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Abstract:

We consider the problem of estimating the proper-
ties of an oil reservoir, like porosity and sand thick-
ness, in an exploration scenario where only a few
wells have been drilled. We use gamma ray logs
measured from the wells as well as seismic traces
around the wells. We fit a linear regression model
that accounts for the spatial correlation structure of
the observations using an isotropic correlation func-
tion. We first transform the predictor variable using
discrete wavelets. We then perform a Bayesian vari-
able selection using a Metropolis search. We obtain
predictions of the properties over the whole reser-
voir providing a probabilistic quantification of their
uncertainties, thanks to the Bayesian nature of our
method. The cross-validated results show that a
very high accuracy can be achieved even with a very
small number of wavelet coefficients.

1. Introduction

Predicting the properties of a reservoir using the
information from well logs is a fundamental issue
in petroleum management and exploration. This
is usually achieved using and array of geostatistic
techniques. In an exploration scenario, log data are
usually scarce, as they are only available at few loca-
tions where wells have been drilled, whether seismic
data are usually available for the whole reservoir.
This presents a problem for most geostatiscs meth-
ods, since they are difficult to apply and generally
fairly imprecise when the number of wells is small
and seismic information is difficult to incorporate.
We present a method based on regressing the ob-
servations on a wavelet decomposition of a signal,
either well logs or seismic traces. The method uses
a Bayesian approach to estimate the property of
interest on a location in a reservoir and quantify
the uncertainty associated with the estimation. We

present the model in Section 2. In Section 3 we dis-
cuss the methods used to estimate the parameters
in the model and produce estimates of the proper-
ties at unobserved sites. In Section 4 we present the
results. This work has been developed in Alvarez
(2003) where a generalization that considers joint
estimation of several properties using the informa-
tion from both signals is undertaken.

2. The model

In this paper we consider data from 14 wells located
in a reservoir in South Western Venezuela. For these
wells we analyze 7-ray logs obtained at a depth of
9000. A grid of seismic traces covering an area of 100
Km? around the wells. The average window length
was determined by the petrophysicist as 150 feet,
which corresponds to 32 seconds in the seismic trace.
Two reservoir properties are available: porosity and
clay volume.

Well logs and seismic traces consist of series of
512 and 128 readings respectively. The 14 locations
of the wells are irregularly scattered over the whole
area of the reservoir. In order to relate the proper-
ties to the well logs or the traces, we consider the
regression model

y=al+Xb+e 1)

where y € R" is the vector of properties at the lo-
cations of the wells. In our case n = 14. a € R is
an intercept. X € R™? is the matrix of the sig-
nals, either well logs or seismic traces and p = 512.
b € R? is a vector of coefficients and € € R" is the
error term. Notice that the model in (1) has a larger
number of regression coefficients than data. Thus di-
rect estimation of the b using traditional regression
methods is unfeasible. We either have to impose
some restrictions or consider prior information.
Motivated by the work of Brown and Vannucci
(2001) we consider a wavelet transformation of the
signals. The idea of such a transformation is that



a reduced number of wavelet coefficients should be
able to capture the information in the signals needed
to predict the value of the reservoir property at a
given location. A discrete wavelet transformation
is given by an orthogonal matrix (see for example
Vidakovic, 1999, chap. 4), say W € RP*P_ such that
WW' = I, where I denotes the identity matrix.
We then have that

y=al+ XWW'b+e=al+ZB+¢e (2

where Z = X W is the matrix of wavelet coefficients
and 3 = W'b the new regression vector.

The spatial correlation of the observation in y is
captured by assuming that the error term e corre-
sponds to an isotropic random field with an expo-
nentially decaying correlation function. Thus

1
cov(ei,ej) = 0” exp (‘X”Sz - 31’”) ’

where s, denotes the location of the kth site. The
proposed correlation can easily be substituted for
any other parametric family of correlations offering
wider flexibility, like the Matern class, as described
for example in Stein (1999).

We take a Bayesian approach to estimate the pa-
rameters in the model and, following Brown and
Vannucci (2001), we specify a prior for the origi-
nal regression coefficients b as a p-variate normal
with mean 0 and covariance matrix H, denoted as
N,(0,H), for H corresponding to the covariance
matrix of an autoregressive process of order one.
Such a distribution is used to guarantee that the
components of b vary smoothly and that the vari-
ances of the transformed coefficient 3 show the typi-
cal decay of wavelet coefficients. The selection of the
relevant wavelet coefficients is achieved by consider-
ing a prior distribution for the parameter 3; given
by B

p(Bi) o< (1 = vi)do +vilN1(0, hi)

where g is a point mass at 0 and +; is a binary
variable that indicates whether the i-th coefficient
is 0 or not. h; corresponds to the diagonal of the
matrix H = WHW'. So, a priori, the i-th coef-
ficient has probability 1 — «; of being equal to zero
and probability v; of being distributed as a normal
with zero mean and variance h;. To complete our
model we consider the following prior distributions:
a ~ N1(0,ho?), v; ~ Ber(w), i = 1,2---,p., where
Ber(p) denotes a Bernoulli with parameter p, o2 fol-
lows an inverse gamma with parameters a, and b,
and ) follows a gamma with parameters ay and b).
a, and b, were chosen to obtain a diffuse prior on

o%. ay was taken as 0.4 for clay volume and 0.5

for porosity, by was set to 4 in both cases. These
values are compatible with the covariograms of the
observations, but reflect a fair level of uncertainty.

3. Estimation and prediction

To obtain inferences on the parameters in our model
we explore their joint posterior distribution using
a Markov chain Monte Carlo method (MCMC) as
proposed, for example, in Gamerman (1997). The
MCMC that we use consists of sampling iteratively
from the distributions of each of the parameters or
blocks of parameters conditional on all the remain-
ing ones. Thus, samples of o are obtained from a
univariate normal. Samples of § are obtained from
a multivariate normal and samples of o2 correspond
to an inverse gamma. The spatial range A is sam-
pled by considering a Metropolis-Hastings step that
consists of accepting or rejecting a proposed value
with a probability that depends on the conditional
density of A evaluated at the current state of the
chain.

Generating samples of v = (71,...,72») presents
the challenge of dealing with a highly multivariate
distribution, since in our case p is 512 when using
the y-ray logs as predictor and 128 when using the
seismic traces. We proceed by considering a random
initial configuration (®). Then, at each iteration,
one the following two ways of choosing a candidate
configuration is chosen with (fixed) probability ¢:
(a) Generate a new candidate by choosing at ran-
dom a component. This component is deleted if it
is part of the current configuration and added if it
is not; (b) Select two components ¢ and j such that
v; = 0 and ; = 1 and swap their values. The pro-
posed configuration is rejected or accepted follow-
ing a Metropolis-Hastings rule. Experience shows
that good predictions can be obtained with about
20 wavelet coeflicients. Thus our prior distribution
for «y is such that the prior expected number of coef-
ficients, pw, is equal to 20. Thus w = 0.16 when the
seismic traces are used, and w = 0.04 when the well
logs are used.

The posterior predictive density of a new observa-
tion yn, given the observed data y,,,, can be esti-
mated from the m simulated values from the MCMC
for the joint parameter vector, say 69, using the ap-
proximation

m

1 ,
— > plynl69).

j=1

ﬁ(yl\’|yobs) =

In our case, in order to predict the value of a prop-
erty for a specific location sy, we use the information
provided by the wavelet transformation of the signal



zn € RP corresponding to sy. Thus, using the j-th
iteration from the MCMC,

, , I 74€))
plyn10P) = N (al? + 20 + —
UN,2

(y — aD1— zpW), Vg)) 7 3)

N ) c R(n-}—l))((n-{—l)

and (7) ()
7
V,=v@ _ M € R,

UN,2

Vi,N € ]R("'Xl), VN,1 € R(lxn) and [V%)]k,l =
o%exp(—35||si — sk|[). In words, to obtain a pre-
diction at a location sy we calculate the wavelet de-
composition of the signal at that location and then,
for each set of simulated values from the the MCMC,
we calculate the spatial correlation matrix Vg\’,) and
sample the normal distribution specified in (3). The
result is a set of samples yj(\}), - yl(vm) from the pos-
terior predictive distribution of yp.

4. Results

We fitted model (2) separately for each property us-
ing first the y-ray logs and then the seismic traces.
We considered a wavelet transformation based on
the Haar basis. We present results that were ob-
tained from 5,000 iterations of a MCMC after a burn
in period of 500 iterations. To explore the predictive
capability of the model we adopted a “leave one out”
approach, consisting on obtaining the posterior pre-
dictive distribution for each of the 14 locations using
the remaining 13.

Figure 1 shows the predicted values of porosity
and clay volume interpolated over the convex hull of
the locations of the wells. The predictions for each
well are given by the medians of the simulated values
obtained from the 4,500 samples from the MCMC.
In Figure 2 we compare the predictive distribution of
each of the 14 wells, based on the remaining 13 wells
to the actual observed values of clay volume. Sim-
ilar results are obtained for porosity. Notice that
the observations are very central to the predictive
densities. The former shows that the method has a
very high level of predictive accuracy. Also, given
the Bayesian nature of the method, we are not only
providing an estimate of the properties at each lo-
cation, but a precise assessment of the uncertainties
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Figure 1: Linear interpolations of the predicted
properties obtained using a “leave one out” estima-
tion. The predictions at each well are obtained using
the y-ray logs. Top panel corresponds to clay volume
and bottom panel corresponds to porosity

involved in such estimation, given by the predictive
distribution.

The number of non-zero coefficients can vary from
one iteration to the other of the MCMC. Neverthe-
less we observed that no more than 10 coefficients
where different from zero at any given iteration.
This implies that less than 2% of the wavelet co-
efficient contain enough information to accurately
predict the values of porosity and clay volume.

Clearly, the predictive ability of the model de-
pends on the number of wells that are used. To
assess the robustness of the method with respect to
the number of locations used for prediction we chose
a well located at the center of the field and pre-
dicted its porosity using the remaining 13 locations.
We then deleted one location at random at a time
and obtained the prediction with the remaining loca-
tions. The results using vy-ray logs as predictors are
shown in Figure 3 for porosity. A similar behavior is
observed for clay volume. As expected, we observe
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Figure 2: Predictive densities for porosity, obtained
using v-ray logs, at each of the 14 wells using the
remaining 13. Actual observations are marked as a
dot.

that the width of the predictive intervals increases
as the number of wells decreases. Nevertheless ob-
servations and pointwise predictions are fairly close
even for as little as six location for the clay volume
and four for the porosity.

We repeated the whole analysis using the seismic
traces as a predictor of both, clay volume and poros-
ity. Figure 4 shows the interquartile ranges for the
leave one out predictions. The accuracy of the pre-
dictions is lower than the one obtained when the -
ray logs are used, but the performance of the model
is remarkably good in this case as well.
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Figure 3: Predictive 95% probability intervals ob-
tained for a centric well, using y-ray logs, as a func-
tion of the number of predictive wells. Left panel
corresponds to clay volume and right panel corre-
sponds to porosity.
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Figure 4: Interquartile intervals of each of the 14
wells using the remaining 13 wells. Predictions are
obtained using seismic traces. Top panel corre-
sponds to clay volume and bottom panel corresponds
to porosity.



