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Abstract

We present structured prior modeling for multiple time series focusing on
latent component structure for a collection of autoregressive processes. Similar
to the univariate case, the state-space representation of these vector processes
implies that each univariate time series can be decomposed into simple under-
lying components. Such components may have a common structure across the
series that define the vector process. Additionally, this approach allows the con-
sideration of uncertainty on the number of latent processes across the multiple
series and consequently, it handles model order uncertainty in the vector au-
toregressive framework. Posterior inference and implementation are developed
via customized Markov chain Monte Carlo (MCMC) methods. Issues related to
inference and exploration of the posterior distribution are discussed. Illustrative

data analysis are presented.
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1 Introduction

The focus of this paper is on developing Bayesian models for the analysis of multi-
variate time series. Particularly, we propose a prior specification for vector autore-
gressive (VAR) processes with coefficient matrices that are diagonal. These models
are motivated by data that arises in areas such as signal processing. The data usu-
ally consist of multiple signals recorded simultaneously, from a system under certain
conditions where each signal has an underlying structure, possibly but not necessar-
ily quasi-periodic, that can be adequately captured using autoregressive (AR) mod-
els. Univariate time series arising in applied fields that involve seismic recordings,
environmental time series, biomedical signals and speech signals, to mention just a
few examples, have such characteristics and have been successfully analyzed in recent
years via autoregressive processes, or sophisticated models that involve autoregressive
components (Huerta and West, 1999b; Aguilar et al., 1999; Godsill and Rayner, 1998;
West et al., 1999; Krystal et al., 1999; Kitagawa and Gersch, 1996).

One of the major methodological challenges pursued in this paper is the develop-
ment of structured priors for vector autoregressions that allow the modeling of un-
certainty in the number and form of the latent processes related to each series and
permit the expression of prior beliefs on characteristic roots, possibly with unitary and
zero, while simultaneously allow the inclusion of common latent components across the
series, as well as lag-lead structure. Computational difficulties arise when considering

many multiple series with a rich latent common structure as implied by these struc-



tured priors; therefore MCMC methods for parameter estimation are necessary. Priors
on latent component structure were introduced for univariate AR models in Huerta
and West (1999b). In this sense, the models proposed in this paper are an extension to
the multivariate framework. Although diagonal VAR could be perceived as of limited
use, with the structured priors that we propose here, they form a milestone for the
modeling of multivariate time series. For example, in EEG analysis as described in the
above references, it is very relevant to determine a probabilistic assessment of common

latent structures, something that cannot be obtained with a univariate analysis.

2 Multivariate time series decompositions

In this section, we describe general time series decomposition results for a class of mul-
tivariate time series processes. The proposed approach focuses on models that can be
written in a multivariate dynamic linear model (MDLM) form. We discuss such results
in detail for the case of diagonal vector autoregressions or DVARs. Similar to the uni-
variate case, the decomposition results summarized below provide a natural framework
for the structured prior specification that is developed in section 3. Further details and
applications related to decompositions for univariate autoregressions and time-varying
autoregressions can be found in West (1997), Huerta and West (1999b), West et al.
(1999) and Prado and Huerta (2002). Here, we revisit the developments on multivari-
ate time series decompositions presented in Prado (1998) and include extensions that

handle a more general model case.



Consider an m-dimensional time series process y, = (Y14, - - -, Ym.t)', modeled using

a MDLM (West and Harrison, 1997)
Vi=%+v, x=F68, 0,=G0;,,+uw, (1)

where x; is the underlying m-dimensional signal, v; is an m-dimensional vector of ob-
servation errors, F' is an m X d matrix of constants, @, is the d-dimensional state vector,
G; is the d x d state evolution matrix and w; is a d-vector of state innovations. The
noise terms v; and w; are zero mean innovations, assumed independent and mutually
independent with variance-covariance matrices V; and W, respectively.

A scalar DLM can be written for each of the univariate components of x;, namely

Tit = F;0,

M, : ’ ' (2)
0. = GO, + w

with F; the i-th column of the matrix F. FEach scalar component z;; of the m-
dimensional signal vector can be divided into latent processes using the decomposition
results for univariate time series presented in West et al. (1999). Assume that the
system evolution matrix G; is diagonalizable, i.e. that there exist a diagonal matrix
A;, and a matrix B, such that G; = B;A;B; 1A useful way to characterize a diag-
onalizable matrix is by the multiplicities of its eigenvalues. If G; has d* < d distinct
eigenvalues, Ay 1, ..., A\ ¢- with algebraic multiplicities my 1, . .., m, ¢ Tespectively, then
G is diagonalizable if and only if m,; = m,; for all ¢ = 1,...,d*, with m,; the ge-
ometric multiplicity of the eigenvalue \;;. That is, G; is diagonalizable if and only

if the algebraic multiplicity of each eigenvalue equals its geometric multiplicity. In



particular, if G; has exactly d distinct eigenvalues, then Gy is diagonalizable. Note
we are assuming that the number of distinct eigenvalues d*, the number of real and
complex eigenvalues and their multiplicities remain fixed over time. In other words, we
assume that there are exactly ¢* pairs of distinct complex eigenvalues 7 ; exp(+iwy ;)
for j =1,...,c* and r* = d* — 2¢* distinct real eigenvalues for j = 2¢* +1,...,d" at
each time ¢. Then, G, = B,A;B; ! with A, the d x d diagonal matrix of eigenvalues,
in arbitrary but fixed order, and B; a corresponding matrix of eigenvectors. For each
t and each model M; define the matrices H; ; = diag(B}F;)B; " for i = 1,...,m, and
reparameterize M; via v, , = H; 0, and §;; = H; ;w;. Then, rewriting (2) in terms of

the new state and innovation vectors, we have

Tit = 1I’Yz',t
(3)
Yip = Ath',t’Yz',t—l + 8,

where 1' = (1,...,1) and K;; = Hi,tH;’tl_l. Therefore x;; can be expressed as a sum

of d* components

c* d*
Tit = Z Zitg T Z Yit,js (4)
j=1

Jj=2c*+1
where z;, ; are real-valued processes related to the pairs of complex eigenvalues given

*

by 7 jexp(tiw ;) for j = 1,...,¢*, and y;; are real processes related to the real

%

eigenvalues r; ; for j = 2¢* +1,...,d".



2.1 Decomposition of the scalar components in a VAR(p)

Consider the particular case of an m-dimensional time series process x; = (Z1¢, . .., Tmyz)’

that follows a VAR(p)
X = <I>1xt_1 + <I>2xt_1 + ...+ <I>pxt_p + €, (5)

where ®; are the m x m matrices of AR coefficients and €, is the m-dimensional zero
mean innovation vector at time ¢, with covariance matrix ¥. The VAR(p) process in
(5) is stable (see for instance Liitkepohl, 1993), if the polynomial ®(u) = det(I,, —
®u— ... — ®,uP), with I, the m x m identity matrix, has no roots within or on the
complex unit circle. If a VAR(p) process is stable then it is stationary.

Any m-dimensional VAR(p) process can be written in the MDLM form (1), with
d = mp, vy = 0, and the m x (mp) matrix of constants F' and the (mp)-dimensional

state and the state innovation vectors 8; and w; described by

e, 0 ... 0 Xy €

/ e, 0 ... 0 X¢ 1 0
F = ; Ot = ; Wi = ) (6)

e;n 0 ... 0 Xt—p+1 0

where each e; is an m-dimensional vector whose j-th element is equal to unity and

all the other elements are zeros. Finally, the (mp) x (mp) state evolution matrix G is



given by

® B, ... D, D,
Im Om Om Om

G’ = ) (7)
Om Om Im Om

with 0,, the m x m dimensional matrix of zeros. The eigenvalues of G satisfy the

equation
det(T NP — NP — P\ 2 — . — ®,) =0,

i.e. they are the reciprocal roots of the polynomial ®(u). Therefore, x; is stable if the
eigenvalues of G have modulus less than one. Assume that G has d* < mp distinct
eigenvalues with ¢* pairs of distinct complex eigenvalues r; exp(+iw;) for j =1,...,c",
and r* = d* — 2c¢* real eigenvalues r; for j = 2¢* +1,...,d". If G is diagonalizable,

then, using the representations (2) and (3), and the fact that K;; = I for all 4,5 we

have

c* d*
'/L‘izt = Z Ziyt’j + Z yivt’j' (8)
7j=1

j=2c*+1

Then, by the univariate AR decomposition result discussed in West (1997), each z;;
is a quasi-periodic process following an ARMA(2,1) model with characteristic modulus
r; and frequency w; for all # = 1,...,m. Then, the moduli and frequencies that
characterize the processes z;, ; for a fixed j, are the same across the m univariate series
that define the VAR process. Similarly, y;,; is an AR(1) process whose AR coefficient
is the real eigenvalue r; for alli =1,...,m.

8



Example. Vector autoregressions with diagonal matrices of coefficients or DVAR(p).

Suppose that we have an m-dimensional VAR(p) process with ®; = diag(¢1j, - - -, ¢m,;)

for 5 =1,...,p. Then, the characteristic polynomial of the process is given by
m m .
®(u) = [[(1—dipu—digu® —... = dipu”) = [[ ®'(u),
i=1 i=1

i.e. ®(u) is the product of the characteristic polynomials associated to each of the

m series. Let ai,..., al

s> Of .., ap' be the reciprocal roots of the characteristic

polynomials ®'(u), ..., ®™(u), respectively, with of # 0 for all 4, j. Assume that for
a fixed series 7, the reciprocal roots a;- are all distinct, but common roots across series
are allowed, that is oz;- = of for some i,k such that i # k and some j,1. If there are
¢* distinct complex pairs of reciprocal roots, denoted by r; exp(+iw;) for j =1,...,c,
r* pairs of distinct real roots r;, for j = 2¢* +1,...,d* with 2¢* +r* = d* < mp, and
G is diagonalizable, then the decomposition (8) holds. It is easy to see that the state
evolution matrix G in this case is diagonalizable by showing that, for any eigenvalue
A # 0 of G, its algebraic multiplicity m, \ equals its geometric multiplicity m, », with
mg the dimension of the characteristic subspace of A, {x : (G — AL,,)x = O }. In
order to prove that G is diagonalizable, we have to check that the geometric multiplicity
of each eigenvalue of G equals its algebraic multiplicity. Let A be any eigenvalue of G
with algebraic multiplicity m, . Then, A is either a real or a complex characteristic
reciprocal root of ®(u), i.e. A = rjexp(iw;), A = 7 exp(—iw;) or A = r; for some j.
The geometric multiplicity of A, m,  is the dimension of the characteristic subspace

of A\, {x : (G — M,;;))x = 0,,,}. The solutions of the system (G — AI,,,)x = 0, with

9



X = (115 s T1ms---sTp1,---,Tpm) Must satisfy the m equations,

(10— Nz + 12721 + ...+ O1pTp1
$2,1%1,2 + (¢2,2 — )\)332,2 + ... + D2.pTp2
+ + 0+
Omi1Tim  +  PmoTom A+ o A (Dmp — N)Tpm

and the set of mp —m = m(p — 1) equations,

Tig — Az = 0
T1im - )\.’Eg,m =0
Tp-11 — AMp1 = 0
Tp—im — Mpm = 0.
Using the last m(p — 1) equations we obtain z;; = 52, for i = 2,...
1,...,m. Substituting these expressions in the first m equations we obtain that

,pand j =

s (1= (8) = (3) == () =05 =1

Now, A # 0 has algebraic multiplicity m,», therefore, X is a reciprocal root of mg

characteristic polynomials. Let ji,...,jm,, be the series associated to such polyno-
mials. Then, the equations (9) have non trivial solutions z ;, for k =1,...,m, and
all the other elements of x can be written as functions of z; ;,,k = 1,...,m, . This

10



implies that m, ) = m, for all A and then G is diagonalizable, i.e. G = BAB™!
with A the diagonal matrix of eigenvalues, or reciprocal characteristic roots, and B a

corresponding matrix of eigenvectors.

3 The prior structure

We extend the priors on autoregressive root structure developed in Huerta and West
(1999b), and studied for spectral estimation in Huerta and West (1999a), to the context
of vector autoregressions with diagonal matrices of coefficients or DVARs. Some specific
aspects of the prior are discussed next. In order to keep the notation as clear as possible,
we present the prior distribution for a two-dimensional VAR model. This structure can
be generalized for a VAR,,(p) process.

Assume that we have an m-dimensional series where m = 2. We begin by specifying
fixed upper bounds C; and R; on the number of complex root pairs and real roots of
series ¢, for + = 1,...,2. Conditional on these upper bounds, we assume a prior
structure on the component roots a;- forj =1,...,2C;+ R;, that distinguishes between
real and complex cases. Let us introduce some notation that will be useful to define

the prior structure.

° r;- and )\;- = 27r/w§- are the modulus and the wavelength or period of the j-th

component root of series i;

® Tyi(glota,..zx) denotes the prior probability that a given modulus related to

11



the series 17, takes a value of z conditional on x being different from the values
T1,...,ZTx. Similarly, Ty (z4e,,...2,) denotes the prior probability that a given
period related to the series ¢ takes a value of x conditional on z being different

from the values z1, ..., zg;

b rzi:j = {Tia te ’T;'}; Ai:j = {)‘Zl’ o )‘;}’ azi:j = (I', A)Zlg = {(Tzi’ )‘Zl)a o (T;" )‘;)}7
e [,(z) is the indicator function, i.e.,[,,(2) =1 if z = y and 0 otherwise;

e U(-|a,b) denotes a Uniform distribution over the interval (a, b).

Then, we assume the following prior structure on the component roots of the m = 2

series.

-(a) Priors for real roots. Let Ry = 2 and Ry = 2 be the maximum number of real

roots of the first and second series respectively. Additionally, let T‘; denote the root j
of the series ¢ and ri,j all the real roots of series i. A conditional prior structure is
proposed, p(r},,Tp,) = P(rlg,) X p(rip,|r].x,), such that p(ri,, ) = [I;—; p(r}) and
p(rig, |1k, = P(ri|rlg,) X p(r3|r1:R,, 75). Specifically, we have the following structure

for the roots of the first series

7,]1_ ~ wr,olo(rjl-) +(1- WT,O)g,«(r;),

for j = 1,2 and g¢,(-) a continuous density over (—1,1). Note that by definition the
prior is on the stationary region. The mass probability m, is a prior probability at

7’]1- = (0. This prior probability at zero allows the modeling of uncertainty in the number

12



of latent components. Additionally, prior point masses at —1 and 1 can be incorporated
to allow the possibility of non-stationary components (see Figure 1). Now, for the roots

of the second series we have

T%V%’ ’r% ~ 7TT,OIO(""%) + ﬂ-:,r%lr% (T%) + W:,T;Ir% (T%) + (1 — Tro — 7:,7«% - W:,r%)gr(r‘lq)

ralry,ra, i~ mrolo(r3) + L (r3) + Ly (13) + (1= 70 — 0y — 7y 12) g0 (r3),

where ijr; are prior probabilities on the roots of the first series if such roots are
different from 0, and have not been sampled already as roots of the second series, i.e.,
“repeated” roots within the same series are not permitted.

Various choices for g.(-) can be considered. For instance, the reference prior is
the uniform distribution g¢,(-) = U(:| — 1,1), i.e., the formal reference prior for the
component AR(1) coefficient 7 truncated to the stationary region. The . and the

*

T

». can be considered fixed tuning parameters or alternatively, as it is usually preferred

in many applications, they can be treated as hyperparameters to be estimated. In the
later case relatively or absolutely uniform priors that can be viewed as non-informative
priors should be imposed on these probabilities. Huerta and West (1999b) propose the
use of Dirichlet prior distributions for the univariate case.

To illustrate the prior on the real reciprocal roots, we use Figure 1. The first
row corresponds to the roots of the first series and on the second row, to the second
series. We are assuming that the continuous part of the prior is U(:| — 1,1) and the
different probability masses are represented by vertical lines. In the figure, we are also
including probability masses at the boundary points, —1 and 1, although we eliminated

13
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Figure 1: Prior on real roots. m = 2; Ry = Ry = 2. ¢,(-) = U(:| — 1,1). The vertical

lines along the (—1, 1) axis represent the probability masses for each reciprocal root.

this masses for clarity. For the roots of the second series, the prior is conditional on

ri = —0.65 and 71 = .85 so point masses appear at these two values.

-(b) Priors for complex roots. The structure for the complex roots is similar to that

proposed for the real roots. Again, it is necessary to specify upper bounds for the maxi-
mum number of pairs of complex roots for each series, or equivalently, for the maximum
number of quasi-periodic latent processes, and then use a conditional structure. In or-
der to illustrate how this is done, assume for instance that m = 2 and C; = Cy = 2
are the maximum number of pairs of complex roots of the form of = (v, X?), with

r and i = 27 /w} the modulus and wavelength of the j-th quasi-periodic process for
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series i. Then, a conditional prior structure p(eq. ,al.q,) = Plal.q,) X pled.q,led.c,),
is proposed. The component roots of the first series have an independent prior struc-
ture, p(ar,c, ) = p(r1)p(A1)p(ry)p(A;) with priors specified over support 0 < rj < 1 and

2 < A; < Ay for 7 = 1,2, and a given upper bound )\, on the wavelengths. Specifically,
rjl- ~ 71'67010(7';) +(1- 7Tc,0)gc(’r‘]1-), )\; ~ h()\;),

with h()}) a density over the support (2, A,) and g.(-) a continuous density over (0, 1).
70 Tepresents a probability mass at value 0 for the modulus of the root. To address for
non-stationary, a point mass at 1 for le- can also be included for the prior (see Figure
2). Similar to the real case, the priors on the AR structure for the complex roots of
the second series, 04]2-, are conditional on the root components of the first series and on

the complex roots previously sampled for the second series, that is
rilri, sy~ meolo(rt) + mo L (1Y) + 7l L (r]) + (1= Tep — ZW 2)9(r7)
ralri, T, o~ 71'6,010(703) + W:,rll[r} (r3) + ﬂ-:,r;[ré (r3) + (1 - Te,0 — Zﬂ' gc ()
Mlat, a5 ~ ZI DI (D) +[1 - ZI DI (ADIR(A)
Alat,ay, 0] ~ ZII DI (A) +[1 = le D (A)]A(A).

t) and h(X%) can be considered, including uniform priors and

Different choices for g.(r}

margins for A’ based on uniform priors for the corresponding frequency w?}. The default
prior is the “component reference prior” (Huerta and West, 1999b) induced by assum-

ing a uniform prior for the implied AR(2) coefficients 2% cos(27/X?) and —(r%)* but

15
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Figure 2: Prior on Complex roots m = 2; C; = Cy = 2; g.(-) and h(-) are specified
with the component reference prior. The figure shows the marginals for rj- and w; The

vertical lines indicate a probability mass.

with finite support for )\; In addition, as with the real roots, relatively or absolutely
continuous priors can be imposed on 7o and 7, .
In Figure 2 we illustrate the prior for the complex case. The first row presents

the marginals for the modulus and frequencies (rjl-,wjl-); j = 1,2 of the reciprocal roots

2wl =

corresponding to the first series. The second raw shows the marginals for (r
1,2. The continuous part of these marginal densities is defined by the component
reference prior of Huerta and West (1999b), then g.(r?) = Beta(r}[3,1) and h(w}) o

szn(w;) For the first row, the vertical lines represent probability masses for the moduli

at 0 and at 1. For the second row, the vertical lines also appear at specific values of
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the modulus and frequency corresponding to the first series. The prior is conditional
onri=0.9,r?=0.8, w =052 and wy = 0.75.

Although the DVAR model may be perceived as of limited practical use, it estab-
lishes a milestone in prior specifications over the characteristic roots of a VAR model.
Additionally, the DVAR models presented here are capable of identifying common la-
tent structure across series, something that has not been addressed in the specialized

literature before.

3.1 Some aspects of implied prior structure

The priors specified on the roots structure induce priors on the numbers of complex
and real roots associated with each series, and so on model order up to the specified
maximum. These priors also induce priors, of complicated mathematical forms, on the
standard linear autoregressive parameters ¢;;, for¢ =1,..., mand k=1,...,p.
Consider for instance a V AR»(4) model with exactly two real components in each
series Ry = Ry = 2, and one quasi-periodic component in each series, C; = Cy = 1,
taking ma 9 =29 =Ta g =72 =0, 1 =72 1 =0and ma; =m2) = Ta; =
Ty = 0. In addition, we take g,(r}), ge(r}) and h(X:) as Uniform distributions. A
discrete Uniform distribution is set on the weights m,:. and 7. . that are not equal
to zero for each i. We explore the implied prior on the eight AR coefficients ¢ =
(D113 P14, P21, ..,P24) via simulation: given a random draw from the prior, we

can trivially compute the corresponding value of ¢. Figure 3 displays two-dimensional
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Figure 3: Samples from the prior for ¢ in a DVARy(4) model with Ry = Ry = 2 and

Ci=0Cy=1.

margins of a sample of 10,000 draws from the prior. The two-dimensional margins of the
AR coefficients ¢ = (¢11,...,¢1,4) and ¢, = (P21, - ., P24) (see four by four diagonal
picture blocks in the Figure) show similar displays to the ones of two-dimensional
margins obtained via the implied structured priors on the four coefficients using a
standard univariate AR(4) model (see Huerta and West 1999b). The two four by
four off diagonal blocks in the Figure show the correlation structure between the AR
coefficients ¢, and ¢,. By construction, the prior for ¢; and ¢, is constrained to the
stationary region and so the shapes in Figure 3 are contained in this region. Note that

the induced prior on ¢ is naturally not uniform.
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4 Posterior structure in DVAR models

Under the prior structure just described, posterior and predictive calculations are avail-
able via Markov chain Monte Carlo (MCMC) simulation methods. The structure of
relevant conditional posterior distributions is briefly outlined here.

Assume we have m series and let X = {xi,...,x,}, with x; = (z14,...,Tms)
be the observed multivariate time series and, given the maximum model order p =
max{p;,i = 1,...,m}, write Xo = {X0,X_1,...,X_(p_1)} for the latent initial values.
Let Y be the m x m variance-covariance matrix. The model parameters are denoted
by @ = {o,...,0p,...,0,...,a }. Assuming ¥ and X, known, the posterior
inferences are based on summarizing the full posterior p(a|Xg, X, ). For any subset &

of elements of a, let &\ € denote the complementary elements, that is, e with & removed.

Our MCMC method is based on a standard Gibbs sampling format, specifically
e foreachi=1,...,m,

— for each j = 2C; + 1,...,2C; + R;, sample the real roots individually from

p(rila\r}, X, Xo, X);
— for each j = 1,...,C;, sample the complex roots individually from the full
conditional, p(a|a\o, X, Xo, X).
Each of these distributions is now briefly described.

(a) Conditional distributions for real roots. Consider any real root of = r%, for some
series ¢ and some j between 2C; + 1 and p;. Given a\r;, X, X, and the DVAR model,

19



the likelihood function for 7% provides a normal kernel in r%. Under this mixture prior,

this leads to the mixture posterior

i—1 R i-1 R
Z Zpl‘,rl Irfc (r3) + Z Pigly(r) + (1 = Z Dj,q — Z Zp;',rl )Ni(r}m}, M)
I=1k=1 " " g=—1,0,1 g=—1,0,1 =1 k=1 ¢

where Ny(-|m, M) denotes the density of a normal distribution with mean m and vari-
ance M truncated to (—1,1), and the values (m}, M?) and point masses can be easily
computed. This mixture posterior is easily sampled with direct simulation of the trun-

cated normal by c.d.f. inversion.

(b) Conditional for complex roots. For each 7, index j = 1,..., C; identifies the pair of
complex conjugate roots (o, ;,ab;) with parameters (r?, X:). Let A% be the index set

307

of all other roots, a\(r}, A}). Then, given a\(r}, A}) and X we can directly compute
the filtered time series, z;; = erA;-_(l — ) B)xy if | = i and 2, = [[1-, (1 — o B)xy,
for I # j. Now, the likelihood on ¢}, = 2r}cos(2r/A}) and ¢}, = —(r%)* provides
a bivariate normal kernel with a mean vector and a variance-covariance matrix that
are functions of the filtered time series 2.1, ..., zm. However, given that the support
of (¢} ,¢%,) is a bounded region defined by the stationary condition of the process,
sampling from the resulting conditional posterior directly is difficult and because of
this, following Huerta and West (1999b), we use a reversible jump Markov chain Monte
Carlo step.

The structure of the MCMC algorithm in this case is very similar to the structure
of the MCMC algorithm developed in Huerta and West, (1999b) for the univariate case.

However, the number of computations increases considerably when the number of series
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Figure 4: Simulated series. Graphs (a) and (b) correspond to the first and second

series.

and/or the model order are large. This will be addressed in the following examples.

5 Examples

Example 1: Figure 4 displays two time series of 500 observations simulated with
innovation covariance > = 10.0 x I3 and the following latent structure. The first series
corresponds to an AR process with one real root with modulus 7{ = 0.98 and two pairs
of complex roots with modulus and wavelengths of r3 = 0.97, r1 = 0.8 and \} = 17.0,
A} = 6.0, respectively. The second series has one common pair of roots with the first
series, namely 73 = 0.97 and A3 = 17.0, another pair characterized by r3 = 0.8 and
A2 = 3.0 and a real root 7 = —0.98. Parameter estimation using a prior structure

with a maximum of three pairs of complex roots for each series, C; = 3, and one real
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real root, R; = 1 for ¢ = 1,2 is done running a reversible jump MCMC algorithm
as detailed in the previous section. The results presented here are based on 4,000
samples from the posterior distribution taken after convergence was achieved. The
most popular model, expressed in vector form, was M; : (R,0,C,C, R, 0, a3, C), with
posterior probability 0.38. In this notation, the first four components of the vector
refer to the Ry + C; = 1 4+ 3 = 4 roots of the first series and the last four to the
Ry 4+ C5 = 4 roots of the second series. Then, according to model M, the first series
has one real root aj ~ R, a zero root as ~ 0 and two complex roots o}, a; ~ C. The
second series has one real root o ~ R, a zero root a3 ~ 0 and two real roots, one of
which is a repeated root, i.e., a2 = a3, and the other one is a complex root different
from the roots of the first series, a2 ~ C. Therefore, the posterior mode captures the
right structure used to simulate the two series.

Figure 5 shows the histogram of the posterior samples of the real root for the
first series (graph (a)) and the histogram of the posterior samples of the real root for
the second series (graph (b)), assuming the correct model is M;. The points in the
histograms indicate the posterior means for each case. As seen in the graphs, the
model is appropriately estimating the real roots for the two series. Similarly, Figure
6 shows the histograms of the posterior samples of the complex roots for the first and
second series. In these graphs we are conditioning on the model structure M;. Then,
panels (a) and (d) display, respectively, the posterior distributions of the modulus and

wavelength of the complex root with the highest modulus for the first and second series,
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Figure 5: Graphs (a) and (b) display the posteriors of the two real roots for the

simulated series.
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Figure 6: Graphs (a)-(f) display the posteriors for the complex roots of the two simu-

lated series.
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i.e., @y = a3. Panels (b) and (e) show the modulus and wavelength of the complex

root with the smallest modulus for the first series, aj. Finally, panels (c) and (f) show
the modulus and wavelength of the complex root with the smallest modulus for the
second series o2. As seen in these graphs, our methodology performs very well in terms
of capturing the latent structure present in the simulated data.

The results and figures presented so far are conditional results, i.e., we are looking
at the posterior distribution for the parameters conditioning on M;, the model with
the highest posterior probability, being the correct model. It is also possible to report
some interesting results obtained by averaging across all possible models. For example,
the posterior probability that the two series have a real root different from zero is one:
Pr(a} ~ R|X) = Pr(a? ~ R|X) = 1.0. The posterior probability that each series
has a zero root is 0.721 for the first series and 0.826 for the second series. Another
interesting result is the probability that the second series has a complex root that also
appears in the first series. Based on the 4,000 posterior samples we obtain that this
probability is 0.6975. In the following example we will discuss some issues related to
the exploration of the posterior distribution.

Example 2: A DVAR;3(4) with two pairs of complex roots.

Even after MCMC convergence has been achieved, exploring the posterior distri-
bution from a sample is not necessarily trivial when structured priors of the form
described in Section 3, or extensions of such priors, are considered for VAR models.

We use a simulated example to illustrate some of the difficulties encountered when a
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three-dimensional DVAR model was fitted to simulated series that have a small number
of latent components. Such difficulties will be greater for models that deal with a large
number of series and a large number of latent processes. In this section, we analyze
simulated data from a three-dimensional diagonal vector AR process with two pairs
of complex roots and variance-covariance matrix ¥ = I3. Figure (7) displays 1,000
data points for each of the three simulated series. The first series corresponds to an
autoregressive process with two pairs of complex roots with moduli and wavelengths of
ri =0.98, r1 = 0.97 and A} = 16.75, \J = 6.28, respectively. The third series has the
same root structure as the first series. The second series has one common pair of roots
with the first and the third series, namely r? = 0.98 and \? = 16.75, and another pair
characterized by r2 = 0.97 and A3 = 4.0. We assume a prior structure with a maxi-
mum of two pairs of complex roots C; = 2, for each series i = 1,2, 3 and no real roots,
i.e. R; =0 for all . The prior masses for the roots on the stationary boundary were
set to zero and a discrete Uniform prior was used for the prior masses of roots in the
stationary region. In addition, we take a discrete Uniform prior on 7 for each series,
while g.(-) and h(-) are taken as component reference priors as described in Section 3.
The posterior summaries presented here are based on a sample of 1,000 draws taken
from 10,000 iterations of the Gibbs sampler, described in the previous section, after a
burn-in period of 10,000 iterations for MCMC convergence.

For this particular example, the number of possible models is 504, which is a large

number, considering we have a small number of series and a small model order. The
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Figure 7: Simulated series. Graph (a) and (b) correspond to processes with two pairs
of complex roots. The series in graph (c) was simulated using the same root structure

used to generate the series displayed in (a).
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number of possible models increases enormously when the number of series and/or AR
model orders for each series increases, so exploring the posterior distributions obtained
under the proposed class of priors is not trivial. In this case, we can explore exhaustively
the marginal posterior probabilities for all the possible roots. Table 1 displays the
results of the marginal posterior probabilities of the zero roots Pr(ri = 0|X), the
repeated roots for the second and third series Pr(rj = ri|X), and the roots that
appear only in each particular series Pr(rs ~ C|X), where 7} ~ C' means that r} is
restricted to the continuous part of its probability density function. The probabilities
that appear in bold correspond to the highest marginal posterior probabilities of each
particular series. For example, for the first series, there is zero posterior probability
that the series was generated from an AR(0) or an AR(1) model. Similarly, for the
second series, the posterior probability that its first root (r?) is the same as the first
root in series one (r1) is 0.321, while the posterior probability of a “new” root, sampled
from the continuous part of the distribution, is 0.590. The probability that the second
root of the second series (r3) is new equals 0.931. For the third series, the most likely
scenario is the one in which the first root (r?) is the same as the first root in the first
series (r1) and the second root (r3) is the same as the second root in the first series
(r?). Therefore, from these marginals probabilities, we can conclude that the most
likely model is the one in which the roots of the first series are different from zero,
the roots of the second series are different from zero and also different from the roots

of the first series, and the roots of the third series are the same as the roots of the
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Marginal posterior probabilities

i=1 | Pr(ri=0/X)=0 Pr(r} ~ C|X) = 1.000
Pr(ry=0/X) =0 Pr(r} ~ C|X) = 1.000

i=2 | Pr(r?=r}|X) =0.321 Pr(r? =r}|X) = 0.074
Pr(r?=0X) = 0.015 | Pr(r? ~ C|X) = 0.590
Pr(ra = r{|X) = 0.000 Pr(r2 =ri|X) = 0.069
Pr(r2 = 0|X) = 0.000 Pr(r2 ~ C|X) = 0.931

i=3 | Pr(r? =r}|X) =0.610 | Pr(r} = rj|X) = 0.021

Pr(r} =r?|X) = 0.083

Pr(r} = 0|X) = 0.062

Pr(r} = r2|X) = 0.002

Pr(r? ~ C|X) = 0.222

Pr(r3 = r{|X) = 0.010
Pr(r3 = r?|X) = 0.080

Pr(r3 = 0|X) = 0.000

Pr(ry =r;|X) = 0.474
Pr(ry =r3|X) = 0.238

Pr(ry ~ C|X) =0.198

Table 1: Marginal posterior distributions
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Model Posterior probability
(C,C,ri,Cri,m3) 0.146
(C,C,C,C,ri,r3) 0.122
(C,C,C,C,ri,r2) 0.062
(C,C,rt,C i, 0.060
(C,C,C,C,ri,rd) 0.060

Table 2: Most likely models from exploration of the joint posterior distribution.

first series. This model can be represented in a vector form as M; : (C,C,C,C,ri{,r3),
where the first component in the vector corresponds to the first root of the first series,
the second component to the second root in the series and so on. A value of 0 in any
of the components indicates a zero root, C' indicates a new or continuous root, and r%
indicates that the root is a repeated root and that it corresponds to the k-th root of
the [-th series.

A possible way of finding models with high joint posterior probabilities in such cases
is by means of clustering analysis, following an idea proposed in Bielza et al. (1996) and
used in Sansé and Miiller (1997) in the context of optimal design problems. If a distance
between models is defined, then it is possible to produce a cluster tree, cut the tree
of model structures at a certain height and consider the sizes of the resulting cluster.
Table 2 displays the 6 most likely models obtained after exploring the joint posterior

distribution. We obtain that the most likely model is given by M, : (C,C,ri,C,ri, r3),
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that is, a model in which the first series has two pairs of roots different from zero, the
second series has a common root with the first series and a continuous root and the
two roots in the third series are equal to the roots in the first series. Therefore, in the
example above it was possible to cut the tree at height zero and find the cluster with

the largest size. This cluster corresponds to the correct model M.

6 Conclusions and Extensions

In this paper, we propose a new class of prior distributions for multivariate times series
models that follow a vector autoregressive structure with diagonal coefficient matrices.
The class naturally addresses issues about model uncertainty and characteristic root
structure in a multivariate framework. The structured prior leads to exploration of a
very large model space through MCMC simulation. We suggest the use of clustering
ideas for more efficient exploration of the posterior distributions of interest.

In this work we assume that the innovation error covariance matrix ¥ is known. This
assumption can be relaxed with the use of inverse-Wishart priors. Alternatively, rep-
resentations of ¥ where the matrix elements take simple parametric forms like o pli=7/,
lead to prior specifications of only a few parameters. Reference priors as in Yang
and Berger (1994) and the conditionally conjugate prior distributions for covariance
matrices presented in Daniels and Pourahmadi (2002) can also be used.

For the case of general VAR processes, i.e., VARs with coefficient matrices ®; of

arbitrary form, it is not trivial to extend the prior structure developed in Section 3.
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In particular, extending such hierarchical structured priors in a way that guarantees
stationarity of the VAR process is a very difficult task. The latent processes of each of
the scalar components in the multivariate series are defined in terms of the roots of the
VAR characteristic polynomial, which for general processes cannot be written as the
product of individual characteristic polynomials. In future research we will investigate
structured priors for triangular VAR processes, i.e., processes for which the matrices
of coefficients are either upper or lower triangular matrices, and for transformations of
the VAR that lead to a collection of univariate processes that can be fitted separately,

such as the transformations proposed by Kitagawa and Gersch (1996).
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