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Abstract

Gaussian processes (GP) have proven to be useful and versatile stochastic models in a wide

variety of applications including computer experiments, environmental monitoring, hydrology,

and climate modeling. A GP model is determined by its mean and covariance functions. In

most cases, the mean is specified to be a constant, or some other simple linear function, while

the covariance function is governed by a few parameters. A Bayesian formulation is attractive

since it allows for formal incorporation of uncertainty regarding the parameters governing the

GP. However, estimation of these parameters can be problematic. Large datasets, posterior cor-

relation, and inverse problems can all lead to difficulties in exploring the posterior distribution.

Here we propose an alternative model which is quite tractable computationally—even with large

datasets or indirectly observed data—while still maintaining the flexibility and adaptiveness of

traditional GP models. This model is based on convolving simple Markov random fields with a

smoothing kernel. We consider applications in hydrology and aircraft prototype testing.

Key Words: conditional autoregression, spatial correlation, moving average, inverse problem,

nonstationarity

1 Introduction

Gaussian processes (GP) have proven to be effective components of stochastic representations of a

wide variety of phenomena. Examples include meteorological fields (Royle et al., 1999), unknown
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functions (O’Hagan, 1991), complex computer model response (Sacks et al., 1989), agricultural

fertility gradients (Brownie et al., 1994), and pollutant fields (Host et al., 1995), among many

others.

It is common (e.g., Cressie, 1993) to define a GP z(s), s ∈ S over a space S such that for any

finite collection {s1, . . . , sn} ∈ S, (z(s1), . . . , z(sn)) has a multivariate normal distribution with

some specified mean function µ(s1, . . . , sn) and covariance matrix C with elements

C(z(si), z(sj)) =
1

λz
ρ(d), where d = dist(si, sj).

The correlation function ρ(d) controls the spatial dependence of z(s). For the most part, S is taken

to be Rp and the distance function dist(si, sj) is taken to be Euclidean distance. Other distance

metrics are most often based on Euclidean distance on a transformed version of S. Typically,

transformations are rotations and dilations (Isaaks and Srivastava, 1989, ch. 16); more generally,

spatial deformations (Sampson and Guttorp, 1992; Schmidt and O’Hagan, 2003) can be employed.

The choice of correlation function ρ(d) plays an important role in the specification of the GP

z(s). This paper will not concentrate on this aspect of modeling, but will focus on applications for

which z(s) is expected to be reasonably smooth. In these cases, the Gaussian correlation function

ρ(d;β) = exp{−βd2} (1.1.1)

is a good starting point. Alternatively, popular choices of ρ(d) include the exponential and Matérn

correlation functions. See Cressie (1993), Stein (1999), or Banerjee et al. (2003) for details regarding

the choice of correlation function.

For simplicity, we assume the GP z(s) has constant mean µ = 0. When the observed data

y = (y(s1), . . . , y(sn))T are modeled as the sum of the process z(s) and independent white noise,

the sampling model for the data is

L(y|z, λy) ∝ λ
n
2
y exp{− 1

2
λy(y − z)T (y − z)}

where z = (z(s1), . . . , z(sn))T is the process z(s) restricted to the observed data locations and λy

governs the precision of the white noise. The process z has a GP prior of the form

π(z|λz , β) ∝ λ
n
2
z |Rs(β)|−

1

2 exp{− 1

2
λzz

T Rs(β)−1z}

where the ijth element of the n × n correlation matrix Rs(β) is given by

Rs(β)ij = exp
{

−β dist(si, sj)
2
}

.
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The formulation is completed by specifying a joint prior density for λy, λz and β given by π(λy, λz, β).

In this case, z can be integrated out of the posterior so that

π(λy, λz , β|y) ∝ |Λ|
1

2 exp
{

− 1

2
yTΛy

}

× π(λy, λz , β) (1.1.2)

where Λ−1 = In/λy + Rs(β)/λz .

Functionals of this posterior can be evaluated via Markov chain Monte Carlo (MCMC) or

an alternative numerical integration scheme. Any numerical approach becomes problematic as n

gets large since evaluation of the posterior requires an inversion (or at least a decomposition and

solution) of an n × n matrix. In addition, strong posterior dependence between λz and β can also

make numerical integration schemes more difficult (Kern, 2000).

In the case when the data are not modeled as a Gaussian process plus Gaussian noise, a

more general likelihood, or sampling density, L(y|z, λy) is required. Here λy may hold parameters

controlling the sampling model. Examples include spatial models for non-Gaussian data (Besag

et al., 1991; Diggle et al., 1998) as well as inverse problems (Oliver et al., 1997; Higdon et al., 2003).

In such cases, integrating z out of the posterior usually cannot be done. This places a much larger

burden on the scheme being used to carry out the posterior exploration since a high-dimensional

z must also be taken into account. Typically, sampling the vector z is required for posterior

exploration in applications involving non-Gaussian data. For example, in inverse problems, values

of the process z(s) over a grid are usually required as inputs to a forward model which must be run

to evaluate the likelihood function. The flow application of this paper is such an example.

In summary, we highlight three issues regarding estimation that can hamper the use of GP

models in practice:

• strong posterior dependence regarding λz and β, hampering MCMC-based posterior sampling;

• difficulty in dealing with large n due to the matrix inversion required to evaluate the posterior

distribution;

• inability to marginalize over the spatial field z(s) in non-Gaussian and inverse problems,

leading to high-dimensional posterior distributions which are difficult to explore effectively.

Any combination of theses problems can arise in a given application. For example, researchers

studying inverse problems in hydrology have found it very difficult to obtain information regarding

the spatial range parameter β due to the combined effects of the first and third points above (Oliver

et al., 1997; Lee et al., 2002).

A promising approach for dealing with such problems is to use alternative representations of

the underlying GP z(s). Singular value decomposition (Schmidt and O’Hagan, 2003), Cholesky
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with pivoting (Lee et al., 2002), and spatial moving average (Higdon, 2002) representations have

been used successfully in applications. The lower dimensional representation of z(s) can result in

substantial gains in efficiency in the MCMC sampling. A drawback is that these representations

typically require that the spatial range parameter β be specified in advance when applied to complex

real-world problems, particularly inverse problems.

In this paper, we introduce a modification of the moving average representation which still gives

an efficient parameterization of z(s) while allowing inference on the range of spatial dependence.

The details of this simple approach are given in the following section, including a comparison to

the standard moving average and GP formulations. The usefulness of this modeling approach is

then demonstrated on two applications. The first is an inverse problem from hydrology; the second

is a prediction problem in aircraft prototype testing. In both applications, the modeling approach

developed here allows for estimation of the spatial range in rather complicated settings.

2 Convolutions of stationary and intrinsic processes

A convenient representation of a GP model uses process convolutions (Thiébaux and Pedder, 1987;

Barry and Ver Hoef, 1996; Higdon, 2002). One may construct a Gaussian process z(s) over a region

S by convolving a continuous, unit variance, white noise process x(s), with a smoothing kernel k(s):

z(s) =

∫

S
k(u − s)x(u)du. (2.2.1)

The resulting covariance function for z(s) depends only on the displacement vector d = s − s ′:

Cov(z(s), z(s′)) = C(d) =

∫

S
k(u − s)k(u − s′)du =

∫

S
k(u − d)k(u)du.

An alternative to specifying a spatially-independent process for x(s), is to use a more general

model. If we take x(s) to be an intrinsically stationary process with variogram γx(d) = Var(x(s)−
x(s + d)) the resulting variogram of the process z(s) induced by Equation (2.2.1) is given by

γz(d) = γ∗
z (d) − γ∗

z (0) where γ∗
z (q) =

∫

S

∫

S
k(v − q)k(u − v)γx(u) du dv. (2.2.2)

With this approach, one can fix the smoothing kernel k(s) and then modify the spatial depen-

dence for z(s) by controlling γx(d). For example, if one specifies k(s) to be a standard normal

kernel and x(s) to be 1-d Brownian motion with γx(d) = d/λx, then the variogram of the resulting

spatial process z(s) given by (2.2.2) would be

γBM (d) =
1

λx

[

2√
π

(

exp{−d2/4} − 1
)

+ d
(

Φ(d/
√

2) − Φ(−d/
√

2)
)

]
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Figure 1: Gaussian variograms (black lines) and similar variograms obtained from convolving Brownian

motion with a standard normal kernel (grey lines). The Gaussian variograms are obtained from smoothing

white noise with normal kernels whose variances are 2, 3, 4, 5 and 6 going left to right. The variograms

corresponding to the smoothed Brownian motion were obtained by choosing λx so that they match the

Gaussian variograms at d = 2.

where Φ(·) is the standard normal cumulative density function. An important feature is that the

spatial dependence is controlled by λx which simply scales the variogram. By contrast, if one were

to smooth white noise with a normal kernel with variance ω, the resulting variogram would be

γGP (d, ω) ∝ 1 − exp{−d2/(4ω)} = 1 − exp{−βd2}.

This gives the equivalence between smoothing white noise with a normal kernel having variance ω

and using the Gaussian correlation function (1.1.1): β = (4ω)−1.

Even though γBM (d) gives an intrinsic process z(s), while γGP (d) gives a stationary one, the

precision λx can be chosen so that γBM (d) and γGP (d) are very close for d < 2.5. Figure 1 shows

how λx can be specified so the variograms match for various values of ω. The key point here is that

by rescaling γBM one can mimic the effect of the spatial range parameter β in a GP model with a

Gaussian variogram. This is an important consideration in using MCMC for posterior exploration.

We can approximate the modeling capabilities of a GP while ameliorating the computational issues

discussed in the previous section.

Intrinsic processes are just one choice of many for the underlying process, and a variety of others

can be found in the literature. Alternatives include Gaussian processes (Fuentes and Smith, 2001),

non-Gaussian processes (Ickstadt and Wolpert, 1999) and temporally evolving processes (Wikle

et al., 1998; Calder et al., 2001).
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2.1 Discretization of the Underlying Process

Returning to the general case, we note that in practice the theoretically continuous underlying

process can be approximated by a discretized version without much loss in fidelity as long as

the discretization is not too coarse relative to the smoothing kernel. To be specific we restrict

the support of x(s) to a regular lattice on S at locations Sx = {sx
1 , . . . , sx

m}. This results in a

continuous process

z(s) =

m
∑

j=1

k(sx
j − s)x(sx

j ) (2.2.3)

that is controlled by the m-vector x = (x(sx
1), . . . , x(sx

m))T . This discrete, low-dimensional rep-

resentation can result in substantial computational gains in inverse problems or applications with

large amounts of data (Calder, 2003). This discrete representation will be a very good approxima-

tion to the continuous one, provided the lattice spacings are no greater than the standard deviation

of the normal kernel k(s) (Higdon, 2002).

2.2 Simple example

As an example we compare simple 1-d formulations using a synthetic dataset. We generate n = 12

observations y at locations sy
1, . . . , sy

n equally spaced between 0 and 10 according the model

y(sy
i ) = z(sy

i ) + εi, i = 1, . . . , n

where z(s) is a mean zero Gaussian process whose covariance function is given by C(d) = exp{−(d/5)2}
(this corresponds to smoothing a white noise process with a N(0, (5/2)2) density kernel) and the

εis are iid N(0, 0.22) random variates.

We first consider two model formulations, both of which fix k(s) to be a N(0, 0.62) density. The

width of k(s) is slightly more than four times narrower than the width that corresponds to the

model that actually generated z(s). The goal here is to see how altering the dependence structure

for x(s) can affect our estimate for the underlying process z(s). In both formulations, the latent

process x(s) is specified to be non-zero over m = 20 regular lattice points sx
1 , . . . , s

x
m between −2

and 12. The first formulation specifies that each x(sx
j ) is iid N(0, 1/λx); the second specifies x(s)

to be a random walk over the same m = 20 lattice points, with increments scaled by the same

precision parameter λx. We take the m-vector x to be (x(sx
1), . . . , x(sx

m))T and note that the n-

vector z = (z(s1), . . . , z(sn))T ) is given by Kx where K is a n×m matrix whose elements are given
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by Kij = k(sx
j − si). The formulation is

L(y|z, λy) ∝ λ
n
2
y exp{− 1

2
λy(y −Kx)T (y −Kx)}

π(x|λx) ∝ λ
m
2
x exp{− 1

2
λxxTWx}

π(λx) ∝ λax−1
x e−bxλx

π(λy) ∝ λ
ay−1
y e−byλy

where the precision matrix W is the m × m identity matrix Im if x(s) is the iid process, while

for the random walk specification W is a tridiagonal matrix with −1’s on the off-diagonals, and

2’s on the diagonals, except for the first and final diagonal entries, which are 1. The resulting full

conditionals are then

x|λy, λx,y ∼ N
(

(λyK
TK + λxW)−1λyK

Ty, (λyK
TK + λxW)−1

)

λx|x, λy,y ∼ Γ(ax + m/2, bx + 1

2
xTWx)

λy|x, λx,y ∼ Γ(ay + n/2, by + 1

2
(y −Kx)T (y −Kx)).

For comparison, we also consider two other formulations: a white noise process for x(s) with k(s)

specified to be a N(0, (5/2)2) density which matches the actual Gaussian process model used to

generate the data, and a basic GP formulation resulting in the posterior given by (1.1.2). For the

GP formulation, Γ(1, 0.001) priors were specified for λy and λz. An exponential prior with a mean

of 1/25 was specified for the spatial range parameter β.

Figure 2 shows the resulting posterior summaries for z(s) under the three formulations. The

first formulation tends to overfit the data since the spatial dependence induced by the “skinny”

N(0, 0.62) kernel dies off too quickly to give a sensible representation of the z(s) process that was

used to produce the actual data. The random walk formulation can overcome this misspecifica-

tion of k(s) through the dependence structure in x(s). Because the precision parameter λx in the

random walk formulation can modify the amount of spatial dependence in the induced z(s), its

reconstruction better matches the reconstruction which uses a wide kernel k(s) (third row of figure)

which corresponds to how the data were generated. The wide kernel model gets the unrealistic ad-

vantage of using the correct kernel width (range of spatial dependence). A more honest comparison

is to the GP model which treats β as an unknown parameter (bottom row of Figure 2).

Pointwise 80% posterior credible intervals for the variograms from the four spatial formulations

are shown in Figure 3. Notice that the posterior for the variogram under the random walk for-

mulation is very similar to that of the GP formulation. This suggests the simpler random walk

formulation gives very similar posterior information regarding the spatial structure of z(s) as com-

pared to the conventional GP formulation which uses both λz and β to model the spatial dependence

in z(s).
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Figure 2: The left column compares posterior means and pointwise 80% credible intervals for z(s) under four

formulations: (a) white noise specification for x(s), k(s) ∝ exp{−0.5(s/0.6)2}; (b) random walk specification

for x(s), k(s) ∝ exp{−0.5(s/0.6)2}; (c) white noise specification for x(s), k(s) ∝ exp{−0.5(s/2.5)2}; and (d) a

GP model with Gaussian covariance function, treating covariance parameters as unknown. The right column

shows the corresponding posterior mean estimates for each x(sx
i ) (vertical lines) as well as the decomposition

of the posterior mean estimate for z(s) into its basis components k(s− sx
i )x(sx

i ), i = 1, . . . , m. The plotting

symbols denote the data y.
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pointwise 80% ci’s for the variogram under different formulations

Figure 3: Pointwise 80% posterior credible intervals for the variogram – defined as γ(s) = Var(y(s) − y(5))

– under the different formulations: (a) white noise specification for x(s), k(s) ∝ exp{−0.5(s/0.6)2}; (b)

random walk specification for x(s), k(s) ∝ exp{−0.5(s/0.6)2}; (c) white noise specification for x(s), k(s) ∝
exp{−0.5(s/2.5)2}; and (d) conventional Gaussian process model with C(d) ∝ exp{−βd2}. Note that the

two models with adaptive spatial dependence ((b) and (d)) give similar estimates.

It is worth noting here that this sort of approach provides a computationally attractive alter-

native to direct Bayesian modeling of a Gaussian process with a correlogram that includes scaling

parameters. An MCMC scheme involving scaling parameters will require a matrix inversion for each

update. By comparison, the updates of λx in this random walk scheme (which is easily generalized

to higher dimensions) require no inversions, just a scan through the latent x vector.

2.3 Convolving intrinsic Gaussian MRF’s

The above random walk convolution formulation can easily be generalized to higher dimensions

by specifying an appropriate lattice Sx for the support of x(s). One can then specify a Gaussian

Markov random field (MRF) prior for the m-vector x over lattice locations so that

π(x|λx) ∝ λ
m
2
x exp{− 1

2
λxx

TWx}

where the precision λx scales x, and W is a sparse matrix that specifies the conditional dependence

structure in x. This model is also called an intrinsic autoregressive model. Our applications use a

first order MRF (Besag and Kooperberg, 1995) so that W has elements

Wjk =















−1 if sx
j and sx

k are adjacent

nj if sx
j = sx

k

0 otherwise
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where nj is the number of lattice sites sx
k directly adjacent to site sx

j . This first order W reduces

to the random walk formulation in 1-d. Alternatives such as locally quadratic MRF’s (Besag and

Kooperberg, 1995) could also be used here. The resulting full conditionals are exactly those given

in the example in the previous section. In cases were m is large, the multivariate update for x may

have to be replaced with a modified updating scheme, such as single site updating.

3 Application in Subsurface Flow

The study of the flow of liquids, particularly groundwater, through porous media, such as soil, is an

important problem in engineering. Reliable solutions exist for the forward problem of determining

how water flows when the physical characteristics (e.g., permeability) of the aquifer are known. A

topic of interest to both statisticians and engineers is the inverse problem of using flow data to

infer the permeability structure of the aquifer. An overview of this inverse problem can be found

in Yeh (1986). Important applications include contaminant cleanup (James et al., 1997; Jin et al.,

1995) and oil production (Xue and Datta-Gupta, 1996).

The estimation of the permeabilities turns out to be a difficult problem. Core samples analyzed

in a lab can provide direct estimates at points, but there is significant measurement error involved,

and such samples are expensive, so at best only a few samples will be available. Instead, collecting

indirect data, such as flow data, is often more cost-effective. In a flow experiment, one or more

injection wells force water underground into the aquifer while multiple producer wells extract this

water. Water is pumped through this system until equilibrium is reached, and then a tracer (such

as a fluorescent or radioactive dye) is injected at the injection wells and the concentration of the

tracer is measured over time at each of the producer wells. The resulting concentration curves,

and especially the breakthrough times (the times of first arrival of the tracer at a production well),

provide information about the underlying permeability field, as it takes longer for the tracer to

move through areas of lower permeability. In many cases, the breakthrough time is essentially

a sufficient statistic for the whole concentration curve, with the times providing almost as much

information as using the entire curves (Vasco et al., 1998; Yoon et al., 1999). Thus we focus on

only the breakthrough times here.

The resulting data lead to the inverse problem of inferring the spatial permeability field (treated

here as having a scalar value at each point in space) from the flow data, possibly without any direct

permeability measurements. For the forward problem of predicting flow from a given configuration

of permeabilities, various versions of computer code exist which solve differential equations given by

physical laws (i.e., conservation of mass, Darcy’s Law, and Fick’s Law) to determine the flows. Here
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Figure 4: Comparison of three models: MRF, GP, and Convolution of MRF. The top three rows are

posterior realizations and the fourth row is posterior means. The truth is in the bottom center.
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we use the S3D streamtube code of Datta-Gupta (King and Datta-Gupta, 1998). The likelihood for

the permeabilities, ψ, compares the true breakthrough times, b, to the fitted times, b̂, computed

by the flow simulator for a given value of the permeabilities (i.e., the fitted breakthrough times are

a complex, non-analytical but deterministic transformation of the permeabilities). Conditional on

the data, we use an iid Gaussian error structure:

L(ψ | b) ∝ exp

{

− 1

2σ2

∑

h

(bh − b̂h(ψ))2

}

.

This likelihood is usually highly ill-conditioned, in that different configurations of the permeability

field can lead to similar concentration curves. Thus some regularity conditions must be imposed on

the problem, and this is typically done by putting restrictions on the permeability field, specifying

it to be of some parametric form. Gaussian processes are the standard approach in the literature.

A natural approach is to induce regularity by using a spatial model as a prior for the permeabilities.

We compare three different spatial prior models here for z = log(ψ): a Markov random field, a

Gaussian process, and the convolution of an MRF model of the previous section.

The plots in Figure 4 are from a simulated two-dimensional example. The setup is a typical

inverted nine-spot configuration, with a central injection well and eight production wells in the

corners and at the midpoints of the edges. We use a grid size of 32 by 32. The true field is a

realization from a Gaussian process with a specified variogram, and this is run through the simulator

to generate breakthrough time data at the eight production wells. Next the three different models

are fit to these data. In the first column of the figure is the model using a first-order symmetric

Markov Random Field spatial prior, which estimates its spatial dependence parameter λx from the

data (this model and the regular GP were fit using the methods of Lee et al. (2002)). In the second

column is a Gaussian process model, using the correct values for its spatial dependence parameters

(since these cannot be effectively estimated from flow data, see for example, the discussion in Oliver,

Cunha, and Reynolds, 1997). The last full column is for the new convolution of an MRF model

described in the previous section, where λx is also fit from the data. The top three rows show

realizations from the posterior, and the last full row shows posterior means. The true field is shown

in the bottom center. Darker pixels represent higher permeability. All three models are able to

capture the main features of the true permeability field, although the MRF produces realizations

which are much less smooth.

The GP model was fit under the very unrealistic supposition that the spatial dependence range

parameter β is known. In practice this is never the case. Both the MRF and convolution of MRF

models allow the spatial dependence to be treated as unknown and its uncertainty is accounted for

in the posterior. Of these two models, the MRF model leads to more difficulties in MCMC im-
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plementation because of its high-dimensional representation of z. The parsimonious representation

of z in the convolution formulation leads to a simpler, and far more efficient MCMC scheme. It

uses only basic Metropolis updates for components of z, and it samples its posterior an order of

magnitude more quickly relative to the MRF formulation.

4 Store separation for a prototype aircraft

This section develops a space-time model that relies heavily on the process convolution approach

to make tractable the computations necessary for estimation.

The U. S. Air Force needs to ensure that store launches are safe for prototype aircraft under

development. This application looks at launches of the AIM-9M missile from the side bay of the

F-22 prototype. Upon launch, the missile is propelled along a guiding rail and then enters into

free flight. The guidance system of the missile kicks in shortly after the launch and steers the

missile/store on a straight path in the direction of the flying aircraft.

Prior to any launches on the actual aircraft, both computational fluid dynamics (CFD) simula-

tions and wind tunnel simulations are carried out for various flight conditions of the aircraft. The

flight conditions are indexed by dynamic pressure, altitude, G-force on the aircraft, and angle of

attack. These flight conditions are denoted by the 4-variate parameter s.

The missile trajectory can be described by a time series of three center of mass coordinates and

three orientation coordinates (x, y, z,yaw,pitch,roll). Only the first 0.3 seconds of the trajectory are

considered here since any danger to the aircraft from the store launch is most likely to occur during

this interval.

The solid lines in Figure 6 show the yaw angle trajectories from flight tests, CFD simulations,

and wind tunnel simulations as a function of the flight condition s. In the figure, dynamic pressure

and altitude are varying, while the aircraft is flying at a constant load of 1 g. The angle of attack

is fairly steep (∼ 26 degrees above vertical) for flight conditions in the low pressure-high altitude

region, and becomes nearly level (∼ 0 degrees) for the high pressure-low altitude conditions.

In this example we follow the conceptual framework of using a GP or related model for ana-

lyzing computer experiments (Sacks et al., 1989; Currin et al., 1991). Information from physical

experiments can then be directly incorporated into the model (Kennedy and O’Hagan, 2001; Reese

et al., 2004).

13



4.1 Data

Data for this analysis are nFT = 3 flight test trajectories yFT(s, t), nWT = 56 wind tunnel trajectory

simulations yWT(s, t), and nCFD = 3 CFD trajectory simulations yCFD(s, t). Each of these three data

types are modeled as an “ideal” trajectory η(s, t) plus a discrepancy term that is specific to each

data type.

yFT(s, t) = η(s, t) + δFT(s, t) + eFT

yWT(s, t) = η(s, t) + δWT(s, t) + eWT

yCFD(s, t) = η(s, t) + δCFD(s, t) + eCFD

The discrepancy terms δWT(s, t) and δCFD(s, t) account for systematic discrepancy between the sim-

ulation and the ideal trajectory η(s, t). It is expected that these discrepancies are continuous over

flight condition s and time t. The term δFT(s, t) allows correlation over time (but not flight condi-

tion) and accounts for replicate variability and correlated observation error due to the process of

estimating displacement and orientation of the store from video of the flight test launch. Indepen-

dent observation error is accounted for with the term eFT which is modeled as independent over s

and t and is attributable mainly to the resolution of the photography used to determine the flight

test trajectories. Similarly the wind tunnel and CFD trajectories are also allowed an iid error term

to account for slight mismatch due to the basis representation of the trajectories described below.

In all, the data comprise n = nFT + nWT + nCFD trajectories of the ps = 6 degrees of freedom

(x,y,z,roll,pitch,yaw) describing the store position and orientation over time. It is convenient to take

s to denote these n flight conditions where data have been recorded or simulated. We define

s =











s1

...

sn











=









sFT

sWT

sCFD









=











s11 · · · s1ps

...
. . .

...

sn1 · · · snps











.

4.2 Trajectory model for η(s, t)

We define an ideal trajectory η(s, t) which would be the average of repeated flight tests carried

out at the flight configuration s. This ideal trajectory can be decomposed into a mean trajectory

η0(t)—which is the same for any flight condition s—and a component η1(s, t) that also varies with

s:

η(s, t) = η0(t) + η1(s, t).

We model η0(t) as a convolution of an MRF . The smoothing kernel k(s) =
(

1 − ||s||3

λ3

k

)3
I[|s| < λk]

is a tricube kernel (Cleveland, 1979) whose width λk is specified separately for each trajectory
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Figure 5: Left frame: An estimate for the mean yaw angle trajectory η0(t) (dotted line) is shown with the

yaw angle trajectories for the wind tunnel simulations (solid lines). Right frame: The basis decomposition

for η0(t) =
∑

j kj(t)xη0j
, with the lines showing the basis terms kj(t)xη0j

.

type. A 1-d MRF is specified for x(t) with support at time locations tx
1 , . . . , txpη

. Typically pη is

between 5 and 9, depending on which of the six trajectory components are being modeled. The

mean trajectory component η0(t) is modeled by

η0(t) = µ +

pη
∑

j=1

k(txj − t)xη0j =

pη
∑

j=0

kj(t)xη0j (4.4.1)

where k0(t) = 1, kj(t) = k(txj − t) and xη00 = µ. We restrict η0(t) to 30 time points t1, . . . , t30

evenly spaced between 0 and 0.3 seconds. The 30-vector η0 can then be written as

η0 = Kη0
xη0

where Kη0
is a 30 × (pη + 1) matrix with ij elements kj(ti). Figure 5 shows the decomposition of

η0 for the yaw angle trajectory.

The process η1(s, t) is constructed similarly

η1(s, t) =

pη
∑

j=1

kj(t)xη1j(s) (4.4.2)

but now the basis scaling is controlled by the pη-dimensional process xη1
(s) which varies with flight

condition s; the constant term is not required. As with η0(t), we represent η1(s, t) at any given

flight condition s by the 30-vector η1(s) given by

η1(s) = Kη1
xη1

(s)

where Kη1
is now the 30 × pη matrix with ij elements kj(ti). The MRF coefficient vector xη1

(s)

varies with flight condition. For a collection of n flight conditions s = (s1, . . . , sn)T , we take η1(s)

to be the 30n-vector which holds n trajectories. In this case η1(s) can be written as

η1(s) = (In ⊗Kη1
)xη1

(s)
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where xη1
(s) is now a npη-vector determining the n trajectories.

The models for η0 and η1(s) are completed by specifying prior distributions for xη0
and xη1

(s).

We specify an MRF prior for xη0
. For xη1

(s), we use a combination process prior for which the

correlation function depends on the flight conditions at which simulations or flight tests have been

carried out. Restricting to the data consisting of n trajectories, η(s, t) is determined by the pη +1-

vector xη0
and the pηn-vector xη1

. The implied model for these vectors is then given by

xη0
∼ N(µ,diag(σ2

µ,Σt(λη0
)))

xη1
∼ N(0,Σt(λη1

) ⊗Rs(βη))

where

• Σt(λ) is a pη × pη covariance matrix for a random walk {x1, . . . , xpη} for which x1 ∼
N(0, 1/λ1), and the following independent increments xj − xj−1 ∼ N(0, 1/λj), j = 2, . . . , pη.

Hence the covariance matrix is defined by Σt(λ) = W−1
t (λ) where the ijth element of tridi-

agonal precision matrix Wt(λ) is given by

Wt(λ)ij =



























−λmax(i,j) if |i − j| = 1

λi + λi+1 if i = j and i < pη

−λi if i = j = pη

0 otherwise

• Rs(β) specifies a n × n “spatial” correlation that is a function of the n × ps flight condition

matrix s. The ps-dimensional parameter vector β specifies the strength of the spatial depen-

dence in the coordinate directions of the flight condition space. The ijth element of Rs(β) is

given by

Rs(β)ij = exp

{

−
ps

∑

k=1

βk(sik − sjk)
2

}

. (4.4.3)

We set all elements of λη0
to be equal to λ0, and then independent Γ(aηj , bηj) priors are specified for

λ0 and for the components of λη1
. Rather diffuse priors are used here (aηj = 1, bηj = 0.001) since

the total number of trajectories in the data will give good information regarding λη. We specify

a uniform prior over five preselected values for each dimension of the ps-vector β which controls

the strength of dependence along each of the flight condition coordinates. Note that this Gaussian

process prior for xη1
(s) is particularly useful because it gives predictions for new trajectories at

untried flight conditions s∗.
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4.3 Discrepancy models

Each of the discrepancy terms δFT(s, t), δWT(s, t), and δCFD(s, t) are modeled with a MRF convolu-

tion representation which is identical to that of η1(s, t) given in (4.4.2). The difference lies in the

prior specifications for the terms xδFT
(sFT), xδWT

(sWT), xδCFD
(sCFD), which are vectors of length

pηnFT, pηnWT, and pηnCFD respectively. Recall that pη is the number of MRF elements used in

(4.4.2). The prior specification for the discrepancies is summarized below:

basis representation size prior for x size

δFT = (InFT
⊗KδFT

)xδFT
30nFT xδFT

∼ N(0,Σt(λFT) ⊗ InFT
) pηnFT

δWT = (InWT
⊗KδWT

)xδWT
30nWT xδWT

∼ N(0,Σt(λWT) ⊗RsWT
(β)) pηnWT

δCFD = (InCFD
⊗KδCFD

)xδCFD
30nCFD xδCFD

∼ N(0,Σt(λCFD) ⊗RsCFD
(β)) pηnCFD

Here Rs`
(β) is the correlation matrix constructed using (4.4.3) and restricted to the flight conditions

s` for ` ∈ {FT, WT, CFD}. Recall the covariance matrix Σt(λ) specifies a random walk (beginning

at 0) whose successive increments are N(0, 1/λj), j = 1, . . . , pη. Each component of the pη-vector

λ` is given an independent Γ(a`j, b`j) prior which was elicited with the help of flight engineers and

experience from previous tests involving other aircraft. Note we use ` as a placeholder for the

datatype: FT, WT, or CFD.

4.4 Error models

The error terms eFT, eWT, and eCFD are modeled as white noise vectors, each with its own precision

parameter κFT, κWT, and κCFD. The prior formulation is then

eFT ∼ N(0, I30nFT
/κFT) κFT ∼ Γ(aeFT

, beFT
)

eWT ∼ N(0, I30nWT
/κWT) κWT ∼ Γ(aeWT

, beWT
)

eCFD ∼ N(0, I30nCFD
/κCFD) κCFD ∼ Γ(aeCFD

, beCFD
).

We specify the ae`
’s to be 1 and the be`

’s to be 0.0001.

4.5 Posterior distribution and estimation

The resulting posterior distribution has the form:

π(x,λ,β, κ|y) ∝ |We|
1

2 exp
{

− 1

2
(y −Kx)TWe(y −Kx)

}

× |Wx|
1

2 exp
{

− 1

2
xTWxx

}

×
∏

`∈{FT,WT,CFD}

pη
∏

j=1

λ
a`j−1
`j exp{−b`j}λ`j ×

∏

`∈{FT,WT,CFD}

κ
ae`

−1

` exp{−be`
}κ` × π(β)
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where

K = [1n ⊗ [Kη0
|Kη1

]|diag(InFT
⊗KδFT

, InWT
⊗KδWT

, InCFD
⊗KδCFD

)]

y =









yFT

yWT

yCFD









, x =





















xη0

xη1

xδFT

xδWT

xδCFD





















,

We = diag(κFTInFT
, κWTInWT

, κCFDInCFD
), and

Wx = diag
(

0,Wt(λη0
),Wt(λη1

) ⊗R−1
s (β),Wt(λδFT

) ⊗ InFT
,

Wt(λδWT
) ⊗R−1

sWT
(β),Wt(λδCFD

) ⊗R−1
sCFD

(β)
)

.

This formulation leads to standard forms for the full conditional distributions for the parameters

x, κ, and λ; that of β is not standard:

x| · · · ∼ N(µx,Vx)

µx = (Wε + Wx)−1WεK
Ty

Vx = (Wε + Wx)−1

κ`| · · · ∼ Γ(ae`
+ 1

2
30n`, be`

+ 1

2
(y` − ŷ`)

T (y` − ŷ`)), ` = FT, WT, CFD

λ`j| · · · ∼ Γ(a`j + 1

2
n`, b`j + 1

2
dT

`jR
−1
s`

(β)d`j), ` = FT, WT, CFD, k = j, . . . , pη

π(β| · · · ) ∝ |Wx|
1

2 exp{−1

2
xTWxx} × π(β),

where ŷ = Kx. The full conditional for λ`j involves the vector d`j which is constructed from

the current values of the n`pη-vector xδ`
as follows. Construct the n` × pη matrix d` from first

differences of xδ`
:

d` =











x11 x12 − x11 · · · x1pη − x1(pη−1)

...
...

. . .
...

xn`1 xn`2 − xn`1 · · · xn`pη − xn`(pη−1)











The n`-vector d`j is defined to be the jth column of the matrix d`.

These simple forms for the full conditionals make the posterior distribution amenable to sam-

pling via Markov chain Monte Carlo (Gilks et al., 1996) or maximization with an E-M algorithm for

a restricted maximization (Dempster et al., 1984). In either case, dealing with this high-dimensional

parameter space and dataset can be handled with relative ease, whereas a traditional GP approach

would be substantially more difficult.
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Figure 6: Observed and simulated trajectories along with the predicted trajectories (with a pointwise 2sd

envelope) as a function of flight condition. The beginning of each trajectory marks the flight conditions

which corresponds to it. The large vertical and horizontal axes give the dynamic pressure and altitude

corresponding to the flight condition. The figure shows only launches for which the load was at 1g. The

angle of attack varies from 26 degrees for trajectories in the upper left corner, to 0 degrees for most all of

the trajectories near the lower right corner. Here the yaw-angle trajectory is shown. The small axes within

the plot correspond to the yaw angle by time trajectories.

19



Figure 7: Simulated missile trajectories from the posterior distribution. The lines show center of mass

trajectories. The orientation of the missile at one point along the trajectory is shown in the top figures.

4.6 Results

The predictive distribution for x can be obtained using straightforward Gaussian process theory

(Cressie, 1993). Given the predictive distribution for x, the resulting trajectory distribution is

determined by the convolution/basis representation. The resulting uncertainty in the predicted

outcome of a flight test at untried flight conditions is considerable. Due to the limited number of

flight tests and CFD runs available, the data are not greatly informative about the discrepancy

terms and the variability in flight tests. Hence the predictions rely a fair bit on the prior distribution

specified for these quantities. As more flight tests become available, this reliance on the prior will

be overcome by information from the new data.

Figure 6 shows the predicted trajectories for the yaw angle and their uncertainty for various

flight conditions. Figure 7 shows posterior realizations of missile trajectories for a flight condition

of s = (500, 20000, 1, 15). The posterior distribution for the trajectories at this configuration clearly

indicates that there is no appreciable danger from a launch at this flight condition. Of course this

analysis is based on simulations which have limited failure modes built into them. The analysis

cannot account for failure modes omitted from the simulations without substantial flight test data.
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5 Discussion

This paper introduced a convolution model which uses a fixed smoothing kernel along with a

parameter λx to scale an underlying MRF x(s). This leads to a number of computational advantages

over a traditional GP model, while still capturing much of its spatial dependence structure. The

convolution of an MRF formulation, with its simplified dependence structure and MCMC efficiency,

can be used to extract spatial information in low signal to noise problems for which ordinary GP

implementations have great difficulty. The flow application of this paper is one such example.

This convolution can extend its spatial dependence by increasing the value of the precision

parameter λx. As the spatial distance becomes large, the variogram of the spatial process reverts

to the variogram of x(s). Though increasing the precision λx of the MRF extends the spatial

dependence, how small the range of spatial dependence can be made is limited by the smoothing

kernel k(s). Hence, if k(s) is chosen too large, the spatial dependence will have too large a range

and the MRF cannot correct for this.

In this paper we have focused on a Gaussian MRF for modeling x(s), our intrinsic underlying

process. This framework clearly generalizes and fits into the context of convolutions of non-white

processes, as discussed in Section 2. The convolution approach brings a number of computational

and implementational advantages, as we have illustrated above and as discussed in Higdon (2002).
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