Skip to main content
Technical Reports
Navigation
Technical Reports
AMS2007-2: Bayesian Wavelet Regression for Spatial Estimation
« Previous
Next »
Authors
Giselle Alvarez and Bruno Sansó
Published On
12/31/2007 09:00 AM
Department
Applied Mathematics & Statistics
Abstract
We consider the problem of estimating the properties of an oil reservoir, like porosity and sand thickness, in an exploration scenario where only a few wells have been drilled. We use gamma ray records measured directly from the wells as well as seismic traces recorded around the wells. To model the association between the soil properties and the signals, we fit a linear regression model. Additionally we account for the spatial correlation structure of the observations using a correlation function that depends on the distance between two points.
We transform the predictor variable using discrete wavelets and then perform a Bayesian variable selection using a Metropolis search. We obtain predictions of the properties over the whole reservoir providing a probabilistic quantification of their uncertainties, thanks to the Bayesian nature of our method. The cross-validated results show that a very high accuracy can be achieved even with a very small number of wavelet coefficients.
Download
AMS2007-2
Error | Technical Reports
Technical Reports
Error
The website encountered an unexpected error. Please try again later.