series can
also be computed using the multivariate decomposition results presented in Prado (1998).
Here we only summarize the characteristic root structure. Specifically, Table 2 shows the
moduli and wavelengths of the characteristic roots whose moduli were higher than 0.8, for
each of the VAR components in the VAR-HME model. Expert m = 7 has a very high
modulus component with a wavelength that is higher than any of the wavelengths in expert
models m = 4 and m = 1. This is an indication that the dominant frequency components in
the series tend to decrease toward the end of the seizure.

Finally, Figure 9 displays the qqplots of the transformed values of 2|ût,j − 0.5| for the EEG
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Component Real roots rj Complex roots (rj , λj)

m = 1 — (0.89, 18.71)

m = 2 1.05 —

m = 3 1.78; 0.94 —

m = 4 0.99 (0.85, 79.36)

m = 5 1.00 —

m = 6 1.05 —

m = 7 1.07; 0.94; 0.87 (0.98, 112.13)

m = 8 0.98 (0.90, 19.73)

m = 9 0.99 (0.93, 15.08)

Table 2
Characteristic roots with moduli higher than 0.8 for each of the VAR-HME components in the
model configuration M∗
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Fig. 9. qqplots of 2|ût,j − 0.5| for the EEG components j = 1, . . . , 7.

series j = 1, . . . , 7. The graphs show that most of the points for the 7 series lie at the qqline
and only a few display some deviation from the Normal.
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5 Conclusions and future directions

This paper provides advancement in multivariate time series methodology that combines
hierarchical mixtures and vector autoregressive components. Our modeling approach is il-
lustrated with the analysis of synthetic data and a 7-channel EEG multiple times series. We
propose an innovative search algorithm based on BIC that determines the number of over-
lays, experts and model orders for our VAR-HME framework. This is a step beyond other
previous analyses done with HME time series models. Both data examples exhibit that this
search algorithm is efficient and determines good model structures. It is also shown, partic-
ularly in the EEG data analysis, that VAR-HME constitute a very flexible class of models
to describe the structure of multiple time series, offering advantages with respect to simpler
modeling alternatives such as univariate mixture of autoregressive models.

On the other hand, this paper only addresses point estimation of the model parameters via
an EM algorithm and not a full Bayesian analysis. A complete Bayesian approach can be
achieved using MCMC/Data Augmentation algorithms as exposed in Huerta et al. (2003).
However, in this context it is not trivial how to generalize the model search algorithm. One
possible road is to include model uncertainty in the number of overlays, number of model
parameters and model orders via a sophisticated Reversible jump Markov chain Monte Carlo
method (Green, 1995). This will require careful thought of the prior specification since default
uniform priors in mixture models usually lead to improper posteriors. It is also well known
that specifying sensible prior distributions for multivariate time series models is, in general,
a very difficult task (Huerta and Prado, 2003). Another option is to compare models for
different values of overlays and for experts with different model orders with Bayes factors
obtained via marginal likelihood approximations as in Chib and Jeliazkov (2001). These
approaches will be pursued elsewhere.

Although the focus of this paper is not on forecasting, this is another issue that should be
explored in the future. In this paper we deal with multivariate time series for which the main
goal is to infer key features of the latent processes over a given period of time, however, in
many time series applications forecasting is also relevant. Possibly, the simplest way to do
forecasting would be to condition on a particular set of parameters estimated, for example,
in a Bayesian fashion, and then, sample a future observation q steps ahead, say yT+q, from
fT+q(yT+q|FT+q−1,XT+q; θ) in two steps. First, a pair of indexes (o, m) would be sampled
with probabilities given by the mixture weights, gT+q(o, m|FT+q−1,XT+q; γ). Then, condi-
tional on (o, m), yT+k could be sampled from the basic density πT+q(yT+q|FT+q−1,XT+q; η).

Finally, although the VAR-HME models described in Section 2 are very general, we did
not explore any examples in which the gating functions depend on other relevant covariates
that are not exclusively time. For example, an interesting extension in the 7-channel EEG
application would be to consider models in which the gating functions include the channel
location as a covariate. These type of models will be considered in the future.
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