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Abstract:

A positively selected amino acid site is one for which
natural selection encourages diversification. The
identification of such sites is of biomedical impor-
tance, as diversifying sites cannot act as reliable
binding sites for location-specific drugs. We in-
troduce a new method for detecting positive selec-
tion based on a class of Bayesian generalized lin-
ear models (GLMs). This method does not re-
quire explicit assumptions about phylogeny and of-
fers relatively reduced time to Markov chain Monte
Carlo (MCMC) convergence. We compare our
Bayesian GLM approach with three current methods
for detecting positive selection: Nei and Gojobori’s
ADAPTSITE, Yang’s PAML, and Huelsenbeck and Ron-
quist’s MrBayes.

1. Introduction

Molecular sequences are said to experience purifying,
neutral, or positive selection depending on the ratio
of nonsynonymous (amino acid changing) nucleotide
substitutions to synonymous (amino acid preserv-
ing) nucleotide substitutions. A positively selected
amino acid site is one for which natural selection
encourages the fixation of nonsynonymous substitu-
tions. The identification of such sites is of biomedi-
cal importance; for instance, an antigen with many
positively selected sites would be an unsuitable can-
didate for vaccine development. Our research has
been motivated by the need to recognize this prop-
erty in several recently sequenced antigenic regions
of human malaria parasites Plasmodium falciparum
and Plasmodium vivax.

Detection of positively selected sites is usually
accomplished by inferring the rate of nonsynony-
mous substitutions per synonymous substitution (ω)
for each codon–the nucleotide triplets that codify
a particular amino acid–in a given protein coding
DNA sequence alignment, with ω > 1 being the
criterion for positive selection [5, 6] . Substitution
rates are traditionally inferred using codon-based
stochastic models of sequence evolution, however,

the computational complexity associated with fit-
ting a stochastic model to real data usually pre-
cludes the simultaneous estimation of substitution
rates and sequence phylogeny, even though the terms
are highly dependent on one another. Computation-
ally efficient methods for detecting positive selection,
such as Yang’s maximum likelihood based PAML [5]
and Nei and Gojobori’s ADAPTSITE [3, 4], assume
fixed phylogenies, and in the latter case, fixed an-
cestral sequences, to ease the computational burden
of estimating substitution rates. This assumption
may be reasonable for certain distantly related se-
quences with a clear phylogenic structure, but is gen-
erally inappropriate for closely related sequences for
which any existing phylogenetic information should
be regarded as probabilistic at best. Hierarchi-
cal Bayesian treatment of the stochastic models of
sequence evolution exist in Huelsenbeck and Ron-
quist’s MrBayes [2]. In Bayesian tradition, all model
parameters, including phylogeny, are given prior dis-
tributions, and MCMC is used to sample from the
joint posterior distribution. By integrating over tree
structures, MrBayes is fairly robust with respect to
phylogenetic assumptions. However, MCMC conver-
gence becomes a problem for the codon-substitution
models implemented in MrBayes when dealing with
large numbers of closely related sequences. In pre-
liminary analyses of the plasmodium sequences, we
found that MrBayes’ MCMC convergence was both
slow and difficult to assess.

We propose a new method based on a class of hier-
archical Bayesian GLMs capable of inferring substi-
tution ratios and allowing the identification of sites
under positive selection without requiring explicit
assumptions about phylogeny. This latter feature is
key to the analysis of many (> 50) very closely re-
lated sequences for which no particular phylogenic
structure is available, as is the case with the plas-
modium alignments.

In Section 2 we describe the new Bayesian models
for detection of positively selected sites. Section 3
presents a comparison of the results obtained with
ADAPTSITE, MrBayes, PAML and the new methodol-
ogy, in the study of two simulated data sets. Finally,
Section 4 presents the conclusions and future work.



2. Model Description

Our model assumes that underlying nucleotide sub-
stitutions occur at fixed probabilities for a given
amino acid site within a given pair of sequences.
In the general case, we consider 5 types of substi-
tution: synonymous or nonsynonymous, transition
(purine-purine and pyrimidine-pyrimidine substitu-
tions) or transversion (all others), and no substitu-
tion. The data consist of a gapless alignment of N
protein coding DNA sequences of I codons (3 × I
nucleotides). We first transform the sequences into
vectors of the form (zi
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each component respectively indicates the number
of synonymous transitions, synonymous transver-
sions, nonsynonymous transitions, and nonsynony-
mous transversions, or no substitution, occurring
at each codon i ( i = 1, . . . , I), for each pair
of sequences j (j = 1, . . . , N(N − 1)/2). If
codons yi

j (sites i in comparison j) differ at 0
or 1 nucleotide positions, zi
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tion probabilities for synonymous transitions, syn-
onymous transversions, nonsynonymous transitions,
nonsynonymous transversions, and no substitution
at site i for sequence pair j. If the codons differ
at more than 1 position, we consider the different
pathways that could result in the observed substi-
tutions, each of which may include different num-
bers of component substitutions. In general, if yi

j

differ at n positions, there are at most n! substitu-
tion pathways, and each pathway results in a unique
zi

j consisting of the sum totals of each substitution
type along the pathway. In this case, each zi

j is
distributed as zi

j ∼ Multinomial(n, θi
j). Pathways

containing intermediary stop codons should not be
allowed. Our model allows for a mixture over possi-
ble pathways by defining the probability mass func-
tion p(zi

j |yi
j). This allows the exploration of differ-

ent hypotheses regarding pathways, such as those
which suggest the increased probability of pathways
consisting primarily of synonymous or transitionary
substitutions. Thus, we have the following
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Finally for each site i and each pair j, we relate the
mean of the outcome variable to a linear predictor
using the following link function:

g
(
θi

l,j

)
= αl + βl,i + γl,j ,

for l = 1, . . . , 5. After imposing the appropriate con-
straints on α, β and γ, and defining a prior distri-
bution on the model parameters p(α,β,γ), we can
use MCMC to obtain samples from the joint poste-
rior distribution p(α,β,γ|y). Choosing a logit link
function g and Gaussian priors on α,β and γ allows
the use of an iteratively reweighted least squares
algorithm (IRLS) within the Metropolis sampler,
thereby producing efficient Gaussian proposal mech-
anisms that enhance convergence [1].

In our model, the α terms model mutation-level
effects, the β terms model site-level effects, and the
γ terms model cross-sequence effects. The non-
synonymous/synonymous substitution ratio for each
codon i can be estimated as a function of the θi

l,j ’s
by averaging over pairwise comparisons j. These ra-
tios can be used to estimate the positive selection
probabilities for each codon. Similarly, by averaging
over all sites i, it is possible to define a measure of
the evolutionary distance between the two sequences
represented by j, based on the estimated probability
of substitution between the sequences. A phylogeny
tree can be recovered from these distances using an
algorithm for tree reconstruction such as neighbor
joining.

3. Examples

A preliminary version of this model has been imple-
mented in C++ and used to analyze two simulated
data sets. The data sets sim1 and sim2 were sim-
ulated using Yang’s evolver program, included in
the PAML distribution [5]. In evolver, the user spec-
ifies each parameter of the codon-substitution model
M3 [6]. The M3 discrete model is characterized
by three nonsynonymous/synonymous substitution
rates, ω1, ω2 and ω3, having probabilities p1, p2 and
p3. Other user specified parameters include the phy-
logeny, the underlying codon frequencies, and the
transition/transversion ratio κ. The program then
simulates sequence evolution along the given phy-
logeny according to the parameter values using the
Nielsen-Yang model of sequence evolution. In the
simulations we use ω1, ω2 ≤ 1 and ω3 > 1, there-
fore only the codons evolved under ω3 are positively
selected.

The data set sim1 consists of 15 sequences of 100
codons with ω1 = 0.1, ω2 = 0.8, ω3 = 3, Pr(ω1) =
0.5, Pr(ω2) = 0.4 and Pr(ω3) = 0.1. The codon fre-
quencies for the 61 codons were assumed to be equal,
i.e., Pr(AAA) = . . . = Pr(TTT ) = 0.01693. The
transition/transversion ratio κ was set to 2. Data
set sim2 was similarly prepared, but smaller. The
sim2 alignment contains 8 sequences of 25 codons.



Here the nonsynonymous/synonymous substitution
rates were set at ω1 = 0.1, ω2 = 1, and ω3 = 10, with
probabilities 0.4, 0.4, and 0.2 respectively. Codon
frequencies and the transition/transversion ratio re-
mained as above. A phylogenetic tree was chosen for
each simulation such that the tree’s branch lengths
would be of the same order of magnitude as those of
the best estimates for the malaria parasite phyloge-
nies. The total branch length for the sim1 tree was
1.47 expected nucleotide substitutions per codon,
and 1.06 for the sim2 tree. The tree topologies were
chosen arbitrarily.

Each simulated data set was analyzed for positive
selection by four different methods: PAML’s codeml,
MrBayes, ADAPTSITE, and the new Bayesian method.
Analysis with codeml was conducted assuming the
same M3 evolutionary model used previously to gen-
erate the sequences. We also provided codeml with
the true generative tree topologies. All other model
parameters and branch lengths were then estimated
by maximum likelihood. codeml identifies a site i
as positively selected when empirical Bayes calcu-
lations indicate Pr(ωi > 1) > 0.9. Analysis in
MrBayes builds upon that of codeml by assuming
prior distributions for the M3 model parameters and
then using MCMC to sample from the joint poste-
rior distribution of parameters. For these analyses,
MrBayes’ default priors were used, and the chains
were started with random phylogenies rather than
the true generative phylogenies provided to codeml.
The sim1 MCMC was run for 100, 000 iterations,
sampled every 100, with a 100 sample burn-in. The
sim2 MCMC ran for 50, 000 iterations, also sampled
every 100 with a 100 sample burn-in. Convergence in
each case was assessed by means of parameter traces.
During each iteration of MCMC, MrBayes calculates
the posterior probability of each w for each site i in
order to determine Pr(ωi > 1) for each site. A site
is identified as positively selected when the posterior
mean Pr(ωi > 1) is greater than 0.9.
ADAPTSITE detects and measures positive selection

differently than the previous two methods. It re-
quires a distance-based phylogeny created using the
njboot program provided as part of the LINTREE
package, and the complete 4 × 4 nucleotide sub-
stitution rate matrix. Our trials were conducted
using a Kimura 2-parameter rate matrix, utilizing
the true transition/transversion ratio used during
sequence generation (κ = 2). Ancestral sequences
are then estimated by maximum parsimony in order
to count the numbers of nonsynonymous and syn-
onymous substitutions. These counts are used to fit
a binomial substitution model. Positive selection is
identified when the binomial model’s two-tailed p-

sim1 sim2
actual sites 6, 16, 26, 60,

62, 70, 78,
81

4, 5, 11, 13,
15

codeml 6, 16, 26, 60,
62, 70

1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13,
14, 15, 16,
17, 18, 19,
20, 21, 22,
23, 24, 25

MrBayes 16 11, 13, 15
ADAPTSITE none none
Bayesian
GLM
method

6, 16, 26, 60,
89

4, 8, 11, 13,
15, 20

Table 1: Sites identified as positively selected by
each method. Top row indicates sites known to be
positively selected.

value rejects a neutral selection hypothesis, and the
observed substitutions counts favor nonsynonymous
substitutions.

For the Bayesian GLM-based method, we assigned
Gaussian prior distributions for each parameter

block, i.e., α ∼ N(µ, σ2I), β1, . . . ,βI
IID∼ N(µ, σ2I)

and γ1, . . . ,γJ
IID∼ N(µ, σ2I), where µ = vec(0)

and σ2 = 10. We also assumed a uniform mixture
over substitution pathways, i.e., p(zi

j |yi
j) ∝ 1. A

Metropolis-Hastings algorithm was used to to sam-
ple from the appropriate posterior distributions. In
this preliminary version, relatively simple indepen-
dent random walk proposal distributions were used.
In our trials the sim1 MCMC ran for 5, 000 itera-
tions, sampled every 10, with a 50 sample burn-in.
The sim2 MCMC ran for 2, 500 iterations, also sam-
pled every 10 with a 50 sample burn-in. At this
point, both chains exhibited convergence. During
each iteration, we computed the value ω∗
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2+θi
5

for each site i by averaging over j. A site is identified
as positively selected when Pr(ω∗

i > 1) > 0.9.
Table 1 summarizes the sites identified as posi-

tively selected by each method according to the cri-
teria described above. These results demonstrate
important drawbacks to each method. PAML’s iden-
tification of all sites as positively selected in the
case of sim2 occurred as a result of the ML esti-
mates for ω1, ω2, and ω3 all being greater than 1.
MrBayes conservative–but accurate–predictions are
likely due to phylogeny-related MCMC convergence



problems. Despite having met convergence criteria
for scalar parameters, it was not possible to assess
stationarity of the phylogeny parameter in the same
manner. The phylogeny parameter in MrBayes con-
sists of a tree topology and the associated branch
lengths, each of which are sampled separately during
MCMC, but written to output as a single tree struc-
ture . Assessing convergence of the topology compo-
nent might involve parsing the tree output in order
to abstract the topology, enumerating all possible
topologies, and monitoring a trace based on the enu-
merated values. However, an enumeration of topolo-
gies would likely obfuscate many important similar-
ities between tree topologies which should be con-
sidered when assessing parameter convergence. Fur-
thermore, it does not make sense to speak of branch
length convergence until after topology convergence
has been achieved. Detecting positive selection via
stochastic evolutionary models requires highly ac-
curate recovery of branch lengths. The sensitivity
of these inferences to small discrepancies in branch
length is especially strong when the branch lengths
are sufficiently small. Thus if the phylogeny pa-
rameter (topology and branch lengths) had not yet
achieved stable mixing by the time all other scalar
parameters appeared to have reached stability, the
probabilities of positive selection would no doubt
be affected. ADAPTSITE’s inability to detect any in-
stances of positive selection can also be attributed
to phylogenetic uncertainty. Suzuki and Gojobori
previously remarked that their method’s ability to
detect positive selection is diminished when the to-
tal tree length falls below approximately 2.5 [3]. Be-
low this threshold, the parsimony-based substitution
counts are generally too low for ADAPTSITE to resolve
the dominant selective pressure at a site. The new
method performed consistently well for both data
sets. The false positive rate may be seen as a cause
for concern, but it is worth noting that 60% of the
substitutions at sim1 site 89 were nonsynonymous,
as were 68% and 64% of the substitutions at sim2
sites 8 and 20. We expect our inferences to improve
as additional attention is given to model assump-
tions such as the substitution pathway mixture dis-
tribution p(zi

j |yi
j) and the prior distributions.

4. Conclusions and Future Work

We consider these preliminary results of this new
methodology to be very promising. As mentioned
in Section 2, the new model also allows for estima-
tion of measures of evolutionary distances between
sequences, which can then be used to reconstruct a
phylogeny tree via neighbor joining. Separate anal-

yses (not shown) indicate our method to be quite
adept at recovering pairwise distances for data of
varying degrees of speciation. In particular, we were
able to infer the correct tree topologies for the simu-
lated data of Section 3. These results should serve to
reassure that our models, while not necessarily based
on explicit assumptions about the phylogeny, are
able to capture the underlying phylogenetic struc-
ture.

Our future work will address issues such as sen-
sitivity to the prior distributions, as well as how to
include phylogenetic information via the prior distri-
butions for the model parameters when such infor-
mation is available. We expect to devote consider-
able time to investigating issues of model validation
via simulation studies. In particular, we are inter-
ested in studying the impact of branch lengths and
number of sequences on the predictive capabilities of
our models.

From a biological point of view, our interest lies
in the analyses of P.falciparum and P.vivax gene
sequences encoding various candidate malaria anti-
gens. These data sets consist of many (¿100) closely
related DNA sequences for which no phylogenetic in-
formation is available, and therefore for which most
traditional methods for detecting positive selection
are not appropriate.
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