
Parameter space exploration with Gaussian process trees

Robert B. Gramacy rbgramacy@ams.ucsc.edu

Herbert K. H. Lee herbie@ams.ucsc.edu

University of California, Santa Cruz, Applied Math & Statistics Department
Baskin Engineering: 1156 High St. Santa Cruz, CA 95064

William G. Macready wgm@email.arc.nasa.gov

University Affiliated Research Center
NASA Ames Research Center: Mail Stop 269-4, Moffett Field, CA 94035 USA

Abstract

Computer experiments often require dense
sweeps over input parameters to obtain a
qualitative understanding of their response.
Such sweeps can be prohibitively expensive,
and are unnecessary in regions where the re-
sponse is easy predicted; well-chosen designs
could allow a mapping of the response with
far fewer simulation runs. Thus, there is a
need for computationally inexpensive surro-
gate models and an accompanying method
for selecting small designs. We explore a
general methodology for addressing this need
that uses non-stationary Gaussian processes.
Binary trees partition the input space to fa-
cilitate non-stationarity and a Bayesian inter-
pretation provides an explicit measure of pre-
dictive uncertainty that can be used to guide
sampling. Our methods are illustrated on
several examples, including a motivating ex-
ample involving computational fluid dynam-
ics simulation of a NASA reentry vehicle.

1. Introduction

As computing power has advanced so too has the fi-
delity of computer simulation. However, this fidelity
often comes at great computational expense. Com-
putational fluid dynamics simulations in which fluid
flow phenomena are modeled are an excellent example
— fluid flows over complex surfaces may be modeled
accurately, but only at the cost of supercomputer re-
sources.

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the the authors.

A simulation model defines a mapping (perhaps non-
deterministic) from parameters describing the input
to one or more output responses. Without an analytic
representation of this mapping, the simulation must be
run for many different inputs in order to build up an
understanding of the simulation’s possible outcomes.
Computational expense and/or high dimensional in-
put usually prohibits a naive approach to the mapping
of the response surface. A computationally inexpen-
sive approximation to the simulation (O’Hagan et al.,
1999) with active learning is one possible remedy. If
the approximation is a good match to the simulation,
then samples may be drawn in regions of the input
space where the output response is changing signifi-
cantly. For models which return both predictions and
associated confidences, regions can be identified where
the model is unsure of the response.

We focus on Gaussian processes (GPs) as a suitable
approximation for a number of reasons. GPs are con-
ceptually straightforward, easily accommodate prior
knowledge in the form of covariance functions, and
return a confidence around predictions. In spite of
these benefits there are three important difficulties in
applying standard GPs in our setting. Firstly, infer-
ence on the GP scales poorly with the number of data
points; typically requiring O(N3) time, where N is
the number of data points. Secondly, GP models are
usually stationary as the same covariance structure is
used throughout the entire input space. In the appli-
cations we have in mind, where subsonic flow is quite
different than supersonic flow, this limitation is unac-
ceptable. Thirdly, the error (standard deviation) as-
sociated with a predicted response under a GP model
does not directly depend on any of the previously ob-
served output responses. Instead, it depends only
upon the previously sampled input settings {xi}

N
i=1

and the covariance matrix C(xi,xj). All of these



shortcomings may be addressed by partitioning the in-
put space into regions, and fitting separate GPs within
each region. Partitioning allows for non-stationary be-
havior, and can ameliorate some of the computational
demands (by fitting models to less data). Finally, a
fully Bayesian interpretation yields uncertainty mea-
sures for predictive inference which can help direct fu-
ture sampling.

This work draws upon two successful approaches. The
use of trees and recursive partitioning for achieving
non-stationarity has a long history (Breiman et al.,
1984; Denison et al., 1998)— the Bayesian applica-
tion of which is well worked out— and the use of
GPs for active learning has also seen recent success
(Seo et al., 2000). Alternative approaches for non-
stationary modeling include mixtures of GPs (Tresp,
2001) and infinite mixtures of GPs (Rasmussen &
Ghahramani, 2002).

This paper is structured as follows. We define the
problem and review the necessary background in Sec-
tion 2. Section 3 provides details on the use of
Bayesian treed GP models including inference and pre-
diction. Section 4 considers how the treed GP model is
used to adaptively select input parameters. Section 5
presents results on real and simulated data, and pro-
vides a comparison of the proposed adaptive sampling
scheme to two others used in the literature.

2. Background and related work

We model the simulation output as (Sacks et al., 1989)

Y(x) = x>β + W(x) (1)

where Y is the (possibly multivariate) output of the
computer model, x is a particular (multivariate) input
value, β are linear trend coefficients, and W(x) is a
zero mean random process with covariance C(x,x′) =
σ2K(x,x′), and K is a correlation matrix. Stationary
Gaussian processes (Sacks et al., 1989) are a popular
example of a model that fits this description.

As discussed in the introduction, we require more flexi-
bility than offered by a stationary GP. To achieve non-
stationarity we turn to binary trees, using them to
partition the input space, and then fit a GP to each
partition. This approach bears some similarity to the
models of Kim et al. (2002), who fit separate GPs in
each element of a Voronoi tessellation. Our approach
is better geared toward problems with a smaller num-
ber of distinct partitions, leading to a simpler overall
model. Using a Voronoi tessellation allows an intri-
cate partitioning of the space, but has the trade-off of
added complexity and can produce a final model that

is difficult to interpret. The complexities of this added
flexibility are not warranted in our application.

2.1. Stationary Gaussian Processes

GPs are a popular kernel-based method for regression
and classification. Though the method can be traced
back to Kriging (Matheron, 1963), it is only recently
that they have been broadly applied in machine learn-
ing. Consider a training set D = {xi, ti}

N
i=1 of mX -

dimensional input parameters and mY -dimensional
simulation outputs. We indicate the collection of in-
puts as the N × mX matrix X whose ith row is x>

i .
A GP (Seo et al., 2000) is a collection of random vari-
ables Y(x) indexed by x having a jointly Gaussian
distribution for any subset of indices. It is specified
by a mean µµµ(x) = E

(

Y(x)
)

and correlation function

K(x,x′) = E
(

[Y(x) − µµµ(x)][Y(x′) − µµµ(x′)]>
)

. Given
a set of observations D, the resulting density over out-
puts at a new point x is easily found to be Gaussian
with

mean ŷ(x) = k>(x)K−1t, and

variance σ2
ŷ(x) = σ2[K(x,x) − k>(x)K−1k>(x)].

For simplicity we assume that the output is scalar (i.e.,
we are modeling each output response independently
and so mY = 1) so that the image of the covariance
function is a scalar. To keep this equation simple, the
linear term from (1) has been omitted here. We de-
fine k>(x) to be the N -vector whose ith component is
K(x,xi), K to be the N ×N matrix with i, j element
K(xi,xj), and t to be the N -vector of observations
with i component ti. It is important to note that the
uncertainty, σ2

ŷ(x), associated with the prediction has
no direct dependence on the observed simulation out-
puts t. Typically, the covariance function depends on
hyperparameters which are determined either by max-
imizing the likelihood of D or integrating over them.

2.2. Bayesian Treed Models

A tree model partitions the input space and infers a
separate model within each partition. Partitioning is
often done by making binary splits on the value of
a single variable (e.g., speed > 0.8) so that partition
boundaries are parallel to coordinate axes. Partition-
ing is recursive, so each new partition is a sub-partition
of a previous one. For example, a first partition may
divide the space in half by whether the first variable is
above or below its midpoint. The second partition will
then divide only the space below (or above) the mid-
point of the first variable, so that there are now three
partitions (not four). Since variables may be revisited,
there is no loss of generality by using binary splits as



multiple splits on the same variable will be equivalent
to a non-binary split. These sorts of models are of-
ten referred to as Classification and Regression Trees
(CART) (Breiman et al., 1984). CART has become
popular because of its ease of use, clear interpretation,
and ability to provide a good fit in many cases.

The Bayesian approach is straightforward to apply to
tree models (Chipman et al., 1998; Denison et al.,
1998). Key is the specification of a meaningful prior
for the size of the tree. Here we follow Chipman et. al
who specify the prior through a tree-generating pro-
cess. Starting with a null tree (all data in a single
partition), the tree T is probabilistically split recur-
sively, with each partition η being split with probabil-
ity psplit(η, T ) = a(1 + qη)−b where qη is the depth
of η in T and a and b are parameters chosen to give
an appropriate size and spread to the distribution of
trees. More details are available in Chipman et. al
(1998). We expect a relatively small number of par-
titions, and choose these parameters accordingly. As
part of the process prior, we further require that each
new region have at least five data points, since the
parameters of a GP cannot be effectively estimated if
there are too few points in a partition.

3. Non-stationary GPs via Trees

We begin by defining the model conditional on a par-
ticular tree, and later discuss integrating over possible
trees.

3.1. Hierarchical Model

A tree T recursively partitions the input space into
into R non-overlapping regions: {rν}

R
ν=1. Each region

rν contains data Dν = {Xν , tν}, consisting of nν ob-
servations. Each split in the tree is based on a selected
dimension uj ∈ {1, . . . , mX} and an associated split
criterion sj , so that one of the resulting sub-partitions
consist of those observations in {Xν , tν} with the ujth
parameter less than sj , and the other contains those
observations greater than or equal to sj .

Given a tree T , we fit a stationary GP with linear trend
(1) independently within each region. The nν × nν

covariance matrix for the process in the νth region
is denoted Kν and the linear trend coefficients are
βν . We denote the full set of coefficients across all re-
gions as β> = [β>

1 , . . . , β>
R] (and similarly for all other

region-specific parameters). The hierarchical genera-

tive model we use is:1

tν |βν , σ2
ν , dν , gν ∼ N(Fνβν , σ2

νKν),

βν |σ
2
ν ,W, β0 ∼ N(β0, σ

2
νW)

β0 ∼ N(µ,B),

σ2
ν ∼ IG(α0/2, q0/2),

W−1 ∼ W ((ρV)−1, ρ),

with Fν = (1,Xν), and W is a (mX+1)×(mX+1) ma-
trix. N , IG, and W are the Normal, Inverse-Gamma,
and Wishart distribution, respectively. The GP corre-
lation structure for each partition, Kν , is chosen from
an isotropic power family with a fixed power p0, but
unknown range dν and nugget gν parameters:

Kν(xj ,xk) = (2)

exp

{

−
[(xj − xk)>(xj − xk)]p0

dν

}

+ gνδj,k,

where δ·,· is the Kronecker delta function. For nota-
tional convenience we continue to refer K as a corre-
lation matrix, even though with the nugget term, g,
in K(·, ·) of Eq. (2) it is no longer technically a corre-
lation matrix. Hierarchical mixture-priors on d and g
can express our prior belief that the global covariance
structure is non-stationary. Below, we shall refer to
parameters to such hierarchical priors as γ. Finally,
constants µ,B,V, ρ, α0, q0, p0 are treated as known.

3.2. Prediction

Prediction under the above GP model is straightfor-
ward (Hjort & Omre, 1994). The predicted value of y

at x is normally distributed with mean and variance

ŷ(x) = f>(x)βν + k>
ν K−1

ν (tν − Fνβν), (3)

σ̂(x)2 = σ2
ν [κ(x,x) − q>

ν (x)C−1
ν qν(x)], (4)

where C−1
ν = (Kν + FνWF>

ν )−1, qν(x) = kν(x) +
FνWνf(x), f>(x) = (1,x>), κ(x,y) = Kν(x,y) +
f>(x)Wf(y), and kν(x) is a nν−vector with kν,j(x) =
Kν(x,xj), for all xj ∈ Xν .

3.3. Estimating the model parameters

The data Dν = {X, t}ν are used to estimate the pa-
rameters θν ≡ {βν , σ2

ν , dν , gν}, for ν = 1, . . . , R. Pa-
rameters to the hierarchical priors (θ0 = {W, β0, γ})
depend only on {θν}

R
ν=1. Conditional on the tree T ,

we write the full set of parameters as θ = θ0∪
⋃R

ν=1
θν .

Samples from the posterior distribution of θ are gath-
ered using Markov chain Monte Carlo (MCMC) (Gel-
man et al., 1995).

1We omit the dependence on T .



βν , σ2
ν , β0,W are updated with Gibbs steps. The

other parameters require Metropolis Hastings (MH)
steps. It is advantageous for mixing to analytically in-
tegrate out β and σ2 to get a marginal posterior when
updating dν and gν .

3.4. Tree Structure

Integrating out dependence on the tree structure T is
accomplished by reversible-jump MCMC (RJ-MCMC)
(Richardson & Green, 1997). We implement the tree
operations grow, prune, change, and swap similar to
those in Chipman et al. (1998). Tree proposals can
change the size of the parameter space (θ). To keep
things simple, proposals for new parameters— via an
increase in the number of partitions R— are drawn
from their priors, thus eliminating the Jacobian term
usually present in RJ-MCMC. New splits are chosen
uniformly from the set of marginalized input locations
X.

Swap and change tree operations are straightforward
because the number of partitions (and thus parame-
ters) stays the same. In a change operation we propose
moving an existing split-point {u, s}, to either the next
greater or lesser value of s (s+ or s−) along the uth
dimension of (marginalized) locations from X. This
is accomplished by sampling s′ uniformly from the set

{uν, sν}
dR/2e
ν=1

×{+,−}. Parameters θr in regions below
the split-point {u, s′} are held fixed. Uniform propos-
als and priors on split-points cause the MH acceptance
ratio for change to reduce to a simple likelihood ratio.

The swap operation is similar, however we slightly aug-
ment the one described in Chipman et al. (1998).
Swaps proposed on parent-child internal nodes which
split on the same variable are always rejected because
a child region below both parents becomes empty after
the operation. However, if instead a rotate operation
from Binary Search Trees (BSTs) is performed, the
the proposal will almost always accept. Rotations are
a way of adjusting the configuration (and thus height)
of a BST without violating the BST property. Ro-
tations encourage better mixing of the Markov chain
by providing a more dynamic set of candidate nodes
for pruning, thereby helping it escape local minima.
Since the partitions at the leaves remain unchanged,
the likelihood ratio of a proposed rotate is always 1.
The only “active” part of the MH acceptance ratio is
the prior on tree T , preferring trees of minimal depth.

Grow and prune operations are more complex because
they add or remove partitions, and thus cause a change
in the dimension of the parameter space. The first step
for either operation is to select a leaf node (for grow),
or the parent of a pair of leaf nodes (for prune). We

choose the node uniformly from the set of legal candi-
dates. When a new region r is added, new parameters
{d, g}r must be proposed, and when a region is taken
away the parameters must be absorbed by the par-
ent region, or discarded. When evaluating the MH
acceptance ratio for either operation we marginalize
over the {β, σ2}r parameters. One of the newly grown
children is selected (uniformly) to receive the d and g
parameters of its parent. To ensure that the resulting
Markov chain is ergodic and reversible, the other new
sibling draws its d and g parameters from their pri-
ors. Symmetrically, prune operations randomly select
parameters d and g for the consolidated node from
one of the children being absorbed. If the grow or
prune operation is accepted, σ2

r can next be drawn
from its marginal posterior (with βr integrated out)
after which draws for βr and the other parameters for
the rth region can then proceed as usual.

4. Adaptive Sampling

Having described the predictive algorithm used to
model P (y|x), we now consider how to choose new
sampling locations based on this distribution. Two
criteria have been previously proposed. The simplest
choice is to maximize the information gained about
model parameters {θ, T } by selecting the x̃ which has
the greatest standard deviation in predicted output
(Mackay, 1992). Given its simplicity this is the method
we explore here. An alternative measure is to select x̃

minimizing the resulting expected squared error over
the input space (Cohn, 1994). A comparison between
these two methods using standard GPs appears in Seo
et al. (2000). In the results described below we use
the difference between the 95% and 5% quantiles of the
predicted output value as the measure of uncertainty—
an MCMC scaled-approximate standard deviation. A
comparison of our methods to the algorithms described
by Seo et al. is included in Section 5.3.

To further improve our adaptive sampling we shall ex-
ploit Latin hypercube (LH) designs (Box et al., 1978).
LHs systematically choose points that are spread out,
taking on values throughout the region, but in differ-
ent combinations across dimensions, thereby obtaining
nearly full coverage with fewer points than a full grid-
ding. To create a LH (McKay et al., 1979) with n
samples in a mX -dimensional space, one starts with
an nmX grid over the search space. For each row in
the first dimension of the grid, a row in each other di-
mension is chosen randomly without replacement, so
that exactly one sample point appears in each row for
each dimension. Within these chosen grid cells, the
actual sample point is typically chosen randomly. In



one dimension a LH design is equivalent to a complete
grid, but as the number of dimensions grows, the num-
ber of points in the LH design stays constant, and the
computational savings grow exponentially with mX .

5. Results and Discussion

In this section we demonstrate an adaptive sampling
scheme based on the Bayesian treed GP model of
Section 3. Given N previous samples and their re-
sponses we use the model and its predictive quan-
tiles to select a new location at which to request a
response. For all experiments herein this is accom-
plished as follows: 15,000 MCMC rounds are per-
formed, in which the parameters θ|T are updated. Ev-
ery fourth round we also update the tree structure (T )
by drawing probabilistically from the discrete distribu-
tion {2/5, 1/5, 1/5, 1/5}, and attempting a {change,
grow, prune, swap} operation accordingly. The first
5,000 of the 15,000 rounds are treated as burn-in, af-
ter which predictions are made using the parameters
sampled during the remaining 10,000 rounds. Suppose
that there are currently N locations xi for which we
have a response ti.

2 An initial LH sample of size N0

is used to get things started. At the beginning of the
MCMC rounds we lay down a LH sample of N ′ new
locations on which to predict. Quantiles (95th and
5th) are computed at each of the N ′ predictive loca-
tions. Based on their difference, one is selected. Every
third adaptive sample is chosen probabilistically, treat-
ing the quantiles as a discrete distribution, while the
rest are chosen by taking the maximum. Probabilistic
samples are taken for robustness, as the maximum is
only the optimal choice when the model is specified
completely correctly. Finally, a response is elicited at
the chosen input location, and the pair is then added
into the data. The process is repeated, the model re-
fit, and another adaptive sample is chosen from a new
set of N ′ LH samples.

5.1. Synthetic Data

1-d Sinusoidal dataset:

Our first example is a simulated dataset on the input
space [0, 60]. The true response is (Higdon, 2002):

t(x) =

{

sin
(πx

5

)

+
1

5
cos

(

4πx

5

)}

θ(x − 35.75) (5)

where θ is the step function defined by θ(x) = 1 if
x > 0 and θ(x) = 0 otherwise. Zero mean Gaussian
noise with sd = 0.1 is added to the response. This

2We first translate and re-scale the data so that it lies
on the unit cube in R

mX .

dataset typifies the type of non-stationary response
surface that our model was designed to exploit.

0 10 20 30 40 50 60

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Estimated Surface

x

z(
x)

0 10 20 30 40 50 60

0.
30

0.
35

0.
40

Estimated Error Spread (95th − 5th Quantile)

x
qu

an
til

e 
sp

re
ad

0 20 40 60 80

0.
00

6
0.

00
8

0.
01

0
0.

01
2 mse

total adaptive samples

m
se

100 LH Samples
200 LH Samples

Figure 1. Top : surface estimate (mean and quantiles) with
the initial and adaptively sampled data shown. Middle:
MCMC quantile-based error over the domain. Bottom:

MSE decreases over time.

Figure 1 shows the model after N0 = 20 initial LH
samples and 80 adaptive samples (with N ′ = 200) were
drawn iteratively (as outlined above). The top graphs
show a snap-shot of the predictive mean and predic-
tive 5% and 95% quantiles after the 80th adaptive
sample, illustrating that of 80 adaptive samples (dots)
only about 25% are in the flat region. The quantile-
based error differences (shown in middle graph) are
indeed lower in this region. These errors also point
to high model uncertainty around the split-point be-
tween the two regions, and consequently this part of
the space has the highest concentration of adaptive
samples. The bottom graph illustrates how the model
adapts over time, showing that the mean standard er-
ror (MSE) decreases steadily as samples are added,



despite the fact that very few are added in the flat re-
gion. Moreover, it shows that adaptive sampling yields
significantly lower MSE than using the same Bayesian
treed GP model with 100 and even 200 LH samples.
This corresponds to a factor of two decrease in the to-
tal number of samples compared to LH sampling. As
might be expected, there were on average two parti-
tions constructed in each round with quite small vari-
ance.

Detailed analysis of the learned models clearly illus-
trates another difference between sampling adaptively
and using a LH design. The predictive surface based
entirely on LH samples does not achieve the same ac-
curacy (or resolution) as the surface which is based
on the same number adaptive samples as it fails to
discover the secondary structure contributed by the
cosine term in (5). We also note that the stationary
model (which does not partition the input space) fits
the sinusoidal region about as well as the non-adaptive,
non-stationary model, however the fit of the station-
ary model in the flat region is poor because it assumes
a homogeneous correlation structure.

Our implementation in C/C++ using the ATLAS library
running on an Intel Xeon at 2 GHz required 10 sec-
onds for sample 21 (first adaptive) and 65 seconds for
sample 100 (last).

2-d Exponential dataset:

Next we show results for a two-dimensional input space
in [−2, 6]× [−2, 6]. The true response is given by

y(x) = x1 exp(−x2
1 − x2

2) (6)

As before, a small amount of Gaussian noise (with sd =
0.001) is added. There are N0 = 20 initial LH samples
and an additional 60 adaptively selected samples (from
N ′ = 2N). Note that besides its dimensionality, a key
difference between this data set and the last is that it is
not defined using step functions; this smooth function
does not have any artificial breaks between regions.

Figure 2 shows results which are similar to those for
the 1-d sinusoidal data set. After the 60th adaptive
sample, the top-left graph shows the fitted response
generated by the sample shown at the top-right, most
of which were, by design, drawn in [−2, 2]× [−2, 2] as
the corresponding quantile based errors were largest
here (not shown). The bottom graph compares adap-
tive sampling with LH sampling by MSE. The two
horizontal lines in this graph represent the MSE of
Bayesian treed GP models fit on 80 and 160 LH sam-
ples. Notice that the adaptive sampler beats out the
LH design using half as many samples. Drawing the
first and last adaptive samples took 10 and 45 seconds,
respectively.

x[1]

x[2]

z

Estimated Surface

−2 0 2 4 6

−
2

0
2

4
6

Drawn Points

x[1]

x[
2]

0 10 20 30 40 50 600.
00

0
0.

00
4

0.
00

8
0.

01
2

mse

total adaptive samples

m
se

80 LH Samples
160 LH Samples

Figure 2. Top Left: surface estimate (mean and quantiles)
with the initial and adaptively sampled data shown. Top

Right: sampled points (initial-circles, and adaptive-dots)
Bottom : MSE decreases over time.

5.2. 3-d CFD data

The third dataset is the motivating example for this
work – the output from computational fluid dynamics
simulations of a proposed reusable NASA launch vehi-
cle called the Langley-Glide-Back Booster. The sim-
ulations involved the integration of the inviscid Euler
equations over a mesh of 1.4 million cells (0.8 million
cells were used for the supersonic cases).

x[1]=mach

x[2]=alpha

z=
lift

True Surface

x[1]=mach

x[2]=alpha

z=
lift

Estimated Surface

Figure 3. CFD projections. Left: true surface based on
∼3000 data points. Right: Fitted surface based on 750
adaptive samples, with the Bayesian treed GP model.

Each run of the Euler solver for a given set of pa-
rameters takes on the order of 5-20 hours on a high
end workstation. Three input parameters were varied
over (side slip angle, Mach number, and angle of at-
tack) and for each setting of the input parameters six



outputs were monitored. Using an interface to launch
many jobs on many machines a total of around 3000
input configurations were tested. A more detailed de-
scription of this system and its results can be found in
(Rogers et al., 2003).

0 1 2 3 4 5 6

−
5

0
5

10
15

20
25

30

Drawn Points

x[1]=mach

x[
2]

=
al

ph
a

0 100 200 300 400 5000.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

mse

total adaptive samples

m
se

Figure 4. Top : adaptively sampled input locations. Bot-

tom: MSE decreases over time.

The left side of Figure 3 shows one of the six outputs
(lift) plotted as a function of speed (Mach) and angle
of attack (alpha). The third input (side slip angle) is
fixed at zero. Much of the space has a linear response,
however it is highly non-linear near Mach one. We
want to automatically sample points more frequently
in this region. A fitted surfaced based upon 750 total
samples, N0 = 200 randomly selected initial subset for
“peppering” and 550 chosen adaptively, is shown on
the right side of Figure 3. Adaptively sampled con-
figurations (N ′ = N random subsample) are shown in
the top panel of Figure 4.

Our Bayesian treed GP model has the desired behav-
ior and focuses most of the adaptive sampling on the
Mach 1 region. Visually, there is little difference be-
tween the true surface (left) and the estimated surface
(right) shown in Figure 3. However, using a Bayesian
treed GP model with adaptive sampling requires fewer
than 1/4 as many samples compared to a simple grid-
ding, saving thousands of hours of computing time.
The first and last adaptive sample took 30 seconds
and 10 minutes, respectively, which is fast relative to
one execution of the Euler solver.

5.3. A comparator

As mentioned briefly in Section 4 our adaptive sam-
pling scheme is motivated by an approach described
by Seo et. al.. In their paper they outline two al-
gorithms based on the predictive variances (4): ALM
and ALC. ALM chooses the next adaptive sample by
finding the input location x̃ ∈ X̃ which maximizes (4).
ALC chooses x̃ to maximize the expected reduction in
predictive variance at set of locations X̃. Theoretically
X̃ could be an open subset of R

d, although in practice
it is taken to be a finite lattice or regular grid, cho-
sen a priori. Section 5 describes a sampling algorithm
similar to ALM, however we note two key differences.
The first is the aforementioned randomization of ev-
ery third adaptive sample for model robustness. The
second is that Seo et. al. assume knowledge of the cor-
rect covariance structure (and parameters) at the start
of the experiment — a significant assumption that we
do not make. Furthermore they do not update their
model in light of new responses.

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

1−d Sinusoidal

adaptive samples (R)

m
se

BAS
ALM
ALC

0 20 40 60 800.
00

0
0.

00
5

0.
01

0
0.

01
5

2−d Exponential

adaptive samples (R)

m
se

BAS
ALM
ALC

Figure 5. Top: Bayesian adaptive sampler (BAS) v. ALM
and ALC in MSE on the sin-data; Bottom: exp-data.

Figure 5 demonstrates the advantage of adaptive sam-
pling using Gaussian Process trees by comparing the
MSE of samples chosen from a regular grid to those of
ALM and ALC. ALM and ALC have the luxury of not
having to learn the correct model and so fare better for
the first adaptive samples. However, since our model
can partition the space and adapt its parameters to ac-
count for the responses of sampled data, it eventually
achieves lower error, with fewer total samples.



6. Conclusion

By building a non-stationary surrogate model we can
sample adaptively and thus select smaller designs with
a corresponding savings in overall computing time and
a reduction in predictive variance. We have seen that
savings grows as the dimension of the problem grows,
allowing us to tackle problems that may not be feasible
using a traditional parameter sweep, or LH sampling.

One of the next key steps is to be able systematically
request more than one new sample at a time, in order
to take full advantage of parallel computing resources.
In a multiple-processor environment, simulator runs
will finish at different times, and the main controller
needs to be prepared with the next sampling point
so that processors are not sitting idle. Additionally,
other criteria for choosing the adaptive samples will be
explored in the hopes of developing even more efficient
sampling.

Acknowledgments

This work was partially supported by research sub-
award 08008-002-011-000 from the Universities Space
Research Association and NASA. We would like to
thank the area chair and three anonymous referees for
their helpful suggestions.

References

Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978).
Statistics for experimenters. New York: Wiley.

Breiman, L., Friedman, J. H., Olshen, R., & Stone, C.
(1984). Classification and regression trees. Belmont,
CA: Wadsworth.

Chipman, H., George, E., & McCulloch, R. (1998).
Bayesian CART model search (with discussion).
Journal of the American Statistical Association, 93,
935–960.

Cohn, D. (1994). Neural network exploration using op-
timal experimental design. Advances in Neural In-
formation Processing Systems (pp. 679–686). Mor-
gan Kaufmann Publishers.

Denison, D., Mallick, B., & Smith, A. (1998). A
Bayesian CART algorithm. Biometrika, 85, 363–
377.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B.
(1995). Bayesian data analysis. London: Chapman
and Hall.

Higdon, D. (2002). Space and space-time modeling us-
ing process convolutions. Quantitative Methods for

Current Environmental Issues (pp. 37–56). London:
Springer-Verlag.

Hjort, N. L., & Omre, H. (1994). Topics in spatial
statistics. Scandinavian Journal of Statistics, 21,
289–357.

Kim, H.-M., Mallick, B. K., & Holmes, C. C. (2002).
Analyzing non-stationary spatial data using piece-
wise Gaussian processes (Technical Report). Texas
A&M University – Corpus Christi.

Mackay, D. (1992). Information-based objective func-
tions for active data selection. Neural Computation,
4, 589–603.

Matheron, G. (1963). Principles of geostatistics. Eco-
nomic Geology, 58, 1246–1266.

McKay, M. D., Conover, W. J., & Beckman, R. J.
(1979). A comparison of three methods for selecting
values of input variables in the analysis of output
from a computer code. Technometrics, 21, 239–245.

O’Hagan, A., Kennedy, M. C., & Oakley, J. E. (1999).
Uncertainty analysis and other inference tools for
complex computer codes. Bayesian Statistics 6 (pp.
503–524). Oxford University Press.

Rasmussen, C. E., & Ghahramani, Z. (2002). Infinite
mixtures of Gaussian process experts. Advances in
Neural Information Processing Systems. MIT Press.

Richardson, S., & Green, P. J. (1997). On Bayesian
analysis of mixtures with an unknown number of
components. Journal of the Royal Statistical Soci-
ety, Series B, Methodological, 59, 731–758.

Rogers, S. E., Aftosmis, M. J., Pandya, S. A.,
N. M. Chaderjian, E. T. T., & Ahmad, J. U. (2003).
Automated cfd parameter studies on distributed
parallel computers. 16th AIAA Computational Fluid
Dynamics Conference. AIAA Paper 2003-4229.

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn,
H. P. (1989). Design and analysis of computer ex-
periments. Statistical Science, 4, 409–435.

Seo, S., Wallat, M., Graepel, T., & Obermayer, K.
(2000). Gaussian process regression: Active data
selection and test point rejection. Proceedings of the
International Joint Conference on Neural Networks
IJCNN 2000 (pp. 241–246). IEEE.

Tresp, V. (2001). Mixtures of gaussian processes. Ad-
vances in Neural Information Processing Systems 13
(pp. 654–660). MIT Press.


