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Abstract. A beam of protons is produced by a linear charged particle accelerator,
then focused through the use of successive quadrupoles. The initial state of the
beam is unknown, in terms of particle position and momentum. Wire scans are
used to collect data on the current state of the beam as it passes through and
beyond the focusing region, and the goal is to infer the initial state from the wire
trace data. This setup is that of an inverse problem, in which a computer simulator
is used to link an initial state configuration to observable values (wire traces), and
then inference is performed for the distribution of the initial state. We present a
Bayesian approach for solving this inverse problem.
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1 Introduction

Particle accelerators are used in a variety of experiments in physics. For an accelerator
to be useful, it is important to understand exactly what the accelerator is producing.
First, the particle beam emitted from the accelerator must be focused, so that it can
be directed to the region of interest. The focusing process depends on the initial state
of the beam. Second, information about the emitted particles may be critical in future
calculations of the experiment. Thus the statistical problem of interest is that of in-
ferring the initial distribution (position and momentum) of the particles when they are
first emitted from the accelerator.

The challenge of the problem arises because it is difficult to directly measure infor-
mation about the particles. What can be observed are one-dimensional histograms of
particle frequencies at various points along the path of the beam. Measurements are
taken as the beam passes through a series of focusing quadrupole magnets. A computer
simulator can be used to link an initial distribution state to future spatial location dis-
tributions. We are thus faced with a classic inverse problem, in that we are trying to
learn about the unobservable initial state from highly transformed and simplified data,
with computer code providing the link (see for example, Yeh, 1986). Proposed initial
states can be run through the simulator, the predicted results computed, and then the
initial proposal can be modified in an attempt to better match the computed results
and the observed data. This process is iterated until convergence.

We take a Bayesian approach as it allows better accounting of uncertainty, partic-
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2 Proton Particle Distribution

ularly in the context of computer experiments and inverse problems (c. f. Kennedy
and O’Hagan, 2001, where in addition to finding the calibration parameters, they also
attempt to model the computer simulator). In many inverse problems, the problem is
underspecified, in that many initial states will be able to produce similar fits for the
data. Thus it is helpful for the statistician to produce a range of highly plausible ini-
tial states, which can be done naturally through the Bayesian paradigm by reporting
posterior distributions or intervals.

In the next section we describe the physical experiment, along with the data that are
collected. The following section discusses our statistical model for this problem, which
accounts for some interesting features in the data. We then present some results, and
conclude with some comments and future directions.

2 Physical Setup and Data

The particle accelerator produces a beam of protons, with the states of the particles
in the beam being determined by their x and y positions and their x and y momenta
(x, px, y, py). As there are a large number of particles in the cloud, we are modeling the
distribution of (x, px, y, py) at points in time, with particular interest in the state at the
instant that the particles emerge from the accelerator. If the initial state distribution can
be determined, future behavior of the beam can be reasonably predicted via computer
code based on physical laws. The code we use is the MLI 5.0 code provided to us by
scientists at Los Alamos National Laboratory (Dragt et al., 1988; Qiang et al., 2000).

The beam passes through pairs of magnets, called quadrupoles, with one magnet of
each pair being focusing and one defocusing (i.e., one focuses in the x direction, the
other focuses in the y direction). After each quadrupole is a wire for each dimension
which records intensities that are proportional to counts of particles within each segment
of the wire. Within the simulator, such intensities are approximated by counts for a
number of bins along that dimension. The number of bins can be varied as one of the
input parameters for the simulator. A graphical representation of the progress of the
particles within the simulator is presented in Figure 1. A run of the simulator with an
input of 100,000 particles was used to obtain the plots. The line in the upper panel
correspond to the 5-th, 15-th, . . . , 95-th percentiles of position in the x dimension. The
histograms in the lower panel correspond to the counts for each of 256 bins along the x

dimension. Similar beamlines and wirescans can be obtained for the y dimension. The
characteristics of the beamlines and the shape of the wirescans depend on the initial
configuration of the cloud of particles.

When observations are collected from a real particle accelerator the data correspond
to wirescans analogous to the ones in the lower panel of Figure 1 for both the x and
y dimensions. By matching the observed wirescans with the ones obtained from the
simulations we can explore plausible initial configurations for the real accelerator.
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Figure 1: Simulation of particle beamlines passing through a series of quadrupole mag-
nets. The upper panel corresponds to the progression of the particles in the x dimension.
Quadrupoles are denoted by shaded areas. It is observed that one quadrapole focuses the
beam and the next defocuses it. The opposite effects are produced for the y dimension of the
beam. The wires are denoted by dashed lines. Histograms corresponding to the readings on
the odd-numbered wires are plotted in the lower panel.
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3 Statistical Model

We start our analysis by performing a simulation study using a high fidelity simulated
beam of 100,000 particles as a proxy for a real particle accelerator beam. We use the
simulator with a much lower fidelity beam of 8,000 particles to explore the known initial
distribution of the high fidelity beam. We configure the simulator to have nine wires
with 256 bins each. 8,000 particles were chosen since such number provides reasonable
approximations to the high fidelity beam, yet low enough computational times to make
MCMC feasible. Our statistical model is based on considering a parametric initial
distribution for the cloud of particles and a likelihood that reflects the discrepancies
between the high fidelity wirescans and the low fidelity ones.

We first validated our model using the high fidelity simulations. Next we considered
data obtained from actual readings of four wirescans in a particle accelerator.

3.1 Probability model for the initial particle clouds

We model x position and momentum as bivariate normal and y position and momentum
as bivariate normal independently of x. Thus,

x, px, y, py ∼ N4
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Our prior specifications are fairly vague, in fact, we assume that
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; ρx ∼ U(0, 1) and ρy ∼ U(−1, 0).

We note that ρx and ρy must have opposite signs because of physical constraints.

3.2 Correlation structure of the wirescans

Inverse problems typically require that the likelihood function be fully specified, since
there is insufficient information in the data to estimate both the initial configuration
and additional parameters in the likelihood (see, for example, Oliver et al., 1997; Lee
et al., 2002). In order to specify our likelihood, we used the errors between the readings
at the nine wirescans produced by the high fidelity and the low fidelity simulations,
using the same initial configuration. The errors in bin counts are not independent,
as nearby bins are correlated. We obtained empirical correlograms and observed a
distinctive sinusoidal decay. Thus we model the error correlation between bins with an
exponentially-dampened cosine function. For each wirescan j, the correlation function
is defined by parameters λj and ωj . Let d be the distance between two bins, then

ρj(d) = e−3d/λj cos(ωjd) . (1)
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This defines a valid positive definitive covariance, as shown in Yaglom (1986). Figure 2
shows the fits obtained for some of the wirescans using ρj for both x and y dimensions.

The likelihood is obtained by assuming that the errors of the wirescans for each di-
mension are conditionally normal. Let Σxj

and Σyj
denote the covariances correspond-

ing to the j-th wirescans in the x and y dimensions respectively. These are obtained
using the correlation in (1). Denote the corresponding errors as exj

and eyj
. Then the

likelihood is proportional to

9
∏

j=1

(2πτ2)−2∗256/2 exp

{

−

1

2τ2
(e′xj

Σ−1

xj
exj

+ e′yj
Σ−1

yj
eyj

)

}

.

We assume that τ2, Σxj
and Σyj

, j = 1, . . . , 9 are known, determining them from ad-
ditional simulation experiments. τ 2 was chosen based on considerations about the
expected size of discrepancies in the wirescans, which would rely on knowledge from
subject area experts in a real application.

3.3 MCMC

We use a Metropolis-Hastings algorithm (see for example, Gamerman, 1997) to explore
the distributions of the six parameters that define the distribution of the initial configu-
ration. We sample the parameters in two blocks, one for the variances and correlation of
the x dimension and another for those of the y dimension. To produce proposals for the
variances we use random walks on the log scale. Proposals for the correlation param-
eters are obtained with random walks on the logit scale. The x dimension correlation
is constrained to the interval (0, 1), whether the y dimension correlation is constrained
to (−1, 0), since the physics of the problem requires that the correlations have opposite
signs.

3.4 Simulation Results

Figure 3 shows our results on the simulated data. Each column represents a wire.
There were actually nine wirescans, but only four are shown to improve the visibility
of the graphs. The other five are similar in character. The top two rows are for the x

dimension, the bottom two rows for the y dimension. The first and third rows are the
estimated posterior distributions of the particle cloud (x or y position and momentum)
as the beam passes through the quadrupole magnets. The second and fourth rows
show the true wirescans (circles), the estimated posterior mean scans (solid line), and
posterior interval estimates (dashed lines). Only 32 bins are pictured so that the results
can be seen visually (using all of them produces a smear of black ink). This number was
chosen to match the number of bins used in the real data example of the next section.
The posterior mean is generally close to the truth, and the credible intervals provide a
measure of our uncertainty.

Figure 4 shows the estimated posterior distribution for the six parameters of our
inverse problem (the variance for each of position and momentum for each of x and y,
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Figure 2: Autocorrelation function plots for the differences between wirescans of high and
low fidelity simulated beams. Only the odd numbered wirescans are shown. The dotted lines
correspond to the empirical autocorrelations. The continuous line corresponds to the least
squares fit using the correlation function defined in (1)



Lee, Sansó, Zhou and Higdon 7

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0

.0
0

5
0

.0
0

5

X pos

X
 m

o
m

−0.5 0.0 0.5

0
.0

0
0

0
.0

2
0

X Wirescan 01

X pos

−0.2 −0.1 0.0 0.1 0.2

−
0

.0
2

0
.0

1

Y pos

Y
 m

o
m

−0.5 0.0 0.5

0
.0

0
0

0
.0

2
0

Y Wirescan 01

Y
 p

o
s

−0.15 −0.05 0.05 0.15

−
0

.0
6

0
.0

0

X pos
X

 m
o

m

−0.5 0.0 0.5

0
.0

0
0

0
.0

2
0

X Wirescan 03

X pos

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0

.0
0

5

Y pos

Y
 m

o
m

−0.5 0.0 0.5

0
.0

0
0

0
.0

2
0

Y Wirescan 03

Y
 p

o
s

−1.0 −0.5 0.0 0.5 1.0

−
0

.0
5

0
.0

5

X pos

X
 m

o
m

−0.5 0.0 0.5

0
.0

0
0

0
.0

2
0

X Wirescan 05

X pos

−0.6 −0.2 0.0 0.2 0.4 0.6

−
0

.0
1

5
0

.0
0

5

Y pos

Y
 m

o
m

−0.5 0.0 0.5

0
.0

0
0

0
.0

2
0

Y Wirescan 05

Y
 p

o
s

−2 −1 0 1 2

−
0

.1
0

0
.0

5

X pos

X
 m

o
m

−0.5 0.0 0.5

0
.0

0
0

0
.0

2
0

X Wirescan 07

X pos

−0.6 −0.2 0.2 0.4 0.6 0.8

−
0

.0
3

0
.0

1

Y pos

Y
 m

o
m

−0.5 0.0 0.5

0
.0

0
0

0
.0

2
0

Y Wirescan 07
Y

 p
o

s

Figure 3: Results for the simulated dataset: The columns are the positions of the four wires-
cans. The top row shows the estimated posterior particle cloud distributions for x position vs.
momentum. The second row shows the data (circle), posterior mean (solid line), and posterior
interval estimates (dashed lines). The third and fourth rows are the analogous plots for the y

dimension.

and the correlation between the position and momentum for each of x and y), along
with the true values (the large black dots). We are pleased that the estimated posterior
has most of its mass around the truth for all six parameters.

4 Application to Real Data

We now apply our methodology to a real dataset provided by scientists at Los Alamos
National Laboratory. In this setting, only four wirescans are available, analogous to the
first four scans in the simulated example above. From these four scans we attempt to
infer the unknown initial distribution of the beam. The data seem a bit more complex
than can be perfectly matched under our paired bivariate normal model, but the model
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Figure 4: Posterior distribution estimates for the parameters for the simulated data set. The
truth is shown as the large black dot.

captures the key features in the data. We note that for the real dataset, the correlation
parameter for x is positive and y is negative, the reverse of our simulated example (the
physical constraint is merely that the signs must be opposite), so we modify the relevant
priors and proposal distributions accordingly.

Figure 5 shows our results on this dataset. As in Figure 3, each column is a wire, the
top two rows are for x, the bottom two for y, with estimated particle cloud posteriors
and fitted scans with 95% credible intervals for each. Our methodology provides a good
starting point for solving this inverse problem. The bivariate normal assumption is
useful for its intuitive simplicity yet it provides enough flexibility to do a reasonable job
of modeling the true process.
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Figure 5: Results for the real dataset: The columns are the positions of the four wirescans.
The top row shows the estimated posterior particle cloud distributions for x dimension vs.
momentum. The second row shows the data (circle), posterior mean (solid line), and posterior
interval estimates (dashed lines). The third and fourth rows are the analogous plots for the y

dimension.

5 Conclusions

The Bayesian approach is helpful in this problem as it gives a natural measure of un-
certainty. Such an uncertainty estimate would be nearly impossible to obtain from a
classical analysis, yet is valuable in understanding the functioning of the particle ac-
celerator. As with many inverse problems, multiple initial conditions can be consistent
with the observed data, and the Bayesian approach also provides a natural mechanism
for either exploring this multimodal surface, or for restricting the problem through the
imposition of structure in the prior based on substantive information (as we do here).

Extensions of the current model can be considered in two directions. One is the
acceleration of computations and the other is exploring more complex distributions for
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the initial configuration. A typical MCMC run would take several days because of the
time spent running the simulator at each iteration. To make the MCMC faster we can
consider a multiresolution approach where a very low fidelity simulator (faster but less
accurate) is coupled with a high fidelity one (slower but more reliable). An alternative
approach is that of replacing the current simulator with a simplified version that uses
linear or non-linear approximations between subsequent positions of the accelerator,
such as in Craig et al. (1996) or O’Hagan et al. (1999). Improvements to the initial
configuration may be obtained by using a more flexible family of distributions, such as
mixtures of normals or Gaussian processes.
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